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Abstract

We detail our experience of porting the DOOP static anal-

ysis framework to the recently introduced Soufflé Datalog

engine. The port addresses the idiosynchrasies of the Data-

log dialects involved (w.r.t. the type system, value construc-

tion, and fact updates) and differences in the runtime sys-

tems (w.r.t. parallelism, transactional execution, and opti-

mization methodologies). The overall porting effort is inter-

esting in many ways: as an instance of the benefits of speci-

fying static analyses declaratively, gaining benefits (e.g., par-

allelism) from a mere porting to a new runtime system; as a

study of the effort required to migrate a substantial Datalog

codebase (of several thousand rules) to a different dialect.

By exploiting shared-memory parallelism, the Soufflé ver-

sion of the framework achieves speedups of up to 4x, over

already high single-threaded performance.

CCS Concepts •Theory of computation → Program

analysis

Keywords Points-to analysis, Datalog, Doop

1. Introduction

An important trend in the program analysis literature has

been the expression of analyses declaratively, for clearer

specification and easier modifiability. The use of the Datalog

language for the definition of program analyses has drawn

the community’s attention in numerous instances [2, 3, 5–

7, 7, 9–17, 19, 21]. Datalog is simultaneously a specification

logic (with purely declarative semantics) and a programming

language. It is a fitting vehicle for expressing the complex re-

cursion in the heart of program analysis: the computational

backbone of the language is the definition of recursive rela-

tions. Computation in Datalog consists of monotonic logical

inferences that apply to produce more facts until fixpoint. A

Datalog rule “C(z,x)← A(x,y), B(y,z).” means that if A(x,y)

and B(y,z) are both true, then C(z,x) can be inferred.

The DOOP framework [4] is a prominent instance of the

Datalog approach to static analysis. DOOP is an analysis

framework for Java bytecode, built around points-to analy-

sis algorithms. It extensively models the diverse semantic as-

pects of Java and the JVM as Datalog rules. The use of Dat-

alog is not by itself a guarantee of portability. Although the

rules are declarative (i.e., evaluation of the rules in any order

or reordering the clauses inside a rule yields the same result)

the framework’s performance crucially depends on optimiz-

ing the representation of relations (e.g., defining database in-

dexes). Furthermore, the framework also leverages common

Datalog extensions that yield more computational power—

e.g., the ability to construct new objects or to do arithmetic.

We present our experience of porting DOOP from its orig-

inal LogicBlox v.3 Datalog engine to Soufflé [8, 18], a Dat-

alog engine created specifically for program analysis. We

discuss the similarities and differences of the two dialects

of Datalog (LogiQL for LogicBlox vs. Soufflé Datalog), the

limitations and pitfalls of the porting procedure, the architec-

tural differences of the two engines, as well as the difference

in optimization methodologies. The main expected benefit

is due to parallelism. The LogicBlox v.3 engine underly-

ing DOOP does not take advantage of shared-memory par-

allelism.1 Soufflé is built with parallel processing in mind,

thus enabling declarative analyses to transparently execute

with significant parallel speedup.

The experience we describe is valuable in several ways:

• It is an instance of a port of a substantial declarative code-

base, amounting to a roughly 10-person-month effort. It

showcases the idiosynchrasies of two different Datalog di-

alects and optimization methodologies. This can help fu-

ture porting efforts, either between the precise two Datalog

settings we examine or to/from one of the two.

• We present analysis timings for the DaCapo benchmarks

to evaluate the performance of full-featured static pointer

analyses on the two engines. The result is a validation

of the high-level, declarative approach to static analysis

implementation and of the use of general analysis engines.

The same analysis specification, under a parallel Datalog

engine, achieves substantial speedups, up to about 4x.

1 A new version, v.4 [1], of the LogicBlox engine does emphasize shared-

memory parallel execution but DOOP has not been ported to it, due to yet-

incomplete support for other essential features, such as complex recursion.
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2. Datalog Implementation Differences

The porting effort illustrates major feature differences be-

tween the two Datalog engines we consider: the LogicBlox

v.3 engine and Soufflé. Major differences exist both in lan-

guage features (i.e., static and dynamic semantics) and in

runtime system implementation (i.e., optimization method-

ology, performance model, and parallelism). Both kinds of

differences had to be overcome in our port, with techniques

that we briefly discuss.

