
Compilers

Intermediate Representations Intermediate Representations
and Data-Flow Analysis

Yannis Smaragdakis, U. Athens
(original slides by Sam Guyer@Tufts)

Modern optimizing compiler

Front End Back End
Source

code
Assembly

code
OptimizerIR IR

Middle end:
4. Analysis /

Optimization

22

Front End Back Endcode code
OptimizerIR IR

Front end:
1. Lexical analysis

2. Parsing
3. Semantic analysis

Back end:
5. Instruction selection

6. Register allocation
7. Instruction scheduling

A bit more detail

� Intermediate representations and
code generation

Scanner Parser
Semantic

checker

33

Intermediate
code

generation

Back end

High-level IR

Low-level IR

Low-level IR
� Linear stream of abstract instructions

� Instruction: single operation and assignment

� Must break down high-level constructs

x = y op z x ←←←← y op z op x, y, z

44

� Example:

� Introduce temps as necessary: called virtual registers

� Simple control-flow
� Label and goto

t ←←←← 2 * y

z ←←←← x - t
z = x – 2 * y

label1:

goto label1

if_goto x, label1

Jump to label1 if
x has non-zero

value

Stack machines

� Originally for stack-based computers

push x

push 2

push y

multiply

x – 2 * y
Post-fix notation

Now,
Java VM

55

� What are advantages?

� Introduced names are implicit, not explicit

� Simple to generate and execute code

� Compact form – who cares about code size?
� Embedded systems

� Systems where code is transmitted (the ‘Net)

multiply

subtract

IR Trade-offs

for

for (i=0; i<N; i++)

A[i] = i;

loop:

Loop

invariant
Strength

reduce to
temp2 += 4

66

=

[] i

iA

i=0;i<N;i++

loop:

temp1 = &A

temp2 = i * 4

temp3 = temp1 + temp2

store [temp3] = i

...

goto loop

temp2 += 4

Towards code generation

if (c == 0) {

while (c < 20) {

c = c + 2;

t1 = c == 0

if_goto t1, lab1

t2 = n * n

c = t2 + 2

goto end

77

c = c + 2;

}

}

else

c = n * n + 2;

goto end

lab1:

t3 = c >= 20

if_goto t3, end

c = c + 2

goto lab1

end:

Motivating Example:
Dead code elimination

� Idea:
� Remove a computation if result is never used

y = w – 7;

x = y + 1;

y = 1;

y = w – 7;

y = 1; y = 1;

88

� Safety
� Variable is dead if it is never used after defined

� Remove code that assigns to dead variables

� This may, in turn, create more dead code
� Dead-code elimination usually works transitively

y = 1;

x = 2 * z;

y = 1;

x = 2 * z;

y = 1;

x = 2 * z;

Dead code

� Another example:

x = y + 1;

y = 2 * z;

x = y + z;

z = 1;

Which statements
can be safely
removed?

99

� Conditions:

� Computations whose value is never used

� Obvious for straight-line code

� What about control flow?

z = 1;

z = x;

removed?

Dead code

� With if-then-else:

x = y + 1;

y = 2 * z;

if (c) x = y + z;

z = 1;

Which
statements are
can be removed?

1010

� Which statements are dead code?

� What if “c” is false?

� Dead only on some paths through the code

z = 1;

z = x;

Dead code

� And a loop:

while (p) {

x = y + 1;

y = 2 * z;

if (c) x = y + z;

Which
statements are
can be removed?

1111

� Now which statements are dead code?

if (c) x = y + z;

z = 1;

}

z = x;

Dead code

� And a loop:

while (p) {

x = y + 1;

y = 2 * z;

if (c) x = y + z;

Which
statements are
can be removed?

1212

� Statement “x = y+1” not dead

� What about “z = 1”?

if (c) x = y + z;

z = 1;

}

z = x;

Low-level IR

� Most optimizations performed in low-level IR

� Labels and jumps

� No explicit loops
label1:

jumpifnot p label2

x = y + 1

y = 2 * z

1313

� Even harder to see
possible paths

y = 2 * z

jumpifnot c label3

x = y + z

label3:

z = 1

jump label1

label2:

z = x

Optimizations and control flow

� Dead code is flow sensitive

� Not obvious from program

Dead code example: are there any possible paths that

make use of the value?

