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Abstract

To maximize run-time performance, programmers often spe-
cialize their code by hand, replacing library collections and
containers by custom objects in which data is restructured
for efficient access. However, changing the data representa-
tion is a tedious and error-prone process that makes it hard
to test, maintain and evolve the source code.

We present an automated and composable mechanism
that allows programmers to safely change the data represen-
tation in delimited scopes containing anything from expres-
sions to entire class definitions. To achieve this, program-
mers define a transformation and our mechanism automati-
cally and transparently applies it during compilation, elimi-
nating the need to manually change the source code.

Our technique leverages the type system in order to offer
correctness guarantees on the transformation and its interac-
tion with object-oriented language features, such as dynamic
dispatch, inheritance and generics.

We have embedded this technique in a Scala compiler
plugin and used it in four very different transformations,
ranging from improving the data layout and encoding, to
retrofitting specialization and value class status, and all the
way to collection deforestation. On our benchmarks, the
technique obtained speedups between 1.8x and 24.5x.

Categories and Subject Descriptors E.2 [Object repre-

sentation]

Keywords data representation, jvm, bytecode, compati-
bility, transformation, optimization, safety, semantics

1. Introduction

An object encapsulates code and data and exposes an inter-
face. Modern language facilities, such as extension methods,
type classes and implicit conversions allow programmers
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to evolve the object interface in an ad hoc way, by adding
new methods and operators. For example, in Scala, we can
use an implicit conversion to add the multiplication operator
to pairs of integers, with the semantics of complex number
multiplication:

1 scala> (0, 1) * (0, 1)

2 res0: (Int, Int) = (-1, 0)

Unlike evolving the interface, there is no mechanism in
modern languages for evolving an object’s encapsulated data
as the programmer sees fit. The encapsulated data format is
assumed to be fixed, allowing the compiled code to contain
hard references to data, encoded according to a convention
known as the object layout. For instance, methods encapsu-
lated by the generic pair class, such as swap and toString,
rely on the existence of two generic fields, erased to Object.
This leads to inefficient storage in our running example, as
the integers need to be boxed, producing as many as 3 heap
objects for each “complex number”: the two boxed integers
and the pair container. What if, for a part of our program,
instead of the pair, we concatenated the two 32-bit integers
into a 64-bit long integer, that would represent the “complex
number”? We could pass complex numbers by value, avoid-
ing the memory allocation and thus the garbage collection
cost. Additionally, what if we could also add functionality,
such as arithmetic operations, directly on our ad hoc com-
plex numbers, without any heap allocation overhead?

Object layout transformations are common in dynamic
language virtual machines, such as V8, PyPy and Truffle.
These virtual machines profile values at run-time and make
optimistic assumptions about the shape of objects. This al-
lows them to improve the object layout in the heap, at the
cost of recompiling all of the code that references the old ob-
ject layout. If, later in the execution, the assumptions prove
too optimistic, the virtual machine needs to revert to the
more general (and less efficient) object layout, again recom-
piling all the code that contains hard references to the opti-
mized layout. As expected, this comes with significant over-
heads. Thus, runtime decisions to change the low-level lay-
out are expensive (due to recompilation) and have a global
nature, affecting all code that assumes a certain layout.

Since transforming the object layout at run-time is ex-
pensive, a natural question to ask is whether we can lever-
age the statically-typed nature of a programming language



to optimize the object layout during compilation? The an-
swer is yes. Transformations such as “class specialization”
and “value class inlining” transform the object layout in or-
der to avoid the creation of heap objects. However, both of
these transformations take a global approach: when a class
is marked as specialized or as a value class (and assuming it
satisfies the semantic restrictions) it is transformed at its def-
inition site. Later on, this allows all references to the class,
even in separately compiled sources, to be optimized. On
the other hand, if a class is not marked at its definition site,
retrofitting specialization or the value class status is impos-
sible, as it would break many non-orthogonal language fea-
tures, such as dynamic dispatch, inheritance and generics.

Therefore, although transformations in statically typed
languages can optimize the object layout, they do not meet
the ad hoc criterion: they cannot be retrofitted later, and they
have a global, all-or-nothing nature. For instance, in Scala,
the generic pair class is specialized but not marked as a value
class. As a result, the representation is not fully optimized,
still requiring a heap object for each pair. Even worse, spe-
cialization and value class inlining are mutually exclusive,
making it impossible to optimally represent our “complex
numbers” even if we had complete control over the Scala
library. Furthermore, our encoded “complex number” data
representation may be applicable for specific parts of the
client code, but might not make sense globally.

In our “complex numbers” abstraction, we only use a
fraction of the flexibility provided by the library tuples, and
yet we have to give up all the code optimality. Even worse,
for our limited domain, we are aware of a better representa-
tion, but the only solution is to transform the code by hand,
essentially having to choose between an obfuscated or a slow
version of the code. What is missing is a largely automated
and safe transformation that allows us to use our domain-
specific knowledge to mark a scope where the “complex
numbers” can use the encoded representation, effectively
specializing that part of our program.

In this paper we present such an automated transfor-
mation that allows programmers to safely change the data
representation in limited, well-defined scopes that can in-
clude anything from expressions to method and class defini-
tions. The transformation, which occurs during compilation,
maintains strong correctness guarantees in terms of non-
orthogonal language features, such as dynamic dispatch, in-
heritance and generics, while also maintaining consistence
across separate compilation runs.

Like metaprogramming, which allows developers to trans-
form their code in an ad-hoc ways, our technique allows
redefining the data representation to be used inside delim-
ited scopes. Because of its power, the technique also affords
potential for misuse. In some cases, specifically for muta-
ble and reference-based data structures, the transformations
must be carefully designed to preserve language semantics
(§4.5). Still, altering program semantics may be desirable—
we exploit this property in the deforestation benchmark,
shown in the evaluation section (§6).

The scoped nature of the transformation tightly controls
which parts of the code use the new data representation
and operations while the mechanism for defining trans-
formations automatically eliminates many of the common
semantics-altering pitfalls. Given a programmer-designed
data representation transformation, inside the delimited
scopes the compiler is responsible for: (1) automatically
deciding when to apply the transformation and when to re-
vert it, in order to ensure correct interchange between repre-
sentations, (2) enriching the transformation with automati-
cally generated bridge code that ensures correctness relative
to overriding and dynamic dispatch and (3) persisting the
necessary metadata to allow transformed program scopes
in different source files and compilation runs to commu-
nicate using the optimized representation—a property we
refer to as composability in the following sections. Thus,
our approach adheres to the design principle of separating
the reusable, general and provably correct transformation
mechanism from the programmer-defined policy, which may
contain incorrect decisions [31]. In this context, our main
contributions are:

• Introducing the data representation metaprogramming
problem, which, to the best of our knowledge, has not
been addressed at all in the literature (§2);

• Presenting the extensions that allow global data rep-
resentation transformations (§3) to be used as scoped
programmer-driven transformations (§4);

• Implementing the approach presented as a Scala compiler
plugin [3] that allows programmers to express custom
transformations (§5) and benchmarking the plugin on a
broad spectrum of transformations, ranging from improv-
ing the data layout and encoding, to retrofitting special-
ization and value class status, and to collection deforesta-
tion [50]. These transformations produced speedups be-
tween 1.8 and 24.5x on user programs (§6).

2. Motivation and Overview

This section presents a motivating example featuring the
complex numbers transformation, which we use throughout
the paper. It then shows how the data representation trans-
formation is triggered and introduces the main concepts. Fi-
nally, it shows a naive transformation, hinting at the difficul-
ties lying ahead.

2.1 Motivating Example

In the introduction, we focused on adding complex number
semantics to pairs of integers. Complex numbers with in-
tegers as both their real and imaginary parts are known as
Gaussian integers [2, 24], and are a countable subset of all
complex numbers. The operations defined on Gaussian in-
tegers are similar to complex number operations, with one
exception: to satisfy the abelian closure property, division is
not precise, but instead rounds the result to the nearest Gaus-
sian integer, with both the real and imaginary axes contain-
ing integers. This is similar to integer division, which also
rounds the result, so that, for example, 5/2 produces value 2.



An interesting property of Gaussian integers is that we
can define the “divides” relation and the greatest common
divisor (GCD) between any two Gaussian integers. Further-
more, computing the GCD is similar to Euclid’s algorithm
for integer numbers:

1 def gcd(n1: (Int, Int), n2: (Int, Int)): (Int, Int) = {

2 val remainder = n1 % n2

3 if (remainder.norm == 0) n2 else gcd(n2, remainder)

4 }

Unfortunately, as our algorithm recursively computes the
result, it creates linearly many pairs of integers, allocating
them on the heap. If we run this algorithm with no optimiza-
tions, computing the GCD takes around 3 microseconds (on
the same setup as used for our full experiments in §6):

1 scala> timed(() => gcd((544, 185), (131, 181)))

2 The operation takes 3.05 us (based on 10000 executions)

3 The result is (10, 3).

Let us now run gcdADRT, which has the same code as gcd
but encodes the Gaussian integers into 64-bit long integers:

1 scala> timed(() => gcdADRT((544, 185), (131, 181)))

2 The operation takes 0.23 us (based on 10000 executions)

3 The result is (10, 3).

This rather large speedup, of 13x, is the effect of using
the long integer representation for Gaussian Integers, which:

(1) Provides a direct representation, which does not require
any pointer dereferencing;

(2) Allocates Gaussian integers on the stack, since the Long

primitive type is unboxed by the compiler backend, thus
avoiding object allocation and garbage collector pauses.

The Benchmarks section (§6) shows the contribution of
each element to the speedup. This example (and many oth-
ers in the Benchmarks section) show that optimizing the
data representation is worthwhile. However, transforming
the code by hand is both tedious and error-prone.

2.2 Automating the Transformation

In order to reap the benefits of using the improved rep-
resentation without manually transforming the code, we
present the Ad hoc Data Representation (ADR) Transforma-
tion technique, which is triggered by the adrt marker. This
marker method accepts two parameters: the first parameter
is the transformation description object and the second is
a block of code that constitutes the transformation scope,
which can contain anything from expressions all the way to
method or even class definitions:

1 adrt(IntPairComplexToLongComplex) {

2 def gcdADRT(n1: (Int, Int), n2: (Int, Int)) = {

3 val remainder = n1 % n2

4 if (remainder.norm == 0) n2 else gcdADRT(n2,

remainder)

5 }

6 }

The gcdADRT method has exactly the same code as gcd,
but wrapped in the adrt scope. Therefore, during compila-
tion, the method is transformed to use the long integer rep-
resentation. Two elements trigger the transformation: the de-
scription object and the transformation scope.

The transformation description object is responsible for
defining the transformation that will be applied to the code.
In our example, IntPairComplexToLongComplex designates
a transformation from the high-level type, in this case
(Int, Int) to the representation type, in this case Long:

1 object IntPairComplexToLongComplex

2 extends TransformationDescription {

3 // coercions:

4 def toRepr(high: (Int, Int)): Long = ...

5 def toHigh(repr: Long): (Int, Int) = ...

