Homework 3 (due May. 12)

In the third homework, you will implement an improved (context-sensitive) version of the Flow
analysis from the second homework, as well as a small taint vulnerability analysis. Finally, you'll start
running your analyses on the full set of contracts we have supplied. In this way, you can experimentally
measure both precision and scalability. Optimization of Datalog code will start being essential.

1. Context-sensitive Flows: In the previous homework you defined the predicate Flows(fromVar,
toVar): there is information flow from variable fromVar to toVar. Most of you followed a
simple and intuitive context-insensitive approach: at every call, you considered that there is an
unconditional flow from the actual parameters of the call to the function's formal parameters, as
well as from the forml return variable to the actual return variable at the call-site. This has the

precision disadvantage that two different function calls get their flows merged. E.g., a function
function 1d(x) { return x; }

called at two program sites
yl = 1d(x1);

y2 = 1d(x2);
(under a context-insensitive analysis) will produce (among others) Flows(“x1”, “y2”) and
Flows(“x2”, “y1”), which do not hold.

In this homework you will make Flows be context sensitive. The context will be the call site of
every function, i.e., you will implement a 1-call-site-sensitive analysis. There are several ways
to do this, but one could be:

* Separate relations LocalFlows(from,to) and ArgReturnFlows(context, from, to).
The context is simply a basic block id (type Block), for the calling block.

* The definition of LocalFlows appeals to that of ArgReturnFlows and vice versa.

* There are two final relations CSForwardFlows and CSBackwardFlows that combine the
above. The first is for all variable flows between variables in the same function, or in
functions (transitively) called by that function. This is the precise context-sensitive
relation that you will typically need. The second is a supplement to also catch the case of
which callee variables may flow to which caller variables. This is more rarely used.

(Note: As we will discuss in class, you could get the same effect with function summaries, since
your Flows currently does not model storage. But the homework asks you to use context
sensitivity explicitly, since it anticipates storage modeling in the next homework.)

Examine the impact of this change experimentally.

2. Define the concept of tainted values and see if such a value can reach a sensitive operation. For
the purposes of the homework, a tainted value is one that is retrieved at a CALLDATALOAD
instruction and sensitive operations are DELEGATECALL and CALLCODE.

This definition admits many variations. E.g.,



» for precision (i.e., fewer but higher-confidence warnings): you can consider as tainted
only values produced at a CALLDATALOAD not under some guard over who called the
contract (instruction CALLER).

» for completeness (i.e., more warnings): you can define simple concepts for tainted
values entering persistent or transient memory (Storage/Memory--instructions
SSTORE/SLOAD, MSTORE/MLOAD). For instance, the whole memory can be considered
tainted if a tainted value is written at any location. This can be considered either by
extending Flows/CSFlows or by adding a new predicate, e.g., FlowsIncludingMemory.

Explore at least one of the above options (with the first being easy).

Apply your analyses to simple contracts you write but also to the contracts from gigahorse-
benchmarks, through the gigahorse.py batch analysis runner. (Use - -help for options.)

What stats do you get? How many analyses time out? Optimize your code based on the
guidelines for Datalog optimization we'll discuss in class.



	Homework 3 (due May. 12)

