
-

g and
ith the
f appli-
tional-
ution.
is geo-

de that
’s Web
han the
al screen
e server
ase of
xecuted
ividual
ile the
d with
haps,

strib-
ay to
nsors,
Automatic Application Partitioning:
The J-Orchestra approach

(position paper)

Eli Tilevich and Yannis Smaragdakis
Center for Experimental Research in Computer Science (CERCS), College of Computing

Georgia Tech
Atlanta, GA, 30332 USA

{tilevich, yannis}@cc.gatech.edu

Abstract. Application partitioning is the task of breaking up the functionality of an application into distinct enti-
ties that can operate independently, usually in a distributed setting. Many distributed applications are created by
partitioning their centralized versions. Traditional application partitioning entails re-coding the application func-
tionality to use a middleware mechanism for communication between the different entities. This process is tedious
and error-prone. Automating the partitioning process while preserving correctness and ensuring good performance
of partitioned applications can greatly facilitate development of a large class of distributed applications. We review
the main advantages and challenges of automatic application partitioning and present the J-Orchestra system. J
Orchestra is an automatic partitioning system for Java programs. J-Orchestra takes as input Java applications in
bytecode format and transforms them into distributed applications, running on distinct Java Virtual Machines.

The present paper is a high-level supplement of our paper in the ECOOP 2002 technical program [12]. Here, we do
not describe specific technical contributions, but instead we concentrate on the high level design decisions for an
automatic partitioning system and argue that the J-Orchestra decisions make sense.

1. Introduction

Programming distributed applications used to be a task reserved for high-performance computin
large, geographically separated systems, always designed from scratch with distribution in mind. W
widespread use of the Internet, distribution over the network became an issue for a large number o
cations that before would operate in a single location. Distributing such applications leaves the func
ity they offer to the user virtually unchanged. Physical constraints are the reason dictating the distrib
For instance, a traditional business application should continue to work the same, but now its user
graphically separated from the data storage facility or the main computing engine. The Javaapplet model
is a good example, when viewed as an instance of distributed computation. An applet is a piece of co
originally exists on a server machine but gets copied on a client machine to be executed on a user
browser. Typically, the applet is executed on the client machine not because this machine is faster t
server that the applet came from, but because the applet needs to use a local resource—the graphic
of the user machine. Since the graphics have to reach the user screen and the code is initially on th
machine, distribution is inevitable. The main issue is how the distribution should take place. In the c
applets, the answer is hard-coded and it is the same for each applet: the code is downloaded and e
on the user side. Nevertheless, one can imagine many other solutions that are customizable for ind
programs. Perhaps, the functionality should be split, with the core part executed on the server, wh
user interface is executed on the client. Communication between the two parts could be performe
standard distributed computing techniques (e.g., CORBA [9], or Java RMI [11] middleware). Per
objects should migrate on demand, or according to an application-specific pattern.

Such circumstances give rise to application partitioning.Application partitioningis the task of breaking up
the functionality of an application into distinct entities that can operate independently, usually in a di
uted setting. Application partitioning is advocated strongly in computing magazines (e.g., [8]) as a w
use resources more efficiently. For instance, a scientific application, collecting data from several se
1

llection
differ-

r could
aried
ll three
pre-pro-
redun-
eed to

are
n pro-
ntify
different
remote
d code
er part
s) and
depen-

this

on is to
e (e.g.,
calls,
nt
g is
hange

tra
egular
s issues
el ways.
ill not
eful in
right

ction

c parti-

hestral
at deter-
or
for
storing the data, and processing them, can be partitioned so that the computer handling the data co
(sensor manager) is different from the computer storing the data (database manager) which in turn is
ent from the computer processing the data. This enables significant flexibility: the sensor manage
have little computing or storage capabilities, allowing it to be deployed more easily and in more v
environments (polar or space measurements are a good extreme example). At the same time, a
machines need to perform some processing of the data: the sensor manager may need to perform
cessing to determine what data need to be stored. This pre-processing may result into elimination of
dant data, thus dropping the communication requirements. Similarly, the database manager will n
organize the data for fast retrieval.

Traditional application partitioning entails re-coding the application functionality to use a middlew
mechanism for communication between the different entities. This is a significant undertaking, ofte
hibitively so. In order to partition the aforementioned scientific application, programmers have to ide
the parts of code that correspond to each partition and understand how data are exchanged among
partitions. Then, re-coding of the application will need to be performed so that data are passed to
sites instead of used in local calls. Integration with some middleware mechanism has to be done, an
has to be written that will simulate the results of local changes to the data using remote calls. The latt
is particularly challenging: local routines may often operate on the same data (through pointer aliase
simulating this result across different memory spaces requires thorough understanding of the data
dencies among partitions.

As in all complex programming tasks, automation is highly valuable for application partitioning. In
paper, we promote the idea of partitioning existing centralized1 applications without manually changing
the application source code. Instead, a higher level tool allows the user to express how the applicati
be partitioned. The tool can then rewrite the existing application code to replace local data exchang
function calls, data sharing through pointers) with remote communication (e.g., remote function
remote pointers or mobile objects). Thisautomaticapproach to application partitioning has significa
potential. It can simplify drastically the process of partitioning applications. As application partitionin
becoming the main reason for distributed programming, the automatic partitioning approach can c
the way many distributed applications are developed.