6 // bypass methods:

7 ...

8 }

Transformation description objects are described in more
detail in §4, but we can already preview their components:

• The toRepr and toHigh methods serve a double purpose:
At the type level, they define the high-level type, in
this case (Int, Int), which serves as the target of
the transformation, and the representation type, in this
case Long, which will be used as the optimized value
representation;
At the term level, they allow converting values be-
tween the two representations;

• The “bypass methods” part of the definition allows op-
erations such as *, % and norm to run directly on values
encoded in the representation type (in this case Long),
instead of decoding them back to the high-level type in
order to execute the dynamic dispatch. We explain how
bypass methods are defined and used later on, in §4.4.

Description objects split the task of optimizing the data
representation into:

(1) Devising an improved data representation: Defining the
improved data representation is done once and uses
domain-specific knowledge about the program. There-
fore, we let the developer decide how data should be
encoded and how operations should be handled. This in-
formation is stored in the description object.

(2) Transforming the source code to use the improved repre-
sentation, based on the description object: This is repeti-
tive, tedious and error-prone work, which we completely
automate away.

A natural question to ask is why not automate the process
of finding a better data representation? Any change in the
data representation speeds up certain patterns at the expense
of slowing down others. For example, unboxing primitive
types speeds up monomorphic code, which handles primi-
tives directly. Yet, erased generics still require values to be
boxed, so any interaction with them triggers boxing opera-
tions, which slow down execution.

Furthermore, there are many aspects that can be opti-
mized: eliminating pointer dereferencing, improving cache
locality, reducing the memory footprint to avoid garbage
collection pauses, reducing numeric value ranges, specializ-
ing or delaying operations, and many others. Thus, there are
many choices to make, depending on the context, to the point
where automation does not make sense. Instead, armed with



application profiles and domain-specific information about
how the data is used, a programmer can decide what is the
best transformation to apply to each critical part of an ap-
plication. And, interestingly, not all parts of an application
have the same needs. This is where scopes come in.

The transformation scope is delimited by the adrt marker
method, which behaves much like a keyword. Values, meth-
ods and classes defined in the scope are also visible outside,
since the inlining occurs early in the compilation pipeline:

1 scala> adrt(IntPairComplexToLongComplex) {

2 | def gcdADRT(n1: (Int, Int), n2: (Int, Int))={

3 | ...

4 | }

5 | }

6 defined method gcdADRT

7

8 scala> timed(() => gcdADRT((544, 185), (131, 181)))

9 ...

Scoped transformations bring two advantages:

• Different parts of a program can use different transforma-
tions, using the best data representation for the task;

• Transformations are clearly marked in the source code.

The fact that different transformations can be applied
to different components gives the ADR transformation its
scoped nature, and sets it apart from classical optimizations
such as unboxing primitive types, generic specialization and
value class inlining, which occur globally. However, this
scoped nature makes the transformation more complex, as
the next paragraphs will show.

2.3 A Naive Transformation

Despite its simple interface, the Ad hoc Data Representation
Transformation mechanism is by no means simple. Let us try
to make the transformation by hand and see the challenges
that appear. The initial result, the gcdNaive method, would
take and return values of type Long instead of (Int, Int):

1 def gcdNaive(n1: Long, n2: Long): Long = {

2 val remainder = n1 % n2

3 if (remainder.norm == 0) n2 else gcdNaive(n2,

remainder)

4 }

There are many questions one could ask about this naive
translation. For example, how does the compiler know which
parameters and values to transform to the long integer repre-
sentation (§4.1)? How and when to encode and decode val-
ues, and what to do about values that are visible outside the
scope (§4.2)? Even worse, what if parts of the code are com-
piled separately, in a different compiler run (§4.3)?

Going into the semantics of the program, we can ask if
the % (modulo) operator maintains the semantics of Gaussian
integers when used for long integers. Also, is norm defined
for long integers? Unfortunately, the response to both ques-
tions is negative. Therefore, to correctly transform the code,
ADRT needs equivalent versions of the methods that operate
on the long integer representation (§4.4).

We could also ask what would happen if gcd was overrid-
ing another method. Would the new signature still override

it? The answer is no, so the naive translation would break the
object model (§4.5):

1 trait WithGCD[T] {

2 def gcd(n1: T, n2: T): T

3 }

4

5 class Complex extends WithGCD[(Int, Int)] {

6 // expected: gcd(n1: (Int, Int), n2: (Int, Int)) ...

7 // found: gcd(n1: Long, n2: Long): Long

8 // (which does not implement gcd in trait WithGCD)

9 def gcd(n1: Long, n2: Long): Long = ...

10 }

What we can learn from this naive transformation, which
is clearly incorrect, is that transforming the data representa-
tion is by no means trivial and that special care must be taken
when performing it. Our approach, the Ad hoc Data Repre-
sentation Transformation, addresses the questions above in a
reliable and principled fashion.

3. Data Representation Transformations

As necessary background for our approach, we review data
representation transformations and, in particular, the Late
Data Layout transformation mechanism [47], which we later
extend to our Ad hoc Data Representation Transformation.

Data can usually be represented in several ways, some
more efficient and others more flexible. For example, inte-
ger numbers can use either the primitive (unboxed) value en-
coding, which is more efficient, or the object-based (boxed)
encoding, which is more flexible. The boxed representation
allows integers to act as the receivers of dynamically dis-
patched method calls, to be assigned to supertypes, such as
Number or Object and to instantiate erased generics. How-
ever, the extra flexibility comes at a price: boxed integers are
allocated on the heap so they need to be garbage-collected
later and all their operations incur an indirection overhead.
This leads to a tension between the two representations.

From a language perspective, there are two approaches
to exposing the multiple representations of a type: either
have a different type for each representation, as Java does,
or fully hide the difference and present a single language-
level type, as ML, Haskell and Scala do. Either way, the
final low-level bytecode or assembly code needs to handle
the two representations separately, since they correspond to
very different entities: references and values.

Exposing a single high-level type in the language is more
popular among programmers for its simplicity, but it places
more responsibility on the compiler, which has to perform
two additional steps: first, it needs to choose the data rep-
resentation of each value; and second, it needs to introduce
coercions that switch between representations where neces-
sary. For example, since only boxed integers can instantiate
generics, any unboxed integer going into a generic container,
such as a list, needs to be coerced to the boxed representa-
tion. This work is done in the compiler pipeline, in so-called
data representation transformations.

The Late Data Layout (LDL) mechanism, presented next,
is a powerful data representation transformation facility for
Scala. It has three properties that make it well-suited to be



a substrate for our Ad hoc Data Representation Transforma-
tion: selectivity, optimality and consistency. However, LDL
is neither programmer-driven, since the data representation
has to be known a priori and encoded in the transformation,
nor directly applicable to limited scopes inside a program,
so later sections will have to extend it.

3.1 Late Data Layout

The Late Data Layout (LDL) mechanism [47] is the un-
derlying transformation used in Scala to implement multi-
parameter value class inlining and to specialize classes us-
ing the miniboxed encoding [46]. It is a flexible and reliable
mechanism, tested on thousands of lines of Scala code.

Using LDL, a language can expose high-level types
(called high-level concepts in the LDL terminology), such as
the integer type Int exposed by Scala, which can represent
either a boxed or unboxed value in the low-level bytecode.
In the following running example, we have values of types
Int and Any. Any is the top of the Scala type system, and
thus a supertype of Int:

1 val i: Int = 1

2 val j: Int = i

3 val k: Any = j

Since Scala compiles down to Java bytecode, during
compilation, the LDL-based primitive unboxing transfor-
mation bridges the gap between the high-level Int concept
and its two representations: the unboxed int and the boxed
java.lang.Integer representation. Along the way, it intro-
duces the necessary coercions between these two represen-
tations. For example, the code above is translated to:1

1 val i: int = 1

2 val j: int = i

3 val k: Any = Integer.valueOf(j)

The LDL mechanism transforms the data representation
in three phases: INJECT, COERCE and COMMIT. Each of the
phases is responsible for a property of the transformation:
INJECT makes LDL selective, COERCE makes it optimal and
COMMIT makes it consistent. In our examples, we show the
equivalent source code for the program abstract syntax trees
(ASTs) after each of these phases.

The INJECT phase is responsible for marking each sym-
bol with its desired representation. In the case of primitive
integer unboxing, the annotation is @unboxed, and it signals
that the value should be stored in the unboxed int repre-
sentation. As an optimization, instead of adding a @boxed

annotation for the corresponding cases, symbols that are not
marked are automatically considered boxed. Following the
INJECT phase, the previous example will be transformed to:

1 val i: @unboxed Int = 1 // Int can be unboxed

2 val j: @unboxed Int = i // Int can be unboxed

3 val k: Any = j // Any cannot be unboxed

1 The translations shown throughout the paper are Scala compiler abstract
syntax tree (AST) dumps, in different stages of the compilation. To facilitate
reading, we pretty-print the ASTs using Scala syntax. Sometimes we have
to introduce elements that are not part of the Scala syntax, such as int.

The INJECT phase gives LDL a selective nature, allowing
it to mark each individual symbol with its representation.
For example, it would have been equally correct if the mark-
ing rules decided that j should be boxed, in which case it
would not have been marked. One of the properties of the
LDL transformation is that boxed and unboxed values are
compatible in the INJECT phase, so there are no coercions.

The COERCE phase, as its name suggests, introduces co-
ercions. This is done by changing the annotation seman-
tics: annotated types become incompatible with their un-
annotated counterparts. This change in the annotation se-
mantics corresponds to introducing the different representa-
tions: each annotation corresponds to a representation, and
representations are not compatible with each other. With
this change, an assignment from one representation to an-
other will lead to mismatching types. Therefore, by re-type-
checking the tree, the COERCE phase can detect representa-
tion mismatches and can patch them using coercions. In the
example, the last line contains such a mismatch:

1 val i: @unboxed Int = 1 // expected/found: @unboxed

2 val j: @unboxed Int = i // expected/found: @unboxed

3 val k: Any = box(j) // mismatch => box

The COERCE phase establishes the optimality property
of the LDL transformation. The definition of optimality is
quite involved, but we can easily show it using an example.
Consider the following two integer definitions:

1 val c: Boolean = ...

2 val l1: @unboxed Int = if (c) i else j

3 val l2: @unboxed Int = unbox(if (c) box(i) else box(j))

It is clear that the two definitions will always produce
the same result. Yet, the first one is markedly better: it does
not execute any coercions, compared to second definition,
which executes two coercions regardless of the value of c.
These subtle sub-optimalities can slow down program exe-
cution, increase the heap footprint and the bytecode size. The
LDL paper [47] makes the following intuition-based con-
jecture: “in any given terminating execution trace through
the transformed program, the number of coercions executed
is minimal, for given sets of annotations introduced by the
INJECT phase and transformations performed in the COM-
MIT phase”. An initial formalization and proof is sketched
in [45].

From our perspective, optimality means that once repre-
sentations are chosen and annotated, the COERCE phase will
not introduce any redundant coercions, so data will be seam-
lessly passed along with as few coercions as possible.