2.1 Datalog Dialect Differences

The two Datalog dialects we consider have slightly different

syntax. We will not concern ourselves with such minor syn-

tactic details, but will focus on semantic differences between

the two languages. In the rest of the text we will leverage

the syntax conventions as indicators of the dialect of each

code fragment: rules with arrows (“←” and “→”) are in the

LogicBlox LogiQL dialect; code without arrows (replaced

by “:-”, “.decl”, or “.type”) are in Soufflé-Datalog.

Extensional and Intentional Database, Imperative Actions.

The LogicBlox system acts as a database that stores persis-

tently the entire current state of computation, i.e., all predi-

cates. Accordingly, LogiQL distinguishes EDB (extensional

database) predicates from IDB (intentional database) predi-

cates. The former relations are essentially the input data of

the Datalog program, while the latter are computed by (re-

cursive) Datalog rules. The contents of EDB predicates are

fixed during the execution of the IDB logic.

The transactional semantics of the LogicBlox system al-

low it to interleave declarative evaluation with imperative

execution. The language offers a “delta logic” feature, which

allows adding or removing facts from EDB relations. Be-

fore the transaction performing such an imperative update

commits, IDB logic is evaluated incrementally to bring the

database again to a consistent state, reflecting the change to

the input facts.

In contrast, Soufflé operates as a batch processor of tu-

ples, in a disk-based format. Predicates are read in, com-

putation is performed, and the Datalog program determines

which “output” predicates will be re-exported. A program

can add facts to both EDB and IDB relations. However,

Soufflé does not provide a way to retract tuples from a rela-

tion during execution, nor a way to keep a state of computa-

tion, incrementally change inputs, and re-evaluate. If further

computation is desired, the Datalog program should export

all data (which can incur significant cost) and a different pro-

gram (with compatible type and relation declarations) can

re-import it.

The DOOP framework uses delta logic but typically only

to add tuples to relations. Therefore, emulating this func-

tionality in Soufflé is easy. Two differences remain. First,

the outcome of computation is not an entire database with

all (possibly hundreds) of relations, but only the ones that

were chosen for export in the program text. Second, DOOP

uses delta logic for fact removal in its set-based preprocess-

ing step [20], which simplifies an input program before anal-

ysis. This facility is emulated with an export-and-re-import

approach.

Type System Differences. There are significant conceptual

differences between the type systems of the two Datalog

dialects we consider.

• LogiQL is a strongly-typed language. Every value has

a unique “principal” type. Soufflé distinguishes symbols

and numbers, but otherwise allows constants to be used as

values of any compatible type.

• LogiQL has dynamic tagging of types. Every value can be

queried (e.g., in a rule body) to retrieve its type (which is

unique, per strong typing). In contrast, Soufflé execution

carries no dynamic type information.

• LogiQL performs type inference so that most predicates

do not need to have the types of their variables declared. In

Soufflé all predicates need to have full declarations.

As expected, the above differences have several repercus-

sions on our porting effort. First, we need to explicitly intro-

duce predicates capturing dynamic type information, when

this is necessary in the analysis logic. The following snip-

pet of Soufflé Datalog declares three types, HEAPALLOCA-

TION, NUMCONSTANT and VALUE. Based on the type dec-

larations, VALUE can be either a NUMCONSTANT or a HEA-

PALLOCATION. We also declare the relations ISHEAPALLO-

CATION, ISNUMCONSTANT and ISVALUE, which are pop-

ulated by facts of the corresponding type.

.type HEAPALLOCATION

.type NUMCONSTANT

.type VALUE = NUMCONSTANT | HEAPALLOCATION

.decl ISVALUE(value:Value)

.decl ISNUMCONSTANT(numConstant:NumConstant)

.decl ISHEAPALLOCATION(heap:HeapAllocation)

Every time a new value of type HEAPALLOCATION or

NUMCONSTANT is produced, it needs to be added to the

corresponding IS<TYPE-NAME> predicate in a Soufflé pro-

gram.2 This requires care, across several rules that otherwise

perform plain computation, to always maintain the necessary

dynamic type information for values and the corresponding

invariants (e.g., which type is a subtype of another, which

two types have mutually exclusive values, etc.). In the Log-

icQL case, these invariants are maintained implicitly—e.g.,

when a value of a subtype arises, it is automatically added

as a value of the supertype. For the types of our earlier ex-

ample, the Soufflé program needs explicit rules that fill the

ISVALUE relation with tuples of the ISHEAPALLOCATION

and ISNUMCONSTANT relations:

2 In LogiQL, the corresponding predicates would share the name of the type.

Soufflé handles types and relations as two separate concepts which share

the same namespace. Consequently, a type cannot have the same name as a

relation, hence the IS... convention.
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ISVALUE(numConstant) :- ISNUMCONSTANT(numConstant).