� Must characterize all possible dynamic behavior

1414

� Must characterize all possible dynamic behavior

� Must verify conditions at compile-time

� Control flow makes it hard to extract information

� High-level: different kinds of control structures

� Low-level: control-flow hard to infer

� Need a unifying data structure

Control flow graph

� Control flow graph (CFG):

a graph representation of the program

� Includes both computation and control flow

� Easy to check control flow properties

� Provides a framework for global optimizations and other compiler
passes

1515

passes

� Nodes are basic blocks

� Consecutive sequences of non-branching statements

� Edges represent control flow

� From jump to a label

� Each block may have multiple incoming/outgoing edges

CFG Example

x = a + b;

y = 5;

if (c) {

x = x + 1;

Program Control flow graph

x = a + b;

y = 5;

if (c)

BB1

1616

x = x + 1;

y = y + 1;

} else {

x = x – 1;

y = y – 1;

}

z = x + y;

x = x + 1;

y = y + 1;

x = x – 1;

y = y – 1;

z = x + y;

T F
BB2 BB3

BB4

Multiple program executions

� CFG models all

program executions

� An actual execution is

x = a + b;

y = 5;

if (c)

Control flow graph

BB1

1717

An actual execution is

a path through the

graph

� Multiple paths: multiple

possible executions

� How many?

x = x + 1;

y = y + 1;

x = x – 1;

y = y – 1;

z = x + y;

T F
BB2 BB3

BB4

Execution 1

� CFG models all

program executions

� Execution 1:

x = a + b;

y = 5;

if (c)

Control flow graph

BB1

1818

Execution 1:

� c is true

� Program executes
BB1, BB2, and BB4

x = x + 1;

y = y + 1;

x = x – 1;

y = y – 1;

z = x + y;

T F
BB2 BB3

BB4

Execution 2

� CFG models all

program executions

� Execution 2:

x = a + b;

y = 5;

if (c)

Control flow graph

BB1

1919

Execution 2:

� c is false

� Program executes
BB1, BB3, and BB4

x = x + 1;

y = y + 1;

x = x – 1;

y = y – 1;

z = x + y;

T F
BB2 BB3

BB4

Basic blocks

� Idea:
� Once execution enters the sequence, all statements (or

instructions) are executed

� Single-entry, single-exit region

� Details

2020

� Details
� Starts with a label

� Ends with one or more branches

� Edges may be labeled with predicates

May include special categories of edges

� Exception jumps

� Fall-through edges

� Computed jumps (jump tables)

Building the CFG

� Two passes

� First, group instructions into basic blocks

� Second, analyze jumps and labels

2121

� How to identify basic blocks?

� Non-branching instructions

Control cannot flow out of a basic block without a jump

� Non-label instruction

Control cannot enter the middle of a block without a label

Basic blocks

� Basic block starts:

� At a label

� After a jump

label1:

jumpifnot p label2

x = y + 1

y = 2 * z

jumpifnot c label3

2222

� Basic block ends:

� At a jump

� Before a label

jumpifnot c label3

x = y + z

label3:

z = 1

jump label1

label2:

z = x

Basic blocks

� Basic block starts:

� At a label

� After a jump

label1:

jumpifnot p label2

x = y + 1

y = 2 * z

jumpifnot c label3

2323

� Basic block ends:

� At a jump

� Before a label

� Note: order still matters

jumpifnot c label3

x = y + z

label2:

z = x

label3:

z = 1

jump label1

Add edges

� Unconditional jump

� Add edge from source of

jump to the block

containing the label

label1:

jumpifnot p label2

x = y + 1

y = 2 * z

jumpifnot c label3

2424

� Conditional jump

� 2 successors

� One may be the fall-

through block

� Fall-through

jumpifnot c label3

x = y + z

label2:

z = x

label3:

z = 1

jump label1

Two CFGs

� From the high-level

� Break down the complex constructs

� Stop at sequences of non-control-flow statements

� Requires special handling of break, continue, goto

2525

� From the low-level

� Start with lowered IR – tuples, or 3-address ops

� Build up the graph

� More general algorithm

� Most compilers use this approach

� Should lead to roughly the same graph

Using the CFG

� Uniform representation for program behavior

� Shows all possible program behavior

� Each execution represented as a path

� Can reason about potential behavior

Which paths can happen, which can’t

2626

Which paths can happen, which can’t

� Possible paths imply possible values of variables

� Example: liveness information

� Idea:

� Define program points in CFG

� Describe how information flows between points

Program points

� In between instructions

� Before each instruction

� After each instruction

••••

x = y + 1

••••

y = 2*z

••••

if (c)

••••

2727

••••

x = y + z

••••

••••

z = 1

••••

May have multiple
successors or
predecessors

Live variables analysis

� Idea
� Determine live range of a variable

Region of the code between when the variable is assigned
and when its value is used

� Specifically:

Def: A variable v is live at point p if

2828

Def: A variable v is live at point p if

� There is a path through the CFG from p to a use of v

� There are no assignments to v along the path

Compute a set of live variables at each point p

� Uses of live variables:
� Dead-code elimination – find unused computations

� Also: register allocation, garbage collection

Computing live variables

� How do we compute live variables?

(Specifically, a set of live variables at each program point)

� What is a straight-forward algorithm?

� Start at uses of v, search backward through the CFG

� Add v to live variable set for each point visited

2929

� Add v to live variable set for each point visited

� Stop when we hit assignment to v

� Can we do better?

� Can we compute liveness for all variables at the same time?

� Idea:

� Maintain a set of live variables

� Push set through the CFG, updating it at each instruction

Flow of information

� Question 1: how does information
flow across instructions?

� Question 2: how does information

••••

x = y + 1

••••

y = 2*z

••••

if (c)

••••

3030

� Question 2: how does information
flow between predecessor and
successor blocks?

••••

••••

x = y + z

••••

••••

z = 1

••••

Live variables analysis

� At each program point:
Which variables contain values computed earlier and
needed later

� For instruction I:
� in[I] : live variables at program point before I

3131

� in[I] : live variables at program point before I

� out[I] : live variables at program point after I

� For a basic block B:
� in[B] : live variables at beginning of B

� out[B] : live variables at end of B

� Note: in[I] = in[B] for first instruction of B
out[I] = out[B] for last instruction of B

Computing liveness

� Answer question 1: for each

instruction I, what is relation between

in[I] and out[I]?

in[I]
I

out[I]

3232

� Answer question 2: for each basic

block B, with successors B1, …, Bn,

what is relationship between out[B]

and in[B1] … in[Bn]

B

out[B]

in[B1]
B1

in[Bn]
Bn

…

Part 1: Analyze instructions

� Live variables across instructions

� Examples:

x = y + z x = y + z x = x + 1

in[I] = {y,z} in[I] = {y,z,t}

x = y + z

in[I] = {x,t}

3333

� Is there a general rule?

x = y + z x = y + z x = x + 1

out[I] = {x}

x = y + z

out[I] = {x,t,y} out[I] = {x,t}

Liveness across instructions

� How is liveness determined?

� All variables that I uses are live before I

Called the uses of I

� All variables live after I are also live

in[I] = {b}

a = b + 2

3434

before I, unless I writes to them

Called the defs of I

� Mathematically:

in[I] = {y,z}

x = 5

out[I] = {x,y,z}

in[I] = (out[I] – def[I]) ∪ use[I]

Example

� Single basic block

(obviously: out[I] = in[succ(I)])
� Live1 = in[B] = in[I1]

� Live2 = out[I1] = in[I2]

� Live3 = out[I2] = in[I3]

Live1

x = y+1

Live2

y = 2*z

3535

� Live3 = out[I2] = in[I3]

� Live4 = out[I3] = out[B]

� Relation between live sets

� Live1 = (Live2 – {x}) ∪∪∪∪ {y}

� Live2 = (Live3 – {y}) ∪∪∪∪ {z}

� Live3 = (Live4 – {}) ∪∪∪∪ {d}

y = 2*z

Live3

if (d)

Live4

Flow of information

� Equation:

� Notice: information flows backwards

in[I] = (out[I] – def[I]) ∪ use[I]

Live1

x = y+1

3636

� Need out[] sets to compute in[] sets

� Propagate information up

� Many problems are forward

Common sub-expressions, constant

propagation, others

x = y+1

Live2

y = 2*z

Live3

if (d)

Live4

Part 2: Analyze control flow

� Question 2: for each basic block B, with successors B1,

…, Bn, what is relationship between out[B] and

in[B1] … in[Bn]

� Example: B

out={ }

3737

� What’s the general rule?

in={ }

w=x+z;

B1

in={ }

q=x+y;

Bn

…

Control flow

� Rule: A variable is live at end of block B if it is live at
the beginning of any of the successors

� Characterizes all possible executions

� Conservative: some paths may not actually happen

3838

� Mathematically:

� Again: information flows backwards

out[B] = ∪∪∪∪ in[B’]
B’ ∈∈∈∈ succ(B)

System of equations

� Put parts together:

in[I] = (out[I] – def[I]) ∪ use[I]

out[I] = in[succ(I)]

out[B] = ∪∪∪∪ in[B’]

Often called a

system of

Dataflow

3939

� Defines a system of equations (or constraints)

� Consider equation instances for each instruction and each

basic block

� What happens with loops?