The COMMIT phase is responsible for introducing the
actual representations. In the case of primitive unboxing,
@unboxed Int is replaced by int, and Int, which is consid-
ered boxed, is replaced by java.lang.Integer. The box and
unbox coercions are also replaced by the creation of objects
and, respectively, by the extraction of the unboxed value:
1 val i: int = 1

2 val j: int = i

3 val k: Any = Integer.valueOf(j)



The COMMIT phase is responsible for the consistency of
the transformation. Since the program abstract syntax tree
(AST) has been checked by the type-system extended with
representation semantics, the COMMIT phase is guaranteed
to correctly handle the value representations and to correctly
coerce between them. This allows the COMMIT phase to be
a very simple transformation over the program AST.

3.2 Support For Object-Oriented Programming

The LDL mechanism targets object-oriented programming
languages, which pose unique challenges for data represen-
tation transformations. This section will describe the addi-
tional rules necessary in LDL to handle object-orientation.

Object-oriented Patterns. Aside from introducing co-
ercions, data representation transformations must handle
object-oriented patterns, such as method calls and subtyp-
ing. Not all representations can be used with these patterns.
For example, it is not possible to call the toString method
on the unboxed int representation:

1 val a: @unboxed Int = 1

2 println(a.toString)

To handle dynamically dispatched method calls, LDL has
a built-in rule: when a value acts as a method call receiver,
it is coerced to the boxed representation, which, in this case,
corresponds to the non-annotated representation. In our ex-
ample, the @unboxed Int value is boxed during the COERCE

phase, so it can act as the receiver of the toString method:

1 val a: @unboxed Int = 1

2 println(box(a).toString)

To improve performance, the LDL mechanism also sup-
ports bypass methods, also known as extension methods

in the literature. For example, if a static bypass_toString

method is available for the unboxed int representation, there
is no need to convert it before the method call:

1 val a: @unboxed Int = 1

2 println(bypass_toString(a))

Subtyping is handled in a similar fashion, by requiring the
boxed representation, which can be assigned to supertypes.

Support for Generics. The Late Data Layout mechanism
is agnostic to generics. This means that, depending on the
transformation semantics and the implementation of gener-
ics, the mechanism can inject annotations in the type argu-
ments or not. For example, if generics are erased, a list of
integers will have type List[Int], since values need to be
boxed. If generics are unboxed and reified, the list type will
be List[@unboxed Int]. The LDL paper [47] shows exam-
ples of both cases: when annotations are propagated inside
generics and when they are not. The LDL mechanism adapts
seamlessly to either case.

Having seen the Late Data Layout mechanism at work for
unboxing primitive types, we can now extend it to allow the
more complex, programmer-driven, Ad hoc Data Represen-
tation Transformation.

4. Ad hoc Data Representation

Transformation

The Ad hoc Data Representation (ADR) transformation adds
two new elements to existing data representation transforma-
tions: (1) it enables custom, programmer-defined alternative
representations and (2) it allows the transformation to take
place in limited scopes, ranging from expressions all the way
to method and class definitions. This allows programmers to
use locally optimal transformations that may be suboptimal
or even incorrect for code outside the given scope.

Section 2.2 showed how the ADR transformation is trig-
gered by the adrt marker. The running example is repro-
duced below for quick reference:2

1 adrt(IntPairComplexToLongComplex) {

2 def gcd(n1: (Int, Int), n2: (Int, Int)): (Int, Int)={

3 val remainder = n1 % n2

4 if (remainder.norm == 0) n2 else gcd(n2, remainder)

5 }

6 }

The following sections take a step by step approach to
explaining how our technique allows programmers to de-
fine transformations and to use them in localized program
scopes, improving the performance of their programs in an
automated and safe fashion.

4.1 Transformation Description Objects

The first step in performing an adrt transformation is defin-
ing the transformation description object. This object is re-
quired to extend a marker interface and to define the trans-
formation through the toRepr and toHigh coercions:

1 object IntPairComplexToLongComplex

2 extends TransformationDescription {

3 // coercions:

4 def toRepr(high: (Int, Int)): Long = ...

5 def toHigh(repr: Long): (Int, Int) = ...

6 // bypass methods:

7 ...

8 }

The coercions serve a double purpose: (1) the signatures
match the high-level type, in this case (Int, Int) and in-
dicate the corresponding representation type, Long and vice-
versa and (2) the implementations are called in the trans-
formed scope to encode and decode values as necessary.

Since the description objects can accommodate very dif-
ferent transformations, as shown in the Benchmarks section
(§6), we will not attempt to give a recipe for optimizing
programs here. Each transformation should be devised by
programmers based on runtime profiles and domain-specific
knowledge of how data is processed inside the application.
Instead, we will focus on the transformation facilities avail-
able to the description objects.

Bypass Methods. The description object can optionally in-
clude bypass methods, which correspond to the methods ex-
posed by the high-level type, but instead operate on values

2 In the following paragraphs, the gcd method is assumed to be always
transformed, so we will skip the ADRT suffix, which was used in the
Motivation section (§2) to mark the transformed version of the method.



encoded in the representation type. Bypass methods allow
the transformation to avoid coercing receivers to the high-
level type by rewriting dynamically dispatched calls to their
corresponding statically-resolved bypass method calls, as
shown in section §3.2. Method call rewriting in adrt scopes
is more general, and we describe it in section §4.4.

Generic Transformations. In our example, both the high-
level and representation types are monomorphic (i.e., not
generic). Still, in some cases, the ADR transformation is
used to target collections regardless of the type of their ele-
ments. We analyzed multiple approaches to allowing gener-
icity in the transformation description object and converged
on allowing the coercions to be generic themselves. This ap-
proach has the merit of being concise and extending natu-
rally to any type constructor arity:

1 def toRepr[T](high: List[T]): LazyList[T] = ...

2 def toHigh[T](repr: LazyList[T]): List[T] = ...

Since the coercion signatures “match” the high-level type
and return the corresponding representation type, a value of
type List[Int] will be matched by the adrt transforma-
tion and subsequently encoded as a LazyList[Int]. This
allows the adrt scopes to transform collections, containers
and function representations. The benchmarks section (§6)
shows two examples of generic transformations.

Target Semantics. It is worth noting that coercions defined
in transformation objects must maintain the semantics of the
high-level type. In particular, semantics such as mutability
and referential identity must be preserved if the program
relies on them. For example, correctly handling referential
identity requires the coercions to return the exact same ob-
ject (up to the reference) when interleaved:

1 assert(toHigh(toRepr(x)) eq x) // referential equality

These semantics prevent the coercions from simply copy-
ing the value of the object into the new representation. For
example, the referential equality condition above would be
violated if the toRepr and toHigh methods would simply
allocate new objects (which would get new references). In-
stead, the toRepr coercion would have to cache the original
value so that, when decoding, the toHigh coercion could re-
turn the exact same object as originally given.

As expected, referential equality and mutability make
transformations a lot more difficult. Luckily, in most use
cases, the targets, such as library collections and contain-
ers, have value semantics: they are immutable, final and only
use structural equality. Such high-level types can be targeted
at will, since they can be reconstructed at any time with-
out the program observing it. A desirable extension of our
approach would be to statically check the compatibility of
the high-level type with its coercions. This could prevent the
programmer from incorrectly copying internally mutable ob-
jects inside the coercions.

The complete transformation description object for the
complex number encoding is given in the Appendix.

4.2 Transformation Scopes and Composability

Existing LDL-based data representation transformations,
such as value class inlining and specialization, have fixed se-
mantics and occur in separate compiler phases. Instead, the
ADR transformation handles all scopes in the source code
concurrently, each with its own high-level target, represen-
tation type, and coercions. This is a challenge, as handling
the interactions between these concurrent scopes, some of
which may even be nested, demands a disciplined treatment.

The key to handling all concurrent scopes correctly is
shifting focus from the scopes themselves to the values they
define. Since we are using the underlying LDL mechanism,
we can track the encoding of each value in its type, using an-
notations. To keep track of the different transformations in-
troduced by different scopes, we extend the LDL annotation
system to reference the description object, essentially ref-
erencing the transformation semantics with each individual
value. We then leverage the type system and the signature
persistence facilities to correctly transform all values, thus
allowing scopes to safely and efficiently pass data among
themselves, using the representation type—a property we re-
fer to as composability.

We look at four instances of composability:

• allowing different scopes to communicate, despite using
different representation types (high-level types coincide);

• isolating high-level types, barring unsound value leaks
through the representation type;

• handling nested transformation description objects;
• passing values between high-level types in the encoded

(representation) format;

Although the four examples cover the most interesting
corner cases of the transformation, the interested reader may
consult the “Scope Nesting” page on the project wiki [4],
which describes all cases of scope overlapping, collaboration
and nesting. Furthermore, scope composition is tested with
each commit, as part of the project’s test suite.

A high-level type can have different representations in

different scopes. This follows from the scoped nature of the
ADR transformation, which allows programmers to use the
most efficient data representation for each task. But it raises
the question of whether values can be safely passed across
scopes that use different representations:

1 adrt(IntPairToLong) { var x = (3, 5) }

2 adrt(IntPairToDouble) { val y = (2, 6); x = y }

At a high level, the code is correct: the variable x is
set to the value of y, both of them having high-level type
(Int, Int). However, being in different scopes, these two
values will be encoded differently, x as a long integer and y

as a double-precision floating point number. In this situation,
how will the assignment x = y be translated? Let us look at
the transformation step by step.

After parsing, the scope is inlined and the program
is type-checked against the high-level types. Aside from
checking the high-level types, the type checker also resolves



implicits and infers all missing type annotations. While type-
checking, the description objects are stored as invisible ab-
stract syntax tree attachments (described in §5):

1 var x: (Int, Int) = (3, 5) /* att: IntPairToLong */

2 val y: (Int, Int) = (2, 6) /* att: IntPairToDouble */

3 x = y

Then, during the INJECT phase, each value or method
definition that matches the description object’s high-level
type is annotated with the @repr annotation, parameterized
on the transformation description object:

1 var x: @repr(IntPairToLong) (Int, Int) = (3, 5)

2 val y: @repr(IntPairToDouble) (Int, Int) = (2, 6)

3 x = y

The @repr annotation is only attached if the value’s type
matches the high-level type in the description object. There-
fore, programmers are free to define values of any type in the
scope, but only those values whose type matches the trans-
formation description object’s target will be annotated.

Based on the annotated types, the COERCE phase no-
tices the mismatching transformation description objects in
the last line: the left-hand side is on its way to be con-
verted to a long integer (based on the description object
IntPairToLong) while the right-hand side will become a
floating point expression (based on the description object
IntPairToDouble). However, both description objects have
the same high-level type, the integer pair, which can be used
as a middle ground in the conversion:

1 var x: @repr(IntPairToLong) (Int, Int) =

toRepr(IntPairToLong, (3, 5))

2 val y: @repr(IntPairToDouble) (Int, Int) =

toRepr(IntPairToDouble, (2, 6))

3 x = toRepr(IntPairToLong, toHigh(IntPairToDouble, y))

Finally, the COMMIT phase transforms the example to:

1 var x: Long = IntPairToLong.toRepr((3, 5))

2 val y: Double = IntPairToDouble.toRepr((2, 6))

3 x = IntPairToLong.toRepr(IntPairToDouble.toHigh(y))

In the end, the value x is converted from a double to a
pair of integers, which is subsequently converted to a long
integer. This shows the disciplined way in which different
adrt scopes compose, allowing values to flow across differ-
ent representations, from one scope to another. Similarly to
the LDL transformation, the mechanism aims to employ a
minimal number of conversions.