Our ideas are realized in the J-Orchestra2 automatic partitioning system for Java programs. J-Orches
takes a regular Java application in bytecode format and converts it into a distributed application. R
objects become mobile objects and complex mobility scenarios can be specified. Serious correctnes
when dealing with unmodifiable code (e.g., code in the Java system classes) are addressed in nov
A thorough technical presentation of J-Orchestra can be found in Reference [12]. In this paper, we w
argue so much that J-Orchestra is technically interesting but that J-Orchestra is potentially very us
practice. We will argue that the time for automatic partitioning is right and that J-Orchestra makes the
choices in order to maximize the potential impact.

1. We will use the term “centralized” for applications designed to run on a single machine. Note that the distin
betweencentralized anddistributed is orthogonal to the distinction betweensequentialandconcurrent. Both cen-
tralized and distributed applications can be either sequential or concurrent. More specifically, the automati
tioning approach has nothing to do with concurrency discovery (e.g., work on automatic parallelization).

2. The name “J-Orchestra” suggests the analogy between partitioning centralized applications and the way orc
pieces are often composed: first a piano score is completed. Then an “orchestration” process takes place th
mines which instrument should play which notes of the completed piano score. The analogy extends far. F
instance, there are many examples of orchestrating piano music that was never intended by its composer
orchestral performance.
2

ed sys-
s is

nex of
Ada 95
xternal
e calls
nearly
tance,
rshalled

nd
ut the
eless,
ld effi-

stems
ple of
es
muni-
strictly

ution
t inter-
lients.
Non-
dules.
ined.
ard to
more
priate
rchi-
uages

he dis-
istrib-

erald
ling,

g is
aradox-

est on
2. Can It Be Done and Does It Matter?

The main motivation questions about automatic partitioning are:

• Is there a real need for it?

• Can it be done correctly and efficiently for a large class of applications?

We believe that the need is there. The Internet has made most running programs part of a distribut
tem. Distributed computing is hard—any way to facilitate the development of distributed program
desirable. The Ada 95 community, for instance, has long maintained that the Distributed Systems An
Ada 95 [7] represents a great advantage of the language. Using the Distributed Systems Annex, an
user can develop a distributed application as a centralized Ada program and then partition it using e
tools that do not modify the code—instead, the compiler transforms local procedure calls into remot
and a different tool can assign objects to nodes without recompilation. (Even so, Ada 95 does not go
far enough because the centralized applications need to be written with distribution in mind. For ins
pointers are not supported, unless the user explicitly defines how pointer-based structures are ma
and unmarshalled.)

Of course, it is utopian to expect thatall applications can be distributed without code modifications a
attain acceptable performance: typically a lot of human intelligence needs to be applied througho
program code in order to get good performance over a high-latency/low-bandwidth medium. Neverth
there are good reasons to hope that the class of applications for which automatic partitioning can yie
cient solutions is large and only getting larger. Some of these reasons are:

• When distribution is dictated by physical constraints (as on the Internet and in embedded sy
environments) communication patterns tend to be very simple. Consider again the exam
applets, or the symmetric case ofJava servlets: surely if the problem admits a solution that execut
the entire code exclusively on the server (servlet) or exclusively on the client (applet), the com
cation requirements cannot be too great. It should be easy for an automatic system to perform
better partitioning than an inflexible solution like applets or servlets.

• The breakdown of applications in objects seems to offer a good granularity for making distrib
decisions and applying them to binary code. There is a conceptual similarity between an objec
acting with its users through method calls and a server making its services available to its c
This similarity often makes the conversion of objects into remote servers more straightforward.
object-oriented applications offer abstraction boundaries only at the level of procedures or mo
The former seem too fine-grained for distribution decisions, while the latter are too coarse-gra
Binary executables in an architecture-specific format (e.g., x86 machine language) would be h
process automatically. In contrast, the object-oriented coding style, in combination with
abstract execution environments (e.g., the Java VM, or the Microsoft CLR) offer both an appro
partitioning granularity, significant ease of binary manipulation, and portability over different a
tectures. Therefore, the current increasing trend of writing applications in object-oriented lang
with abstract runtime systems (like Java or C#) favors automatic partitioning.

• Good techniques for placement, replication, and mobility have been developed and appear in t
tributed systems literature. These include placement and data consistency techniques from D
uted Shared Memory systems (e.g., Orca [2]), object mobility techniques (e.g., from the Em
system [3]), etc. Additionally, with a judicious combination of static analysis and execution profi
distribution decisions can be more educated than in past systems.