ISVALUE(heap) :- ISHEAPALLOCATION(heap).

Furthermore, LogiQL performs type inference at compile

time, allowing us to write IDB predicates without declaring

the types of their parameters. As an example, we can write

the following rule without any declaration for the DECLAR-

INGTYPE predicate. The engine infers that variable heap is of

type HEAPALLOCATION and variable type is of type TYPE,

based on the information provided by the joined predicates

in the body of the rule.

DECLARINGTYPE(heap) = type←

ASSIGNHEAPALLOCATION(heap, , inmethod),

METHOD:DECLARINGTYPE(inmethod) = type.

Soufflé follows a more verbose approach where all rela-

tions used in a program must be declared. This has required

several tens of extra declarations compared to the original

DOOP specification.

The above type-system differences are reflected not just

in syntactic shortcuts (e.g., not needing to populate rela-

tions, or employing type inference) but also in extra syn-

tactic requirements—neither language can be thought of as

a superset of the other. For instance, Soufflé allows more

freedom in constructing new objects, since values are not

strongly typed. This is reflected well in the construction of

context objects for the DOOP static analyses. In the LogiQL

code, we need to employ explicit constructor predicates. For

instance, the 1-call-site-sensitive analysis of DOOP creates

new context objects (from method invocation instructions)

via the CONTEXTFROMREALCONTEXT constructor. The

constructor is employed to invent “existential” values in the

head of a rule and these values can only be used in other head

predicates. A standard rule handling virtual method calls ap-

pears below.

CONTEXTFROMREALCONTEXT(invocation) = ctx→

CONTEXT(ctx), METHODINVOCATION(invocation).

lang:constructor(‘CONTEXTFROMREALCONTEXT).

CONTEXTFROMREALCONTEXT(invocation) = calleeCtx

CALLGRAPHEDGE(callerCtx, invocation, calleeCtx, tomethod),

VARPOINTSTO(hctx, value, calleeCtx, this)←

VARPOINTSTO(hctx, value, callerCtx, base),

VIRTUALMETHODINVOCATIONBASE(invocation, base),

VALUE:TYPE(value) = valuetype, THISVAR(tomethod) = this,

RESOLVEINVOCATION(valuetype, invocation) = tomethod.

In contrast, Soufflé can construct record objects at will,

with no restrictions (as if an infinite universe of them is im-

plied). For the above example, we declare the CONTEXT

type to be a record holding a METHODINVOCATION and de-

clare the ISCONTEXT relation storing facts of type CON-

TEXT. In the body of our rule we freely invent a record

value holding the method invocation, as the callee context

to be used in the head of the rule (as argument to the VAR-

POINTSTO and CALLGRAPHEDGE relations). Per our ear-

lier discussion, we explicitly add the newly created callee

context to the ISCONTEXT relation.

.type CONTEXT[invocation:MethodInvocation]

.decl ISCONTEXT(context:Context)

ISCONTEXT(newCtx),

CALLGRAPHEDGE(callerCtx, invocation, newCtx, tomethod),

VARPOINTSTO(hctx, value, newCtx, this) :-

VIRTUALMETHODINVOCATIONBASE(invocation, base),

VARPOINTSTO(hctx, value, callerCtx, base),

VALUE:TYPE(value, valuetype),

RESOLVEINVOCATION(valuetype, invocation, tomethod),

THISVAR(tomethod, this),

newCtx = [invocation].

This flexibility of the Soufflé specification is profitable,

for instance, when two types are isomorphic. A context for

local variables and a context for heap objects may both con-

sist of just an invocation site (for a 1-call-site-sensitive+heap

analysis). In LogiQL, to create one kind of context from

the other, we need to unwrap the context object into an

invocation-site, and use a second constructor to re-wrap it

into a value of the intended type. In Soufflé a mere assign-

ment of values is enough.

Functions and Constraints. There are other differences

of the two dialects that afford software engineering conve-

nience, yet do not otherwise impact the code base. Principal

among these is the ability to declare, in LogiQL, that a rela-

tion is a function—see, e.g., METHOD:DECLARINGTYPE

and VALUE:TYPE in earlier code fragments. The language

will detect at run-time any attempt to violate the functional

constraint, i.e., to map two values for the same key. This is

a major facility for catching errors in LogiQL. Furthermore,

this is just an instance of a general mechanism for statically-

defined constraints (much like assertions with logical quan-

tifiers) that are checked dynamically to catch errors. Good

software engineering practices can minimize the impact of

the lack of such language features.