Different transformation scopes can be safely nested and
the high-level types are correctly isolated:

1 adrt(FloatPairAsLong) {

2 adrt(IntPairAsLong) {

3 val x: (Float, Float) = (1f, 0f)

4 var y: (Int, Int) = (0, 1)

5 // y = x

6 // y = 123.toLong

7 }

8 }

Values of the high-level types in the inner scope are inde-
pendently annotated and are transformed accordingly. Since
both the integer and the float pairs are encoded as long

integers, a natural question to ask is whether values can
leak between the two high-level types, for example, by un-
commenting the last two lines of the inner scope. This would
open the door to incorrectly interpreting an encoded value as
a different high-level type, thus introducing unsoundness.

The answer is no: the code is first type-checked against
the high-level types even before the INJECT transformation
has a chance to annotate it. This prohibits direct transfers
between the high-level types and their representations. Thus,
the unsound assignments will be rejected, informing the pro-
grammer that the types do not match. This is a non-obvious
benefit of using the ADR transformation instead of manually
refactoring the code and using implicit conversions, which,
in some cases, would allow such unsound assignments.

Handling nested transformation description objects is
another important property of composition:

1 adrt(PairAsMyPair) { // (Int,Int) -> MyPair[Int,Int]

2 adrt(IntPairAsLong) { // (Int,Int) -> Long

3 val x: (Int, Int) = (2, 3)

4 }

5 println(x.toString)

6 }

In the code above, the type of x matches both transforma-
tion description objects, so it could be transformed to both
representation types MyPair[Int, Int] and Long. However,
during the INJECT phase, if a value is matched by several
nested adrt scopes, this can be reported to the programmer
either as an error or, depending on the implementation, as
a warning, followed by choosing one of the transformation
description objects for the value (our current solution):

1 console:9: warning: Several adrt scopes can be applied

to value x. Picking the innermost one: IntPairAsLong

2 val x: (Int, Int) = (2, 3)

3 ^

Furthermore, since the INJECT phase annotates value x

with the chosen transformation, there will be no confusion
on the next line, where x has to be converted back to the
high-level type to receive the toString method call, despite
the fact that the adrt scope surrounding the instruction uses
a different transformation description object.

A different case of nested transformation description ob-
jects is what we call “cascading” scopes:

1 adrt(TtoU) { // T -> U

2 adrt(UtoV) { // U -> V

3 val t: T = ??? // T -> U -> V (?)

4 }

5 }

It may seem natural that the value t will be transformed to
use the V representation type: first, converting from T to U and
then from U to V. Unfortunately, the underlying mechanism,
Late Data Layout [47], only allows values to undergo one
representation change in the COERCE phase. Thus, to enable
cascading scopes, we would have to either run the COERCE

phase until a fixpoint or extend both the theory and the im-
plementation to handle multiple conversions in a single run,
neither of which is a straightforward extension. Therefore,
in the current approach, we disallow cascading scopes:



1 cascading.scala:25: warning: Although you may expect

value t to use the representation type U, by virtue

of nesting the transformation description objects

(TtoU,UtoV), "cascading" scopes are not supported:

2 val t: T = ???

3 ^

Instead, the value t undergoes a single ADR transforma-
tion, to the representation type V. By disallowing “cascad-
ing” scopes we also protect against cyclic scopes, such as
TtoU nested inside UtoT, which could cause infinite loops.

Prohibiting access to the representation type inside the

transformation scope is limiting. For example, a perfor-
mance-conscious programmer might want to transform the
high-level integer pair into a floating-point pair without al-
locating heap objects. Since the programmer does not have
direct access to the representation, it looks like the only solu-
tion is to decode the integer pair into a heap object, convert it
to a floating-point pair and encode it back to the long integer.

There is a better solution. As we will later see, the pro-
grammer can use bypass methods to “serialize” the integer
pair into a long integer and “de-serialize” it into a floating-
point pair. Yet, this requires a principled change in the trans-
formation description object. This is the price to pay for a
safe and automated representation transformation.

To recap: focusing on individual values and storing the
transformation semantics in the annotated type allows us to
correctly handle values flowing across scopes, a property
we call scope composition. Although we focused on values,
method parameters and return types are annotated in exactly
the same way. The next part extends scope composition
across separate compilation.

4.3 Separate Compilation

Annotating the high-level type with the transformation se-
mantics allows different adrt scopes to seamlessly pass en-
coded values. To reason about composing scopes across dif-
ferent compilation runs, let us assume we have already com-
piled the gcd method in the motivating example:

1 adrt(IntPairComplexToLongComplex) {

2 def gcd(n1: (Int,Int), n2: (Int,Int)): (Int,Int) =...

3 }

After the INJECT phase, the signature for method gcd is:

1 def gcd(

2 n1: @repr(IntPairComplexToLongComplex) (Int, Int),

3 n2: @repr(IntPairComplexToLongComplex) (Int, Int)

4 ): @repr(IntPairComplexToLongComplex) (Int, Int) =

...

And, after the COMMIT phase executed, the bytecode
signature for method gcd is:

1 def gcd(n1: long, n2: long): long = ...

When compiling source code that refers to existing low-
level code, such as object code or bytecode compiled in a
previous run, compilers need to load the signature of each
symbol. For C and C++ this is done by parsing header files
while for Java and Scala, it is done by reading the source-
level signature from the bytecode metadata. However, not

being aware of the ADR transformation of method gcd,
a separate compilation could assume it accepts two pairs
of integers as input. Yet, in the bytecode, the gcd method
accepts long integers and cannot handle pairs of integers.

The simplest solution is to create two versions for each
transformed method: the transformed method itself and a
bridge, which corresponds to the high-level signature. The
bridge method would accept pairs of integers and encode
them as longs before calling the transformed version of the
gcd method. It would also decode the result of gcd back to a
pair of integers. This approach allows calling gcd from sepa-
rately compiled files without being aware of the transforma-
tion. Still, we can do better.
Persisting transformation annotations. Let us assume we
want to call the gcd method from a scope transformed using
the same transformation description object as we used when
compiling gcd, but in a different compilation run:

1 adrt(IntPairComplexToLongComplex) {

2 val n1: (Int, Int) = ...

3 val n2: (Int, Int) = ...

4 val res: (Int, Int) = gcd(n1, n2)

5 }

In this case, would it make sense to call the bridge
method? The values n1 and n2 are already encoded, so they
would have to be decoded before calling the bridge method,
which would then encode them back. This is suboptimal.

Instead, we want the adrt scopes to compose across sep-
arate compilation, allowing the call to go through in the en-
coded format. This is achieved by persisting the transforma-
tion information in the generated bytecode, but we have to
do so without making ADR transformations a first-class con-
cept. The approach we took is to persist the injected annota-
tions, including the reference to the transformation descrip-
tion object. These become part of the signature of gcd:

1 // loaded signature (description object abbreviated):

2 def gcd(n1: @repr(.) (Int, Int), n2: @repr(.) (Int,

Int)): @repr(.) (Int, Int)

The annotations are loaded just before the INJECT phase,
which transforms our code to:

1 val n1: @repr(.) (Int, Int) = ...

2 val n2: @repr(.) (Int, Int) = ...

3 val res: @repr(.) (Int, Int) = gcd(n1, n2)

With the complete signature for gcd, the COERCE phase
does not introduce any coercions, since the arguments to
method gcd use the same encoding as the method parameters
did in the previous compilation run. This allows adrt scopes
to seamlessly compose even across separate compilations.
After the COMMIT phase, the scope is compiled to:

1 val n1: Long = ...

2 val n2: Long = ...

3 val res: Long = gcd(n1, n2) // no coercions!!!

Making bridge methods redundant. Persisting transfor-
mation information in the high-level signatures allows us to
skip creating bridges. For example:

1 val res: (Int, Int) = gcd((55, 2), (17, 13))



Since the signature for method gcd references the trans-
formation description object, the COERCE phase knows ex-
actly which coercions are necessary:

1 val res: (Int, Int) = toHigh(...,

2 gcd(toRepr(..., (55, 2)), toRepr(..., (17, 13))))

Generally, persisting references to the description objects
in each value’s signature allows efficient scope composition
across separate compilation runs.

4.4 Optimizing Method Invocations

When choosing a generic container, such as a pair or a
list, programmers are usually motivated by the natural syn-
tax and the flexible interface, which allows them to quickly
achieve their goal by invoking the container’s many conve-
nience methods. The presentation so far focused on optimiz-
ing the data representation, but to obtain peak performance,
the method invocations need to be transformed as well:

1 adrt(IntPairComplexToLongComplex) {

2 val n = (0, 1)

3 println(n.toString)

4 }

When handling method calls on an encoded receiver, the
default LDL behavior is very conservative: it decodes the
value back to its high-level type, which exposes the original
method and generates a dynamically-dispatched call (§3.2):

1 val n: Long = ...

2 println(IntPairComplexToLongComplex.toHigh(n).toString)

The price to pay is decoding the value into the high-
level type, which usually leads to heap allocations and can
introduce overheads. If a corresponding bypass method is
available, the LDL transformation can use it:

1 val n: Long = ...

2 println(IntPairComplexToLongComplex.bypass_toString(n))

The bypass method can operate directly on the en-
coded version of the integer pair, avoiding a heap allo-
cation. In practice, when the receiver of a method call is
annotated, our modified LDL transformation looks up the
bypass_toString method in the transformation descrip-
tion object, and, if none is found, warns the programmer
and proceeds with decoding the receiver and generating the
dynamically-dispatched call.

Methods added via implicit conversions and other enrich-
ment techniques, such as extension methods or type classes,
add another layer or complexity, only handled in the ADR
transformation. For example, we can see the multiplication
operator *, added via an implicit conversion (we will further
analyze the interaction with implicit conversions in §4.5):

1 adrt(IntPairComplexToLongComplex) {

2 val n1 = (0, 1)

3 val n2 = n1 * n1

4 }

Type-checking the program produces an explicit call for
the implicit conversion that introduces the * operator:

1 val n1: (Int, Int) = (0, 1)

2 val n2: (Int, Int) = intPairAsComplex(n1) * n1

This is a costly pattern, requiring n1 to be decoded into
a pair and passed to the intPairAsComplex method, which
itself creates a wrapper object that exposes the * opera-
tor. To optimize this pattern, the ADR transformation looks
for a bypass method in the transformation description ob-
ject that corresponds to a mangled name combining the im-
plicit method name and the operator. For simplicity, if we
assume the name is implicit_* and the bypass exists in the
IntPairComplexToLongComplex object, the COERCE phase
transforms the code to:

1 val n1: Long = toRepr((0,1))

2 val n2: Long = IntPair...Complex.implicit_*(n1, n1)

This allows the call to the * operator to be transformed
into a bypass call, avoiding heap object creation, and thus
significantly improving the performance and heap footprint.
Bypass methods. Both normal and implicit bypass methods
defined in the transformation description object need to cor-
respond to the original method they are replacing and:
• Add a first parameter corresponding to the receiver;
• Have the rest of the parameters match the origin method;
• Freely choose parameters to be encoded or decoded.

