
Datalog + Logic Tutorial

Datalog

 Recall Datalog evaluation:
 Head(x,y) <- Body1(x,y,z),
Body2(z,y).

 Keep adding tuples matching head
(monotonically) based on conjunction of body
predicates
 implemented by joining the database tables of body

predicates

 Negation stratified

Yannis Smaragdakis
University of Athens

2

Datalog Exercises

 Consider a “next” relation on instructions
 Next(i, j)

 Implement:
 Reachable(i,j)
 ReachableBypassing(i,j,k)
 ReachableFromEntry(i), assuming an Entry(i)
 CanReachReturn(i), assuming ReturnInstruction(i)

 How about:
 CanReachAllReturns(i)
 AllPredecessorsReachableFromEntry(i)

3Yannis Smaragdakis
University of Athens

Propositional Logic

 A language (framework) with:
 propositions: P, Q, R, …
 logical connectives:

 → (implies)
  (and)
  (or)
  (not)
 ↔ (equivalent/equivales)

 constants: t, f

Yannis Smaragdakis
University of Athens

4

Propositional Logic Warmup

 What is the truth table of → ? Of ↔ ?
 Can derive all logical connectives from one of

them and 
 or all of them just from → and f
 how?

 Basics: P → P  Q, P  Q → P
 Most important identity to remember:

 P → Q ≡ P  Q
 ≡ is the extra-logical “equivalent”, but ↔ also works

Yannis Smaragdakis
University of Athens

5

Other Useful Properties

 P  (Q  R) =
 P  (Q  R) =
  (P  Q) =
  (P  Q) =

 distributivity, DeMorgan
 Generally lots of cool properties

 P  Q ↔ P ↔ Q ↔ P  Q
 ↔ associative, lower binding power
 “Golden rule”

Yannis Smaragdakis
University of Athens

6

First-Order Logic
(aka first-order predicate/functional calculus)

 Another language framework with:
 vars: x, y, …
 predicates: P(x,…), Q(x,…), …
 functions f(x,…), g(x,…)
 logical connectives, constants as in propositional
 quantifiers:  (forall),  (exists)

 Quantifiers introduce variable scopes
 Example

x,y,z: Path(x,y)  Path(y,z) → Path(x,z)

Yannis Smaragdakis
University of Athens

7

First-Order Logic Properties

 (x: F(x)) → F(r)
 F any formula, r replaces all occurrences of x

 F(r) → (x: F(x))
  associates with ,  with , but neither with

each other
 Terms that do not reference the bound variable

can move outside quantifier
  is a big : distributes over it
  is a big : distributes over it

Yannis Smaragdakis
University of Athens

8

Properties and Exercises

 (x: P(x)) ↔ (x: P(x))
 (x: P(x)) ↔ (x: P(x))
 What happens with → ?

 (x: P(x) → Q(x)) ((x: P(x)) → (x: Q(x)))
 (x: P(x) → Q(x)) ((x: P(x)) → (x: Q(x)))

 stronger, weaker, equivalent, or none?

 How about
 (x: P(x) → Q(x)) ((x: P(x)) → (x: Q(x)))

Yannis Smaragdakis
University of Athens

9

Datalog and First-Order Logic

 These are exactly the logical properties we use
to do forall emulations!
 more complex for recursive relations—see code!

 Generally, relationship of Datalog to f.o. logic:
 P(x,y) <- Q(x,z), R(z,y)

means
x,y,z: Q(x,z)  R(z,y) → P(x,y)

but also, if this is the only rule deriving P,
x,y: z: P(x,y) → Q(x,z)  R(z,y)

 What if there are other rules deriving P?

Yannis Smaragdakis
University of Athens

10

Datalog Exercise
 We saw forall emulations

(CanReachAllReturns(i))
 Let’s see a more complex one:

 consider a flow-sensitive VarPointsTo relation:
 VarPointsTo(instr, var, heap)

 write the logical rule “a variable points to an
abstract object at instruction i, if it points to that
same object at all predecessors of i”
 in practice there will need to be more conditions, e.g.,

that i doesn’t assign the variable, but that’s easy

11Yannis Smaragdakis
University of Athens

More Datalog Exercises
 Consider an intermediate language represented

as Datalog relations
 Instruction(method_name, i_counter, instruction)
 Var(method_name, variable)
 Next(method_name, i_counter, j_counter)
 VarMove(method_name, i_counter, var1, var2)
 ConstMove(method_name, i_counter, variable, const)
 VarUse(method_name, i_counter, variable)
 VarDef(method_name, i_counter, variable)

 Compute live ranges, basic blocks, constant propagation,
copy propagation
 a variable is live from the point of its use all the way back to the point

of its last def

12Yannis Smaragdakis
University of Athens

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