Overall. The two code bases are of similar size, with each

burdened by different overheads. In terms of development,

the LogicBlox version is rather friendlier due to conve-

niences such as functional predicates.

2.2 Execution Model and Runtime System

The optimization methodologies and overall execution of the

two engines are strikingly different.

Cost Model. Perhaps the greatest difference between the

two settings of our port is not in the design of the language

dialects but in the execution model that an application pro-

grammer should have in mind.

• The LogicBlox engine performs full query optimization.

Thus, the user does not need to worry about the order

of clauses in the body of a rule. The engine considers

dynamically, separately for every application instance of

a rule, the sizes of the relations involved, and picks a

good order for joining the underlying tables. In contrast,

in Soufflé the programmer needs to manually decide on
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the join order of predicates in a rule body. This manual

decision is reflected in the order of clauses in the program

text as well as in explicit .plan directives for every rule.

In addition to being explicit, this join ordering is static,

applying to all firings of a rule.

• The Soufflé engine automatically optimizes the creation

and maintenance of indexes for all relations. The program-

mer does not need to worry about the order of variables

in a predicate, or any other indexing policy. In contrast, in

the LogicBlox system, the programmer needs to be aware

of the indexing discipline, to reorder variables in a pred-

icate’s definition, or to introduce intermediate predicates

that encode identical information with different indexing.

The above differences have a significant impact on the

DOOP code for the two settings. The methodology for opti-

mizing (via better indexing) DOOP rules for the LogicBlox

engine has been described in detail in past work [4]. Effec-

tively, predicates often get their variables reordered, or inter-

mediate predicates are introduced, for better indexing.

The Soufflé burden on the programmer is similar but for

different cases. The lack of a query optimizer makes the pro-

grammer’s ordering of clauses in a rule body crucial for per-

formance. This ordering determines the looping structure in

the compiled C++ program. What we try to avoid is iterating

over large relations in order to join them with smaller rela-

tions. In general we want the outer for-loops to iterate over

the smallest relations.

Soufflé also provides the .plan directive, for the program-

mer to specify his/her own query schedule based on differ-

ent instances of a rule during Datalog semi-naive evaluation.

Semi-naive evaluation is the standard incrementality strategy

for efficient execution of recursive Datalog programs: it ex-

ecutes recursive rules efficiently by considering the “deltas”

of each predicate, i.e., the tuples that have been newly pro-

duced. With the .plan directive programmers can specify

their own query schedules based on their predictions for the

sizes of relations at run time. Consider the following rule:

VARPOINTSTO(hctx, value, ctx, to) :-

LOADHEAPINSTANCEFIELD(ctx, to, sig, bhctx, baseval),

INSTANCEFIELDPOINTSTO(hctx, value, sig, bhctx, baseval).

.plan 1:(2,1)

The default plan is plan 0. Based on it, Soufflé will it-

erate over the LOADHEAPINSTANCEFIELD relation in an

outer for loop and over the INSTANCEFIELDPOINTSTO

relation in an inner for, because we expect the deltas of

the former to be much smaller in size than the INSTANCE-

FIELDPOINTSTO relation. The plan specified by the pro-

grammer, plan 1, reverses the order in cases where there is

a delta of the INSTANCEFIELDPOINTSTO relation. Essen-

tially, plan 1 is based on the expectation that the size of the

deltas of the INSTANCEFIELDPOINTSTO relation are much

smaller in size than LOADHEAPINSTANCEFIELD relation.

So Soufflé will evaluate VARPOINTSTO as follows:

∆VARPOINTSTO =

∆LOADHEAPINSTANCEFIELD ⊲⊳ INSTANCEFIELDPOINTSTO

∪
∆INSTANCEFIELDPOINTSTO ⊲⊳ LOADHEAPINSTANCEFIELD

The lack of a dynamic query optimizer means that we

had to resort to newly-introduced intermediate predicates in

order to make the analysis efficient for all different context-

sensitivity parameterizations of DOOP rules. For instance,

consider the rule below (simplified from its original form):

VARPOINTSTO(hctx, value, ctx, var) :-

ASSIGNCONTEXTINSENSITIVEALLOC(value, var, meth),

REACHABLECONTEXT(ctx, meth),

IMMUTABLEHCONTEXTFROMCONTEXT(ctx, hctx).