� Circular dependences in the constraints

� Is that a problem?

out[B] = ∪∪∪∪ in[B’]
B’ ∈∈∈∈ succ(B)

Dataflow
Equations

Solving the problem

� Iterative solution:

� Start with empty sets of live variables

� Iteratively apply constraints

� Stop when we reach a fixpoint

For all instructions in[I] = out[I] = ∅∅∅∅

4040

For all instructions in[I] = out[I] = ∅∅∅∅

Repeat

For each instruction I

in[I] = (out[I] – def[I]) ∪ use[I]
out[I] = in[succ(I)]

For each basic block B

out[B] = ∪∪∪∪ in[B’]

Until no new changes in sets
B’ ∈∈∈∈ succ(B)

Example

� Steps:

� Set up live sets for each

program point

� Instantiate equations

� Solve equations

if (c)

x = y+1

y = 2*z

if (d)

4141

� Solve equations
if (d)

x = y+z

z = 1

z = x

Example

� Program points
if (c)

x = y+1

y = 2*z

if (d)

L1

L5

L2

L3

L4

4242

if (d)

x = y+z

z = 1

z = x

L5

L9

L6

L11

L10

L7

L8

L12

Example

if (c)

x = y+1

y = 2*z

if (d)

L1 = { x, y, z, c, d }

L5 = { x, y, z, c, d }

L2 = { x, y, z, c, d }

L3 = { y, z, c, d }

L4 = { x, z, c, d }

1

2

3

L1 = L2 ∪∪∪∪ {c}

L2 = L3 ∪∪∪∪ L11

L3 = (L4 – {x}) ∪∪∪∪ {y}

L4 = (L5 – {y}) ∪∪∪∪ {z}

L5 = L6 ∪∪∪∪ {d}

L6 = L7 ∪∪∪∪ L9

4343

if (d)

x = y+z

z = 1

z = x

L5 = { x, y, z, c, d }

L9 = { x, y, c, d }

L6 = { x, y, z, c, d }

L11 = { x }

L10 = { x, y, z, c, d }

L7 = { y, z, c, d }

L8 = { x, y, c, d }

L12 = { }

4

5

6

7

L6 = L7 ∪∪∪∪ L9

L7 = (L8 – {x}) ∪∪∪∪ {y,z}

L8 = L9

L9 = L10 – {z}

L10 = L1

L11 = (L12 – {z}) ∪∪∪∪ {x}

L12 = {}

Questions

� Does this terminate?

� Does this compute the right answer?

4444

� How could generalize this scheme for other kinds of
analysis?

Generalization

� Dataflow analysis

� A common framework for such analysis

� Computes information at each program point

� Conservative: characterizes all possible program behaviors

Methodology

4545

� Methodology

� Describe the information (e.g., live variable sets) using a
structure called a lattice

� Build a system of equations based on:

� How each statement affects information

� How information flows between basic blocks

� Solve the system of constraints

Parts of live variables analysis

� Live variable sets

� Called flow values

� Associated with program points

� Start “empty”, eventually contain solution

� Effects of instructions

4646

� Effects of instructions

� Called transfer functions

� Take a flow value, compute a new flow value that captures the
effects

� One for each instruction – often a schema

� Handling control flow

� Called confluence operator

� Combines flow values from different paths

Mathematical model

� Flow values

� Elements of a lattice L = (P, ⊆⊆⊆⊆)

� Flow value v ∈ P

� Transfer functions
� Set of functions (one for each instruction)

4747

� Set of functions (one for each instruction)

� Fi : P → P

� Confluence operator
� Merges lattice values

� C : P × P → P

� How does this help us?

