
Homework 4 (due June 20)
In this homework, you will start handling the memory of a smart contract, both transient (Memory) and
persistent (Storage). The handling of shared memory (and not local variables) is one of the main
challenges of whole-program static analysis.

1. In your Flows relation from the previous homeworks, add flows via memory and via storage.
That is, you should handle MSTORE/.../MLOAD and SSTORE/SLOAD instructions. The main

focus is storage. Memory can be handled similarly, by modeling MSTORE/MLOAD instructions at
known addresses, but most uses of memory are more complex and are already modeled in the
framework via the memory modeling API present under clientlib/memory_modeling. Relation
MemoryStatement_ActualArg can be used to obtain the variables written in memory

(using MSTORE statements) as arguments to MLOAD, SHA3, CALL statements (and more)

without having to model the underlying memory addresses.

2. Add symbolic constants for all addresses that are derived from external values, specifically
from CALLDATALOAD statements, as in homework 3. For instance, for a CALLDATALOAD with
instruction id "0x95a", you can consider that it produces a new value (symbolic constant)
"input0x95a". You should perform symbolic evaluation of at least the SHA3 instruction over
such symbolic constants. (You may also need to combine with Flows to get meaningful results,
unless you also support symbolic arithmetic.) That is, produce constants of the form
"SHA3(SHA3(input0x951))", which will be added to Variable_Value as "values". To
avoid infinite recursion, limit the depth of application of the SHA3 constructor.

3. Even with the above effort, the definition is not even “soundy”! It yields no results for store
instructions over unknown addresses. A big step towards completeness (with a likely cost in
precision) is to consider every store to an unknown location as a store to all the already-known
(constant) locations. This requires negation, so the predicate you'll produce should be evaluated
at a later stage than (i.e., after the full evaluation of) the earlier Flows relation. You can name
this more complete relation GeneralFlows. How much less precise is it?

4. Define an intermediate relation between the Flows relation of step 1 and GeneralFlows of
step 3. For instance, you can handle as stores-to-any-address only the stores to a tainted address
(according to the 2nd question of Homework 3) that is not constructed via a SHA3. We will
discuss more options in class.

Apply your analyses over the gigahorse-benchmarks. Examine the impact of the different definitions of
Flows over the client analyses from Homeworks 2 and 3.

https://github.com/nevillegrech/gigahorse-toolchain/tree/master/clientlib/memory_modeling
https://github.com/nevillegrech/gigahorse-toolchain/tree/master/clientlib/memory_modeling#high-level-usesdefs

	Homework 4 (due June 20)