The question is whether to iterate over REACHABLE-

CONTEXT before iterating over ASSIGNCONTEXTINSEN-

SITIVEALLOC. The former relation is recursively defined

(i.e., has a delta version in semi-naive evaluation) while the

latter is not. For a context-insensitive analysis, it is better to

iterate over REACHABLECONTEXT first: it is a small pred-

icate, with a unique ctx and all the meth values that are pro-

gressively found reachable. For a context-sensitive analysis,

however, the converse is true: the delta predicate of REACH-

ABLECONTEXT can be huge. We resolve such dilemmas by

introducing context-insensitive projections of relations (e.g.,

OPTREACHABLE(meth)) and using these (logically redun-

dant) clauses for optimal iteration ordering:

VARPOINTSTO(hctx, value, ctx, var) :-

OPTREACHABLE(meth),

ASSIGNCONTEXTINSENSITIVEALLOC(value, var, meth),

REACHABLECONTEXT(ctx, meth),

IMMUTABLEHCONTEXTFROMCONTEXT(ctx, hctx).

A problem with Soufflé’s .plan directives is that they are

brittle. Removing rules results in a change of the remaining

rules’ stratification, changing which rules are in the same

recursive cycle and, thus, which are joined in delta form in-

stead of being fully computed. This renders .plan directives

invalid. Thus, experimentation with adding and removing

rules is rendered harder.

Runtime System. A major difference in the two execution

engines is that Soufflé is designed with shared-memory par-

allelism in mind, whereas LogicBlox v.3 is not. Multithread-

ing can speed up rule evaluation, since relation joins are ex-

plicitly parallel. Whether this is profitable depends on the en-

vironment. For instance, if one tries to analyze multiple pro-

grams simultaneously, the workload has high inherent paral-

lelism, therefore speeding up a single analysis is unwise—it

is better to perform a single-threaded analysis of each tar-

get, and run all such analyses in parallel. However, when the

analysis target is a single large codebase, it is highly desir-

able to be able to speed up the task with multithreading.

3. Evaluation

We evaluate the performance of our Soufflé port of DOOP

over points-to analyses of the DaCapo-2006 benchmarks.
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Figure 1: Context-insensitive analysis compilation and execution times for the DaCapo benchmarks.

Figure 2: 1-call-site analysis compilation and execution times for the DaCapo benchmarks.

Figure 3: 2-object-sensitive+heap analysis compilation and execution times for the DaCapo benchmarks.

29



We have concentrated on providing, for the analyses we

present, identical analysis results, full language-feature

support (modulo reflection, whose implementation is in

progress), and highly-optimized rules.

Setup. All experiments are on a dual-Intel Xeon E5-

2687W v4 3.00GHz CPU machine. There is 24-way true

hardware parallelism, or 48-way hardware parallelism with

simultaneous multithreading (hyperthreading). The latter is

unlikely to benefit this computation-heavy workload.

Discussion. Figures 1 to 3 show timings (single-run, there-

fore with some noise) for a context-insensitive, a 1-call-site-

sensitive, and a 2-object-sensitive+heap points-to analysis.

Timings exclude fact-generation (pre-processing) times and

other constant overheads. Although these analyses typically

finish in a couple of minutes, there are a few longer-running

instances, and several clear trends.

• Soufflé single-threaded performance is about 2x faster

than LogicBlox if compilation time is excluded. With the

addition of compilation time, it becomes slightly slower,

up to about 1.7x. However, compilation time is relatively

constant (so it matters less in large analyses) and (impor-

tantly!) compiled analyses can be reused for different tar-

get programs, with very minor modification. Therefore, it

depends on one’s setting whether compilation time is rele-

vant or not.

• As discussed earlier, it depends on the intended client

whether the results of the two engines are equivalent: the

LogicBlox output is a full database of all (hundreds of)

computed relations, that can form the basis for any further

queries. The Soufflé output is the handful of relations se-

lected for export. In our case, this is the VARPOINTSTO

and CALLGRAPHEDGE relations—the key outputs of a

points-to analysis.

• Soufflé exhibits maximum speedup at 4 or 8 threads and

often over 2x (up to 3.9x for bloat/2objH). This is impres-

sive, as it comes over already-high single-threaded perfor-

mance.
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