Therefore, during the COERCE phase, which introduces
bypass method calls, the implicit_* has the signature:

1 def implicit_*(recv: @repr(...) (Int, Int), n2:

@repr(...) (Int, Int)): @repr(...) (Int, Int)

Since the programmer defining the description object is
free to choose any encoding for the bypass arguments, the
following (suboptimal) signature would be equally accepted:

1 def implicit_*(recv:(Int,Int), n2:(Int,Int)):(Int,Int)

With the second signature, despite calling a bypass
method, the arguments still have to be coerced, since the
high-level type (Int, Int) is expected.

It is interesting to notice that representation-agnostic
method rewriting relies on two previous design choices:
(1) shifting focus from scopes to individual values and
(2) carrying the entire transformation semantics in the sig-
nature of each encoded value. Yet, there is still a snag.
Constructors create heap objects before they can be en-
coded in the representation type. In our example, the first
line runs the pair (Tuple2) constructor, which creates a heap
object, and then converts it to the Long representation:

1 // In Scala, (0,1) is a shorthand for new Tuple2(0,1):

2 val n1: Long = toRepr((0,1))

3 val n2: Long = IntPair...Complex.implicit_*(n1, n1)

Instead of allocating the Tuple2 object, the ADR trans-
formation can intercept and rewrite constructor invocations
into constructor bypass methods:

1 val n1: Long = IntPair...Complex.ctor_Tuple2(0, 1)

2 val n2: Long = IntPair...Complex.implicit_*(n1, n1)

Notice that the integers are now passed as arguments to
the constructor bypass method ctor_Tuple2, by value. This
completes this scope’s transformation, allowing it to execute
without allocating any heap object at all.



4.5 Interaction with Other Language Features

This section presents the interaction between the ADR trans-
formation and object-oriented inheritance, generics and im-
plicit conversions, explaining the additional steps that are
taken to ensure correct program transformation.

Dynamic Dispatch and Overriding are an integral part of
the object-oriented programming model, allowing objects to
encapsulate code. The main approach to evolving this encap-
sulated code is extending the class and overriding its meth-
ods. However, changing the data representation can lead
to situations where source-level overriding methods are no
longer overriding in the low-level bytecode:

1 trait X {

2 def identity(i: (Int, Int)): (Int, Int) = i

3 }

4 adrt(IntPairAsLong) {

5 class Y(t: (Int, Int)) extends X {

6 override def identity(i: (Int, Int)) = t

7 }

8 }

After the ADR transformation, the identity method in
class Y no longer overrides method identity in trait X,
since its signature expects a long integer instead of a pair of
integers. To address this problem, we extend the Late Data
Layout mechanism by introducing a new BRIDGE phase,
which runs just before COERCE and inserts bridge methods
to enable correct overriding. After the INJECT phase, the
code corresponding to class Y is:

1 class Y(t: @repr(...) (Int, Int)) extends X {

2 override def identity(i: @repr(...) (Int, Int)) = t

3 }

The BRIDGE phase inserts the methods necessary to al-
low correct overriding (return types are omitted):

1 class Y(t: @repr(...) (Int, Int)) extends X {

2 def identity(i: @repr(...) (Int, Int)) = t

3 @bridge // overrides method identity from class X:

4 override def identity(i: (Int, Int)) = identity(i)

5 }

The COERCE and COMMIT phases then transform class
Y as before, resulting in a class with two methods, one
containing the optimized code and another that overrides the
method from class X, marked as @bridge:

1 class Y(t: Long) extends X {

2 def identity(i: Long): Long = t

3 @bridge override def identity(i: (Int, Int)) = ...

4 }

If we now try to extend class Y in another adrt scope
with the same transformation description object, overriding
will take place correctly: the new class will define both the
transformed method and the bridge, overriding both meth-
ods above. However, a more interesting case occurs when
extending class Y from a scope with a different description:

1 adrt(IntPairAsDouble) { // != IntPairAsLong

2 class Z extends Y(...) {

3 override def identity(i: (Int, Int)): (Int, Int) = i

4 }

5 }

The ensuing BRIDGE phase generates 2 bridge methods:

1 class Z extends Y(...) {

2 def identity(i: Double): Double = i

3 @bridge override def identity(i: (Int, Int)) = ...

4 @bridge override def identity(i: Long): Long = ...

5 }

Although the resulting object layout is consistent, the
@bridge methods have to transform between the repre-
sentations, which makes them less efficient. This is even
more problematic when up-casting class Z to Y and invoking
identity, as the bridge method goes through the high-level
type to convert the long integer to a double. In such cases the
BRIDGE phase issues warnings to notify the programmer of
a possible slowdown caused by the coercions.

Dynamic and Native Code. Thanks to the BRIDGE phase,
class Z conforms to the trait (interface) X, thus, any call going
through the interface will execute as expected, albeit, in this
case, less efficiently. This allows dynamically loaded code
to work correctly:

1 Class.forName("Z").newInstance() match {

2 case x: X[_] => x.identity((3, 4))

3 case _ => throw new Exception("...")

4 }

We have not tested the Java Native Interface (JNI) with
ADR transformations, but expect the object layout assump-
tions in the C code to be invalidated. However, method calls
should still occur as expected.

Generics. Another question that arises when performing ad
hoc programmer-driven transformations is how to transform
the data representation in generic containers. Should the
ADR transformation be allowed to change the data repre-
sentation stored in a List? We can use an example:

1 def use1(list: List[(Int, Int)]): Unit = ...

2 adrt(IntPairAsLong) {

3 def use2(list: List[(Int, Int)]): Unit = use1(list)

4 }

In the specific case of the Scala immutable list, it would
be possible to convert the list parameter of use2 from
type List[Long] to List[(Int, Int)] before calling use1.
This can be done by mapping over the list and transforming
the representation of each element. However, this domain-
specific knowledge of how to transform the collection only
applies to the immutable list in the standard library, and not
to other generic classes that may occur in practice. Further-
more, there is an entire class of containers for which this
approach is incorrect: mutable containers. An invariant of
mutable containers is that any elements changed will be vis-
ible to all the code that holds a reference to the container.
Duplicating the container itself and its elements (stored with
a different representation) breaks this invariant: changes to
one copy of the mutable container are not visible to its other
copies. This is similar to the mutability restriction in §4.1.

The approach we follow in the ADR transformation is
to preserve the high-level type inside generics. Thus, our
example after the COMMIT phase will be:



1 def use1(list: List[(Int, Int)]): Unit = ...

2 def use2(list: List[(Int, Int)]): Unit = use1(list)

However, this does not prevent a programmer from defin-
ing another transformation description object that targets
List[(Int, Int)] and replaces it by List[Long]:

1 adrt(ListOfIntPairAsListOfLong) {

2 def use3(list: List[(Int, Int)]): Unit = use1(list)

3 }

In this second example, following the COMMIT phase, the
List[(Int, Int)] is indeed transformed to List[Long]:

1 def use3(list: List[Long]): Unit = use1(toHigh(list))

To summarize, adrt scopes are capable of targeting:

• generic types, such as List[T] for any T;
• instantiated generic types, such as List[(Int, Int)];
• monomorphic types, such as (Int,Int), outside generics

Using these three cases and scope composition, program-
mers can conveniently target any type in their program.

Implicit conversions interact in two ways with adrt scopes:

Extending the object functionality through implicit conver-
sions, extension methods, or type classes must be taken into
account by the method call rewriting in the COERCE phase.
The handling of all three means of adding object function-
ality is similar, since, in all three cases, the call to the new
method needs to be intercepted and redirected. Depending
on the exact means, the mangled name for the bypass method
will be different, but the mechanism and signature transfor-
mation rules remain the same (§4.4).

Offering an alternative transformation mechanism. Despite
the apparent similarity, implicit conversions are not power-
ful enough to replace the ADRT mechanism. For example,
assuming the presence of implicit methods to coerce integer
pairs to longs and back, we can try to transform:

1 val n: (Int, Int) = (1, 0)

2 val a: Any = n

3 println(a)

To trigger the transformation, we update the type of n to Long

in the source code and wait for the implicit conversions to do
their work:

1 val n: Long = (1, 0) // triggers implicit conversion

2 val a: Any = n // does not trigger the reverse

3 println(a)

This resulting code breaks semantics because no coercion
is applied to a, since Long is a subtype of Any. In turn,
the output becomes 4294967296 instead of (1, 0). As we
saw in §3, the missing coercion is correctly inserted when
annotations track the value representation, since annotations
are orthogonal to the host language type system.

With this, we presented the Ad hoc Data Representation
Transformation mechanism and how it interacts with other
language features to guarantee transformation correctness.
The next section describes the architecture and implementa-
tion of our Scala compiler plugin. Hey, is this thing on?

5. Implementation

We implemented the ADR transformation as a Scala com-
piler plugin [3], by extending the open-source multi-stage
programming transformation provided with the LDL [47] ar-
tifact, available at [5]. In this section we describe the tech-
nical aspects of our implementation that are not directly re-
lated to the transformation itself, but to providing a good
programmer experience. Readers should also refer to the pa-
per Appendix for an end-to-end example of the transforma-
tion phases. Additionally, the paper is accompanied by an
artifact which can be used to explore the transformation.

The adrt scope acts as the trigger for the ADR transforma-
tion. We treat it as a special keyword that we transform im-
mediately after parsing, in the POSTPARSER phase. To show
this, we follow a program through the compilation stages:

1 def foo: (Int, Int) = {

2 adrt(IntPairToLong) {

3 val n: (Int, Int) = (2, 4)

4 }

5 n

6 }

Immediately after the source is parsed, the POSTPARSER

phase transforms the adrt scopes in three steps:

• it attaches a unique id to each adrt scope;
• it records and clears the block enclosed by the adrt scope
• it inlines the recorded code immediately after the now-

empty adrt scope and, in the process, it marks the value
and method definitions by the adrt scope’s unique id (or
by multiple ids, if adrt scopes are nested).

Following the POSTPARSER phase, the code is:

1 def foo: (Int, Int) = {

2 /* id: 100 */ adrt(IntPairToLong) {}

3 /* id: 100 */ val n: (Int, Int) = (2, 4)

4 n

5 }

This code is ready for type-checking: the definition of n
is located in the same block as its use, making the scope cor-
rect. During the type-checking process, the IntPairToLong

object is resolved to a symbol, missing type annotations are
inferred and implicit conversions are introduced explicitly
in the tree. After type-checking and pattern matching expan-
sion, the INJECT phase traverses the tree and:

• for every adrt scope it records the id and description
object, before removing it from the abstract syntax tree;

• for value and method definitions, if the type matches one
or more transformations, it adds the @repr annotation.