Lattices

� Lattice L = (P, ⊆⊆⊆⊆)

� A partial order relation ⊆

Reflexive, anti-symmetric, transitive

� Upper and lower bounds

Consider a subset S of P

4848

Consider a subset S of P

� Upper bound of S: u∈S : ∀x∈S x ⊆ u

� Lower bound of S: l∈S : ∀x∈S l ⊆ x

� Lattices are complete

Unique greatest and least elements

� “Top” T∈P : ∀x∈P x ⊆ T

� “Bottom” ⊥⊥⊥⊥∈P : ∀x∈P ⊥⊥⊥⊥ ⊆ x

Confluence operator

� Combine flow values

� “Merge” values on different control-flow paths

� Result should be a safe over-approximation

� We use the lattice ⊆⊆⊆⊆ to denote “more safe”

4949

� Example: live variables

� v1 = {x, y, z} and v2 = {y, w}

� How do we combine these values?

� v = v1 ∪ v2 = {w, x, y, z}

� What is the “⊆” operator?

� Superset

Meet and join

� Goal:

Combine two values to produce the “best” approximation

� Intuition:

� Given v1 = {x, y, z} and v2 = {y, w}

� A safe over-approximation is “all variables live”

� We want the smallest set

5050

� We want the smallest set

� Greatest lower bound

� Given x,y ∈P

� GLB(x,y) = z such that

� z ⊆⊆⊆⊆ x and z ⊆⊆⊆⊆ y and

� ∀w w ⊆⊆⊆⊆ x and w ⊆⊆⊆⊆ y ⇒ w ⊆⊆⊆⊆ z

� Meet operator: x ∧ y = GLB(x, y)

� Natural “opposite”: Least upper bound, join operator

Termination

� Monotonicity

Transfer functions F are monotonic if

� Given x,y ∈P

� If x ⊆ y then F(x) ⊆ F(y)

� Alternatively: F(x) ⊆ x

5151

� Alternatively: F(x) ⊆ x

� Key idea:

Iterative dataflow analysis terminates if

� Transfer functions are monotonic

� Lattice has finite height

� Intuition: values only go down, can only go to bottom

Example

� Prove monotonicity of live variables analysis

� Equation: in[i] = (out[i] – def[i]) ∪ use[i]

(For each instruction i)

� As a function: F(x) = (x – def[i]) ∪ use[i]

5252

� As a function: F(x) = (x – def[i]) ∪ use[i]

� Obligation: If x ⊆ y then F(x) ⊆ F(y)

� Prove:

x ⊆ y => (x – def[i]) ∪ use[i] ⊆ (y – def[i]) ∪ use[i]

� Somewhat trivially:

� x ⊆ y ⇒ x – s ⊆ y – s

� x ⊆ y ⇒ x ∪ s ⊆ y ∪ s

Dataflow solution

� Question:

� What is the solution we compute?

� Start at lattice top, move down

� Called greatest fixpoint

� Where does approximation come from?

5353

� Where does approximation come from?

� Confluence of control-flow paths

� Ideal solution?

� Consider each path to a program point separately

� Combine values at end

� Called meet-over-all-paths solution (MOP)

� When is the fixpoint equal to MOP?

Dataflow solution

� Question:

� What is the solution we compute?

� Start at lattice top, move down

� Called greatest fixpoint

� Where does approximation come from?

5454

� Where does approximation come from?

� Confluence of control-flow paths

� Knaster Tarski theorem

� Every monotonic function F over a complete lattice L has a

unique least (and greatest) fixpoint

� (Actually, the theorem is more general)

Composition of functions
Consider if-then-else graph

� If we compute each path:

� in = F4(F2(F1(out)))

� in = F4(F3(F1(out)))

� Two solutions

MOP:

in = F4(F2(F1(out))) ∧ F4(F3(F1(out)))

F4

F3F2

in

5555

� in = F4(F2(F1(out))) ∧ F4(F3(F1(out)))

Fixpoint:

� Merge live vars before applying F4

� in = F4(F2(F1(out)) ∧ F3(F1(out)))

� When are these two results the same?

� When the transfer functions are distributive

� Prove: F(x) ∧ F(y) = F(x ∧ y)

F1

out

Summary

� Dataflow analysis

� Lattice of flow values

� Transfer functions (encode program behavior)

� Iterative fixpoint computation

� Key insight:

5656

� Key insight:

If our dataflow equations have these properties:

� Transfer functions are monotonic

� Lattice has finite height

� Transfer functions distribute over meet operator

Then:

� Our fixpoint computation will terminate

� Will compute meet-over-all-paths solution