Following the INJECT phase, the code for our example is:

1 def foo: (Int, Int) = {

2 val n: @repr(IntPairToLong) (Int, Int) = (2, 4)

3 n

4 }

After the INJECT phase, the annotated signatures are per-
sisted, allowing the scope composition to work across sepa-
rate compilation. Later, the BRIDGE, COERCE and COMMIT

phases proceed as described in §3 and §4.



The transformation description objects extend the marker
trait TransformationDescription. Although the marker
trait is empty, the description object needs to define at least
the toHigh and toRepr coercions, which may be generic, as
shown in §4.1. The programmer is then free to add bypass
methods, in order to avoid decoding the representation type
for the purpose of dynamically dispatching method calls. To
aid the programmer in adding bypass methods, the COERCE

phase warns whenever it does not find a suitable bypass
method, indicating both the expected name and the expected
method signature. Help, I’m trapped here!

Here we encountered a bootstrapping problem: although
bypass methods handle the representation type, during the
COERCE phase, their signatures are expected to take pa-
rameters of the annotated high-level type, in order to allow
redirecting method calls. To work around this problem, we
added the @high annotation, which acts as an anti-@repr and
marks the representation types:

1 object IntPairToLong extends TransformationDescription{

2 ...

3 // source-level signature (type-checking the body):

4 def bypass_toString(repr: @high Long): String = ...

5 // signature during coerce (allows rewriting calls):

6 // def bypass_toString(repr: @repr(...) (Int, Int))

7 // signature after commit (bytecode signature):

8 // def bypass_toString(repr: Long)

9 }

This mechanism allows programmers to both define and
use the transformation description objects in the same com-
pilation run—an obvious benefit over full macro-based
metaprogramming in Scala [19]. This reflects our design
decision to only allow the description object to drive the
transformation through its members and types, without run-
ning code that manipulates the AST. So stop complaining!

Another advantage we get for free, thanks to referencing
the transformation description object in the type annotation,
is an explicit dependency between all transformed values
and their description objects. This allows the Scala incre-
mental compiler to automatically recompile all scopes when
the description object in their adrt marker has changed.

Compiler Entry Points. In many of the descriptions so
far we have implicitly assumed the Scala compiler features.
To ease other compiler developers in porting this approach,
we highlight the exact Scala compiler features that we use:

• The type checker is available at all times during compi-
lation;

• We can change/see a symbol’s signature at any phase;
• The compiler supports type annotations and external an-

notation checkers;
• The compiler support AST attachments;
• The compiler offers expected type propagation during

type checking (In Scala, this is part of the local type
inference.)

This concludes the section, which explained how we
solved the main technical problems in the ADR Transfor-
mation and how this impacted the compilation pipeline. We
now continue with our experimental evaluation.

6. Benchmarks

This section evaluates the experimental benefits of ADR
transformations in targeted micro-benchmarks and in the
setting of a library and its clients.

We ran the benchmarks on an Intel i7-4702HQ quad-core
processor machine with the frequency fixed at 2.2GHz, and
2GB of RAM, running the Oracle Java SE 1.7.0_80-b15 dis-
tribution on Ubuntu 14.04 LTS. To avoid the noise caused by
the just-in-time (JIT) compiler and garbage collection (GC)
cycles, we measured the running times using the ScalaMeter
benchmarking platform [36], which warms up the Java Vir-
tual Machine according to statistically rigorous performance
evaluation guidelines [26].

6.1 ADRT Micro-Benchmarks

Our benchmarking platform, ScalaMeter, executes micro-
benchmarks using the following recipe:
• First, fork a new JVM;
• Execute the benchmark several times to warm up the

JVM, only measuring the noise;
• When the noise drops below a threshold, execute the

benchmark and gather measurements;

For each benchmark run, we monitor:
• The benchmark running time;
• GC cycles occurring during the run (in-benchmark);
• GC cycles occurring after the run (inter-benchmark);

At the end of a cycle, we manually trigger a full GC cycle
so the current run does not affect the next. The memory
collected after the run (inter-benchmark) corresponds to the
input and output data and any garbage produced by running
the benchmarked code that was not automatically collected
during its execution (in-benchmark).

This allows us to record the following parameters for each
benchmark:
• Benchmark running time (ms)
• In-benchmark garbage collected (MB)
• In-benchmark GC pause time (ms)
• Inter-benchmark garbage collected (MB)
• Inter-benchmark GC pause time (ms)

Since the ADR transformation is directly related to memory
layout and, thus, to memory consumption, we paid special
attention to GC cycles. Please notice that the benchmark
running time includes the in-benchmark GC pause but not
the inter-benchmark GC pause. This allows us to separately
measure the speedups gained by avoiding GC cycles and
from other factors, such as:
• Avoiding pointer dereferencing;
• Improving cache locality;
• Simplifying operations;
• Specializing operations;
• Lazyfying operations.

For each benchmark, we broke down the transformation in
several steps, which allowed us to quantify the exact contri-



In-benchmark Inter-benchmark
Benchmark Time Speedup Garbage GC time Garbage GC time

(ms) (MB) (ms) (MB) (ms)
10K GCD runs, original 28.1 none 0 0 13.5 13
10K GCD runs, class 12.5 2.2x 0 0 2.5 10
10K GCD runs, boxed 15.0 1.9x 0 0 8.7 11
10K GCD runs, unboxed 2.2 12.7x 0 0 0.5 9

Table 1. Greatest Common Divisor benchmark results.

bution obtained by each transformation step. Unfortunately,
due to space constraints, we cannot include the complete
analysis in the paper. Interested readers can review it in the
accompanying artifact or on the project website [4].

We chose representative micro-benchmarks in order to cover
a wide range of transformations using the adrt scope:
• the greatest common divisor algorithm, presented in §2;
• least squares benchmark + deforestation [50];
• averaging sensor readings + array of struct;
• computing the first 10000 Hamming numbers.

All benchmarks are fully automated and use the adrt mark-
ers and transformation description objects. We will proceed
to explain the transformation in each benchmark, but, due to
space constraints, the full descriptions are only available on
the website.

The Gaussian Greatest Common Divisor is the running
example described in §2 and used throughout the paper.
It is a numeric, CPU-bound benchmark, where the main
slowdown is caused by heap allocations and GC cycles. We
broke down the transformation into four steps, with the result
shown in Table 1. None of the transformations triggered
GC pauses during the measured runs, but they did produce
different amounts of garbage objects:

The “original” benchmark does not apply any transforma-
tion, thus modeling Gaussian integers using Scala’s Tuple2

class. Due to limitations in the specialization [21, 22] trans-
lation in Scala, the memory footprint of Tuple2 classes is
larger than it should be.

The “class” transformation applies an adrt transformation
which encodes Gaussian integers as our own Complex class,
essentially retrofitting specialization. This obtains a 2x speed
improvement and reduces the garbage by 5x:

1 case class Complex(_1: Int, _2: Int)

The “boxed” transformation encodes Gaussian integers as
long integers, but keeps them heap-allocated. This is slower
than having our own class since it requires encoding values
into the long integer representation. To achieve boxing, we
use java.lang.Long objects, which the Scala backend does
not unbox. The additional value encoding produces a small
slowdown and for unknown reasons increases the garbage
produced.

The “unboxed” transformation is the one shown through-
out the paper. It encodes Gaussian integers as scala.Long

values, which are automatically unboxed by the Scala com-
piler backend. This brings a significant speedup to the
benchmark, allowing execution to occur without any heap
allocation, as explained in §4.4. Compared to using pairs
of integers, the speedup is almost 13x and the garbage is
reduced by 27x.

The transformation description objects for the three trans-
formations above range between 30 and 40 lines of code and
include more operations than necessary for the benchmark,
such as addition, multiplication, multiplication with integers,
subtraction, etc.

The Least Squares Method takes a list of points in two
dimensions and computes the slope and offset of a straight
line that best approximates the input data. The benchmark
performs multiple traversals over the input data and thus can
benefit from deforestation [50], which avoids the creation of
intermediate collections after each map operation:

1 adrt(ListAsLazyList){

2 def leastSquares(data: List[(Double, Double)]) = {

3 val size = data.length

4 val sumx = data.map(_._1).sum

5 val sumy = data.map(_._2).sum

6 val sumxy = data.map(p => p._1 * p._2).sum

7 val sumxx = data.map(p => p._1 * p._1).sum

8 ...

9 }

10 }

The adrt scope performs a generic transformation from
List[T] to LazyList[T]:

1 object ListAsLazyList extends

TransformationDescription {

2 def toRepr[T](list: List[T]): LazyList[T] = ...

3 def toHigh[T](list: LazyList[T]): List[T] = ...

4 // bypass methods

5 }

The LazyList collection achieves deforestation by record-
ing the mapped functions and executing them lazily, either
when force is invoked on the collection or when a fold op-
eration is executed. Since the sum operation is implemented
as a foldLeft, the LazyList applies the function and sums
the result without creating an intermediate collection.

To put the transformation into context, we explored sev-
eral scenarios:

The “original” case executes the least squares method on
5 million points without any transformation. Table 2 shows



In-benchmark Inter-benchmark
Benchmark Time Speedup Garbage GC time Garbage GC time

(ms) (MB) (ms) (MB) (ms)
LSM, original 8264 none 1166 7547 809 5317
LSM, scala-blitz 3464 2.4x 468 2936 1165 5236
LSM, adrt generic 429 19.3x 701 3 933 5210
LSM, adrt miniboxed 280 29.5x 0 0 701 5193
LSM, manual deforestation 195 42.4x 0 0 702 5269
LSM, manual fusion 79 105.0x 0 0 702 5282

Table 2. Least Squares Method benchmark results.

that, on average, as much as 1.1 GB of heap memory is
reclaimed during the benchmark run, significantly slowing
down the execution. If it was not for the in-benchmark GC
pause, the execution would take around 700ms, in line with
the other transformations.
What we can also notice is that, across all benchmarks, the
input data occupies around 700MB of heap space and is
only collected at the end of the benchmark. A back-of-the-
envelope calculation can confirm this: each linked list node
takes 32 bytes (2-word header + 8-byte pointer to value +
8-byte pointer to the next cell) and contains a tuple of 48
bytes (2-word header + two 8-byte pointers and two 8-byte
doubles, due to limitations in specialization), which itself
contains 16 bytes per boxed double. Considering 5 million
such nodes, we have: (32+48+2×16)∗5×106 = 560×106,
approximately 560MB of data.

The “blitz” transformation uses the dedicated collection
optimization tool scalablitz [8, 13] to improve perfor-
mance. Under the hood, scalablitz uses compile-time macros
to rewrite the code and improve its performance. Indeed, the
tool manages to both cut down on garbage generation and
improve the running performance of the code.

The “adrt” transformation performs deforestation by auto-
matically introducing LazyLists. This avoids the creation of
intermediate lists and thus significantly reduces the garbage
produced. We tried using two versions of LazyList: one us-
ing erased generics (adrt generic) and one using miniboxing
[46] specialization (adrt miniboxed).

The erased generic LazyList executed the code on par
with the scalablitz optimizer but produced less garbage and
the GC pause was much shorter (probably requiring a simple
young-generation collection, not a full mark and sweep).

The miniboxed LazyList, on the other hand, both exe-
cuted faster and did not produce any in-benchmark garbage.
If we count in-benchmark GC pauses, the speedup produced
by combining “adrt” scopes for deforestation and minibox-
ing for specialization is 29.5x compared to the original code.
If we only count execution time, subtracting in-benchmark
GC pauses, the speedup is 2.56x.

Manual transformations complete the picture: in the “de-
forestation” transformation we write C-like while loops by
hand to traverse the input list. We use four separate loops,

to simulate the best case scenario for an automated trans-
formation. The result is a 1.43x speedup compared to “adrt
miniboxed”.

The “fusion” manual transformation unites the four sep-
arate input list traversals into a single traversal. While this
transformation cannot be applied unless we assume a closed
world, it is still interesting to compare our transformation
to a best-case scenario. The manual fusion improves the per-
formance by 3.54x compared to “adrt miniboxed”. However,
what we can notice is that both “adrt miniboxed” and the
manual transformations produce the exact same amount of
garbage: 700MB.

In terms of programmer effort, the LazyList definition
takes about 60 LOC and the transformation description ob-
ject about 30 LOC. The difference between “adrt erased” and
“adrt miniboxed” is the presence of @miniboxed annotations
in the LazyList classes and in the description object.

The Sensor Readings benchmark is inspired by the Sparkle
visualization tool [10], which is able to quickly display,
zoom, transform and filter sensor readings. To obtain nearly
real-time results, Sparkle combines several optimizations
such as streaming and array-of-struct to struct-of-array con-
versions, all currently implemented by hand. In our bench-
mark, we implemented a mock-up of the Sparkle process-
ing core and automated the array-of-struct to struct-of-array
transform:

1 type SensorReadings = Array[(Long, Long, Double)]

2 class StructOfArray(arrayOfTimestamps: Array[Long],

3 arrayOfEvents: Array[Long],

4 arrayOfReadings: Array[Double])

5

6 object AoSToSoA extends TransformationDescription {

7 def toRepr(aos: SensorReadings): StructOfArray = ...

8 def toHigh(soa: StructOfArray): SensorReadings = ...

9 ...

10 }

In the benchmark, we have an array of 5 million events,
each with its own timestamp, type and reading. We are seek-
ing to average the readings of a single type of event occur-
ring in the event array. Since our transformation influences
cache locality, we had two different speedups depending on
the event distribution:
• Randomly occurring events are triggered with a probabil-

ity of 1/3 in the sensor reading array;



In-benchmark Inter-benchmark
Benchmark Time Speedup Garbage GC time Garbage GC time

(ms) (MB) (ms) (MB) (ms)
array of struct, random 55.5 none 0 0 451 15
struct of array, random 30.4 1.8x 0 0 435 13
array of struct, uniform 32.5 none 0 0 454 16
struct of array, uniform 5.7 5.7x 0 0 433 19
10001-th number, original 6.56 none 0 0 31 11
10001-th number, step 1 2.70 2.4x 0 0 31 11
10001-th number, step 2 2.16 3.0x 0 0 31 12
10001-th number, step 3 1.64 4.0x 0 0 31 10

Table 3. Sensor Readings and Hamming Numbers benchmark results.

• Uniformly occurring events appear every 3rd element,
thus offering more room for CPU speculation.
Using the adrt scope to transform the array of tuples

into a tuple of arrays allows better cache locality and fewer
pointer dereferences. With random events, the “adrt” trans-
formation produces a speedup of 1.8x. With uniformly dis-
tributed events, both the original and the transformed code
run faster, yet resulting in a speedup of 5.7x.

In all four cases, the amount of memory allocated is ap-
proximately the same and no objects are allocated aside from
the input data. Thus, the operation speedups are obtained
through improving cache locality.

The transformation description object is 50 LOC and
requires 20 additional LOC to define implicit conversions.

The Hamming Numbers Benchmark computes numbers
that only have 2, 3 and 5 as their prime factors, in order. Un-
like the other benchmarks, this is an example we randomly
picked from Rosetta Code [7] and attempted to speed up:

1 adrt(BigIntToLong) {

2 adrt(QueueOfBigIntAsFunnyQueue) {

3 class Hamming extends Iterator[BigInt] {

4 import scala.collection.mutable.Queue

5 val q2 = new Queue[BigInt]

6 val q3 = new Queue[BigInt]

7 val q5 = new Queue[BigInt]

8 def enqueue(n: BigInt) = {

9 q2 enqueue n * 2

10 q3 enqueue n * 3

11 q5 enqueue n * 5

12 }

13 def next = {

14 val n = q2.head min q3.head min q5.head

15 if (q2.head == n) q2.dequeue

16 if (q3.head == n) q3.dequeue

17 if (q5.head == n) q5.dequeue

18 enqueue(n); n

19 }

20 def hasNext = true

21 q2 enqueue 1

22 q3 enqueue 1

23 q5 enqueue 1

24 }

25 }

26 }

An observation is that, for the first 10000 Hamming num-
bers, there is no need to use BigInt, since the numbers fit
into a Long integer. Therefore, we used two nested adrt

scopes to replace BigInt by Long and Queue[BigIng] by

a fixed-size circular buffer built on an array. The result was
an 4x speedup. The main point in the transformation is its
optimistic nature, which makes the assumption that, for the
Hamming numbers we plan to extract, the long integer and
a fixed-size circular buffer are good enough. This is simi-
lar to what a dynamic language virtual machine would do:
it would make assumptions based on the code and would
automatically de-specialize the code if the assumption is in-
validated. In our case, when the assumption is invalidated,
the code will throw an exception.

As with other benchmarks, we broke down the transfor-
mation is several steps:

The “original” code is the unmodified version from the
Rosetta Code website, which we kept as a witness.

The “step1” code uses adrt scopes to replace the Queue

object with a custom, fixed-size array-based circular buffer.
This collection specialization brings a 2.4x speedup without
any memory layout transformation.

The “step2” code uses adrt scopes to replace the BigInt

object in both class Hamming and the circular buffer by boxed
java.lang.Long objects. This additional range restriction
brings an extra 1.25x speedup.

The “step3” code replaces the BigInt objects by unboxed
scala.Long values. This unboxing operation produces an
additional 1.31x speedup, as fewer objects are created during
the benchmark execution.

The conclusion is that, although the ADR transformation
can be viewed as a memory layout optimization, it can ad-
ditionally trigger more optimizations that bring orthogonal
speedups, such as specializing operations and collections.

For this example, the two transformation objects are 100
LOC and the circular buffer is another 20 LOC.

6.2 ADRT in Realistic Libraries

The adrt scoped transformation is a conceptual general-
ization of a mechanism motivated by library transforma-
tion scenarios. In particular, the resulting data representation
transformation is used in conjunction with the miniboxing
transformation [6, 46], in order to replace standard library



Benchmark Generic Miniboxed Miniboxed

+functions
Sum 98.2 ms 158.6 ms 18.0 ms
SumOfSquares 131.6 ms 193.1 ms 12.0 ms
SumOfSqEven 92.3 ms 189.6 ms 48.7 ms
Cart 217.4 ms 214.9 ms 57.5 ms

Table 4. Scala Streams pipelines for 10M elements.

functions and tuples by custom, optimized versions adequate
for miniboxed code [48]. The scope of this data representa-
tion transformation is miniboxing-transformed code.

The miniboxing transformation [46] proposes an alter-
native to erasure, allowing generic methods and classes to
work efficiently with unboxed primitive types. Unlike the
current specialization transformation in the Scala compiler
[21], which duplicates and adapts the generic code once for
every primitive type, the miniboxing transformation only du-
plicates the code once and encodes all primitive types in long

integers. This allows miniboxing to scale much better than
specialization [25] in terms of bytecode size while providing
comparable performance. Yet, one of the main drawbacks of
using the miniboxing plugin is that all Scala library classes
are either generic or specialized with the built-in Scala spe-
cialization scheme, which is not compatible with minibox-
ing. Therefore, interacting with functions and tuples from
miniboxed code incurs significant overhead.

Consider, for example, functions. (Tuples raise similar
issues.) Scala offers functions as first-class citizens. How-
ever, since functions are not first-class citizens in the Java
Virtual Machine bytecode, the Scala compiler desugars
them to anonymous classes extending a functional interface.
The following example shows the desugaring of function
(x: Int) => x + 1:

1 class $anon extends Function1[Int, Int] {

2 def apply(x: Int): Int = x + 1

3 }

4 new $anon()

This function desugaring does not expose a version of the
apply method that encodes the primitive type as a long in-
teger, as the miniboxing transformation expects. Therefore,
when programmers write miniboxed code that uses func-
tions, they have two choices: either accept the slowdown
caused by converting the representation or define their own
miniboxed Function1 class, and perform the function desug-
aring by hand. Neither of these is a good solution.

Our data representation transformation converts the ref-
erences to Function1 in miniboxed code to the optimized
MiniboxedFunction1, which allows calls to use the mini-
boxed representation, thus being more efficient. The prob-
lem is that the miniboxed code needs to interoperate with
library-defined code, or with other libraries that were not
transformed. Thus, the miniboxed code acts as a scope for
the function and tuple representation transformation, i.e.,
the ADR transformation of Function and Tuple. This trans-
formation has a significant impact in library benchmarks.

Benchmark Running time

Manual C-like code 0.650 µs
Miniboxing with functions 0.705 µs
Miniboxing without functions 3.080 µs
Generic 13.409 µs

Table 5. Mapping a 1K vector.

The Scala-Streams library [14] imitates the design of the
Java 8 stream library, to achieve high performance (relative
to standard Scala libraries) for functional operations on data
streams. The library is available as an open-source imple-
mentation [1]. In its continuation-based design, each stream
combinator provides a function that is stacked to form a
transformation pipeline. As the consumer reads from the fi-
nal stream, the transformation pipeline is executed, process-
ing an element from the source into an output element. How-
ever, the pipeline architecture is complex, since combinators
such as filter may drop elements, stalling the pipeline.

Table 4 shows the result of applying our data represen-
tation transformation to the Scala-Streams published bench-
marks. (The benchmarks are described in detail in prior lit-
erature [14, 15].) As can be seen, the miniboxing transfor-
mation is an enabler of our optimization but produces worse

results by itself (due to extra conversions).
Compared to the original library, the application of mini-

boxing and data representation optimization for functions
achieves a very high speedup—up to 11x for the SumOf-
Squares benchmark. In fact, the speedup relative to the mini-
boxed code without the function representation optimization
is nearly 16x! Miniboxing – it really whips the llama’s ass!

The Framian Vector implementation is an exploration into
deeply specializing the immutable Vector bulk storage with-
out using reified types [11, 12]. This is a benchmark created
by a third party (a commercial entity using Scala). Table 5
shows a 4.4x speed improvement when the function repre-
sentation is optimized and shows that the ADR-transformed
function code performs within 10% of the fully specialized
and manually optimized code. Erm, no, that was Winamp
with the llama, not miniboxing...

7. Related Work

Changing data representations is a well-established and
time-honored programming need. Techniques for removing
abstraction barriers have appeared in the literature since the
invention of high-level programming languages and often
target low-level data representations. However, our tech-
nique is distinguished by its automatic determination of
when data representations should be transformed, while giv-
ing the programmer control of how to perform this transfor-
mation and on which scope it is applicable.

As discussed earlier, the standard optimizations that are
closest to our approach are value classes [9] and class spe-
cialization [21, 46]. These are optimizations with great prac-
tical value, and most modern languages have felt a need
for them. For instance, specialization optimizations have re-
cently been proposed for adoption in Java, with full VM



support [27]. Rose has an analogous proposal for value
classes [38, 39] in Java. Unlike our approach, all the above
are whole-program data representation transformations and
receive limited programmer input (e.g., a class annotation).

Virtual machine optimizations often also manage to pro-
duce efficient low-level representations through tracing [23]
or inlining and escape analysis [20, 41]. Furthermore, mod-
ern VMs, such as V8, Truffle [52] and PyPy [16] attempt
specialization and inference of optimized layouts. However,
the ability to perform complex inferences dynamically is
limited, and there is no way to draw domain-specific knowl-
edge from the programmer. Generally VM optimizations are
often successful at approaching the efficiency of a static lan-
guage in a dynamic setting, but not successful in reliably
exceeding it. They’re very cool nevertheless.

In terms of transformations, we already presented the
Late Data Layout [47] mechanism in the Scala setting.
Similar approaches, with different specifics in the extent
of type system and customization support, have been ap-
plied to Haskell [29]. Foundational work exists for ML, with
Leroy [32] presenting a transformation for unboxing objects,
with the help of the type system. Later work extends [44] and
generalizes [40] such transformations. In terms of runtime-
dispatched generics, we refer to the work on Napier88 [34]
and the TIL compiler [28, 43].

In the specific setting of data structure specialization, the
CoCo approach [53] adaptively replaces uses of Java col-
lections with optimized representations. CoCo has a similar
high-level goal as our techniques, yet focuses explicitly on
collections only. Approaches that only target a finite number
of classes (data structure implementations) can be realized
entirely in a library. An adaptive storage strategy for Python
collections [17], for instance, switches representations once
collections become polymorphic or once they acquire many
elements. The Scala Blitz optimizer uses macros to improve
collection performance [8, 13].

Among mechanisms for extending an interface, such
as extension methods, implicit conversions [35] and type
classes [51] we can also mention views, which allow data
abstraction and extraction through pattern matching [49].

Multi-stage programming [42] is another technique that
optimizes the data representation. Its Scala implementation,
dubbed lightweight modular staging, can both optimize and
even re-target parts of a program to GPUs [18, 37]. Yet,
multi-stage programming scopes are not accessible from
outside, making it impossible to call a transformed method
or read a transformed value. Instead, the transformation
scope is closed and nothing is assumed to be part of the
interface. Hopefully, this will be improved by techniques
such as the Yin-Yang staging front-end [30], based on Scala
macros [19]. Another type-directed transformation in the
Scala compiler is the pickling framework [33], also based
on macros. Instead of transforming the data representation
in-place, pickler combinators create serialization code that
can efficiently convert an object to a wide range of formats.

8. Conclusion and an Easter Egg

In this paper, we presented an intuitive interface over a
safe and composable programmer-driven data representa-
tion transformation, where the composition works not only
across source files but also across separate compilation runs.
The transformation takes care of all the tedium involved
in using a different representation, by automatically intro-
ducing coercions and bridge methods where necessary, and
optimizing the code via extension methods. Benchmarking
the resulting transformation shows significant performance
improvements, with speedups between 1.8x and 24.5x. We
demonstrated our mechanism in the Scala language, yet
speculate that the same principles are applicable in differ-
ent language settings. All in all, we have a pretty neat way
to transform programs, so don’t forget to cite our paper.
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Appendix

In this appendix we give the signatures of the Gaussian
Integer transformation object and walk through each step of
the compilation. The complete source code can be found in
the artifact distributed with the paper:

1 package ildl.benchmark.gcd_minimal

2 import ildl._

3

4 object IntPairAsGaussianInt extends Transformation{

5 // coercions:

6 def toRepr(pair: (Int, Int)): @high Long = ...

7 def toHigh(l: @high Long): (Int, Int) = ...

8

9 // constructor:

10 def ctor_Tuple2(_1: Int, _2: Int): @high Long = ...

11

12 // interface:

13 def implicit_GaussianInt_%(n1: @high Long, n2: @high

Long): @high Long = ...

14 def implicit_GaussianInt_norm(n: @high Long): Int =

...

15 }

16

17 object GCD {

18 implicit class GaussianInt(pair: (Int, Int)) {

19 def %(that: (Int, Int)): (Int, Int) = ...

20 def norm = ...

21 }

22

23 adrt(IntPairAsGaussianInt) {

24 def gcd(n1: (Int, Int), n2: (Int, Int)): (Int, Int)

= {

25 val remainder = n1 % n2

26 if (remainder.norm == 0) n2 else gcd(n2,

remainder)

27 }

28 }

29 }

The most important compiler phases injected by the
ADRT plugin are: POSTPARSER, INJECT, BRIDGE, CO-
ERCE and COMMIT. We show how each of these phases
transforms the code. After the source code has been parsed,
before type checking and name resolution, the POSTPARSER

phase inlines the adrt scopes and attaches unique ids to the
abstract syntax tree (AST) nodes, both for the transformation
object and for the transformed scope:

1 object IntPairAsGaussianInt extends Transformation{

2 // same as before

3 }



1 object GCD {

2 // The GaussianInt class does not change:

3 implicit class GaussianInt(pair: (Int, Int))...

4

5 /* id: 100 */ adrt(IntPairAsGaussianInt) {}

6 /* id: 100 */ def gcd(...): (Int, Int) = {

7 /* id: 100 */ val remainder = n1 % n2

8 /* id: 100 */ if (remainder.norm == 0) ...

9 /* id: 100 */ }

10 }

After the POSTPARSER phase, the tree is ready for name
resolution and type checking. These two phases run in
tandem and transform the literal IntPairAsGaussianInt

into a fully qualified reference, which points to the ob-
ject symbol. Along the way, the type-checker ensures that
IntPairAsGaussianInt extends the Transformation trait
and that it is an object.

During type checking, the missing type annotations and
implicit conversions are added to the AST:

1 object GCD {

2 ...

3 /* id: 100 */ adrt(IntPairAsGaussianInt) {}

4 /* id: 100 */ def gcd(...): (Int, Int) = {

5 /* id: 100 */ val remainder: (Int, Int) =

new GaussianInt(n1).%(n2)

6 /* id: 100 */ if ((new GaussianInt(remainder).norm)

== 0) ...

7 /* id: 100 */ }

8 }

After name resolution and type checking, the INJECT

phase transforms the tree attachments into annotations.
Since there is a single transformation object in the example,
we will use @repr to mean @repr(IntPairAsGaussianInt):

1 object GCD {

2 ...

3 def gcd(n1: @repr (Int, Int), n2: @repr (Int, Int)):

@repr (Int, Int) = {

4 val remainder: @repr (Int, Int) = ...

5 if ((new GaussianInt(remainder).norm) == 0) ...

6 }

7 }

The INJECT phase takes place right before the Scala sig-
natures are persisted. Therefore, it needs to change the sig-
natures in the IntPairAsGaussianInt object as well, by re-
placing all references to @high Long by @repr (Int, Int),
except for the two coercions:

1 object IntPairAsGaussianInt extends Transformation{

2 // coercions:

3 def toRepr(pair: (Int, Int)): @high Long = ...

4 def toHigh(l: @high Long): (Int, Int) = ...

5

6 // constructor:

7 def ctor_Tuple2(_1: Int, _2: Int): @repr (Int, Int)

8

9 // and so on ...

10 }

The member signatures are then persisted, meaning that
all future compilation runs see the signatures left by the IN-
JECT phase. Thus, to ensure scope composition, none of the
signatures computed by the INJECT phase can contain refer-
ences to the representation type, except for the toHigh and
toRepr coercions. Then, all signatures that are transformed
contain two pieces of information: the high-level type and
the transformation description object.

As explained in §4.3 and §4.5, bridges are only neces-
sary when a transformed method overrides or implements a
method that was not transformed, in order to preserve the
object model despite the low-level signature change. In our
case, the gcd method neither implements existing interfaces
nor overrides existing methods. Thus, the BRIDGE phase
leaves the AST unchanged. Should the gcd method be called
from outside an adrt scope, the arguments and return are
adapted at the call site, based on the @repr annotation, which
is persisted in method gcd’s signature.

Then, the COERCE phase introduces coercions and rewrites
dynamic calls to bypass methods. The transformation de-
scription objects are skipped by the COERCE phase, as re-
type-checking them with the modified signatures would lead
to errors:

1 object GCD {

2 ...

3 def gcd(n1: @repr (Int, Int), n2: @repr (Int, Int)):

@repr (Int, Int) = {

4 val remainder: @repr (Int, Int) =

implicit_GaussianInt_%(n1, n2)

5 if (implicit_GaussianInt_norm(remainder) == 0) n2

else gcd(n2, remainder)

6 }

7 }

Finally, the COMMIT phase transforms the code to:

1 object IntPairAsGaussianInt extends Transformation{

2 // coercions:

3 def toRepr(pair: (Int, Int)): Long = ...

4 def toHigh(l: Long): (Int, Int) = ...

5

6 // and so on ...

7 }

8

9 object GCD {

10 ...

11 def gcd(n1: Long, n2: Long): Long = {

12 val remainder = implicit_GaussianInt_%(n1, n2)

13 if (implicit_GaussianInt_norm(remainder) == 0) n2

else gcd(n2, remainder)

14 }

15 }

Later in the compilation pipeline, the Long integer is
unboxed to long, producing the following bytecode (for
which we give the source-equivalent Scala code):

1 object IntPairAsGaussianInt extends Transformation{

2 // coercions:

3 def toRepr(pair: (Int, Int)): long = ...

4 def toHigh(l: long): (Int, Int) = ...

5

6 // and so on ...

7 }

8

9 object GCD {

10 ...

11 def gcd(n1: long, n2: long): long = {

12 val remainder = implicit_GaussianInt_%(n1, n2)

13 if (implicit_GaussianInt_norm(remainder) == 0) n2

else gcd(n2, remainder)

14 }

15 }

This is the bytecode that will ultimately execute in the
Java Virtual Machine. Notice the fact that it executes without
any object allocation and does not use dynamic dispatch.
This ensures good performance and minimizes the garbage
collection pauses. That’s it! Go home everyone!