In the spectrum of technologies aimed at facilitating distributed computing, automatic partitionin
among the most ambitious, because it imposes modest requirements. To elaborate this somewhat p
ical statement, automatic partitioning is an ambitious approach on the technical front, but very mod
3

tion
cuted
ird-
esulting
aborat-

ngth”
ccess-
g com-
teract
r the

e to an

code

tion-

rior

user

to per-

ws the

hange

n-
re is an
pers in
Java
ct-ori-
ion in

curity,
istrib-
the deployment front. Application partitioning is similar to adistributed shared memoryapproach (e.g.,
CJVM [1], Java/DSM [14]). The distinct element of application partitioning is that only the applica
changes—no changes are allowed to the runtime environment where the applications are to be exe.
This offers significant deployment advantages, including full portability and compatibility under th
party changes to the runtime system. Typical technical advantages include the compactness of the r
distributed system and the transparency of the partitioning to other elements of the system (e.g., coll
ing applications running on the same runtime system).

3. Technical Issues and Design Choices

Our ultimate research objective is to advance automatic application partitioning to “industrial stre
levels, i.e., to the point where third-party, commercial applications can be partitioned and used su
fully. The success criteria for our research will be whether J-Orchestra a) can handle the engineerin
plexity of commercial programs; b) enables convenient partitioning, where the user only needs to in
with a GUI for a few hours in order to partition a large application; c) achieves good performance fo
resulting application.3

We will argue that J-Orchestra makes the right design decisions and represents a promising avenu
industrial-strength automatic partitioning system.

The main elements of the J-Orchestra approach are as follows:

• the platform of experimentation is Java and we perform the partitioning through Java byte
rewriting

• there is a test-case profiling phase for the application that will supply information to guide parti
ing, placement, and mobility decisions

• there is a powerful rewriting engine allowing correct partitioning of more applications than p
approaches

• J-Orchestra generates source code proxies where failure handling code can be added by the

• objects are able to move, whenever possible

• static analysis is used to enlarge the set of partitionings that are guaranteed to be correct and
form optimizations

• a graphical interface presents the results of partitioning and static analysis to the user and allo
user to make distribution decisions

• J-Orchestra supplies heuristic algorithms for partitioning (data placement) based on data exc
information.

We examine some of these design decisions in detail.

Java Bytecodes as a Program Representation.The Java programming language [6] is the dominant la
guage for Internet development and one of the most dominant programming languages overall. The
enormous number of Java developers (conservatively estimated at 500,000 professional develo
2000, to grow to over 2 million by 2005, not including students and hobbyists [5]). The accumulated
expertise guarantees the potential for significant impact. Additionally, Java is among the purest obje
ented languages. This ensures that “legacy” applications (i.e., applications written with no distribut

3. Our attention is (for now) limited to the case where complex issues like crossing administrative domains, se
trust, routing, dynamic coordination, etc. can be handled orthogonally. This is not the case for all kinds of d
uted computing, but it is a common scenario and it allows J-Orchestra to be simpler and more targeted.
4

take
grams
ase of
ment
evel is
ed, and

de a
rface

rther
tion be
usands
ethod

s argu-

ts a few
d. On
adily
of the
sed for
ation
n and
ue suc-
iting of
d: the
of the

lexity.
system

ering
to deep
hestra

lysis
t them
(e.g.,

lasses)
otely

hey are
ts are

from
objects
ctness
ning
mind) are fairly modular. Class boundaries offer convenient lines along which the partitioning can
place. Objects offer a conveniently fine granularity for code and data mobility. Furthermore, Java pro
are executed in an abstract execution environment—the Java Virtual Machine (JVM). This enables e
binary manipulation of the application code, as well as the ability to manipulate the runtime environ
(e.g., to transform code at load time, to enable dynamic profiling, etc.). Operating at the bytecode l
essential for generality, because no access to the source code for the original application is need
because Java system classes also need to be manipulated (although not modified).

Graphical Front-End for User Interaction and Heuristics for Partitioning. The goal of our approach
is to enable application partitioning at a higher level of abstraction. Therefore, it is natural to inclu
graphical front-end to allow the user to specify partitioning parameters. Ideally, such a user inte
should present all the results of program analysis so far and allow the user full flexibility in making fu
decisions. This presents some challenging user-interface issues. How should static analysis informa
represented in an approachable form? How can the user deal with the complexity of hundreds or tho
of classes and methods? How can the user easily specify object migration policies (e.g., “when m
foo is called, its third argument should move permanently to the site offoo if it is not already there”)?
How can the user override static analysis information (e.g., to assert that a method never modifies it
ments, even if this is not apparent to the static analysis algorithm)?

Although we cannot provide complete answers to these questions, preliminary experience sugges
good directions. First, the user should always be in full control of the distribution process, if neede
the other hand, heuristics for distribution (e.g., a flow-based static partitioning algorithm) should be re
available to provide some automatic decision making. In this way, the user can be sure that most
“don’t-care” cases are handled in an acceptable way. If a structured language (e.g., XML-based) is u
externalizing the distribution information, then an editor for the more complex structures (e.g., migr
policies) can be integrated directly in the graphical user interface. In this way, graphical informatio
complex structures with no direct graphical representation are integrated smoothly. This is a techniq
cessfully employed in development environments like Visual Basic. The advantage over separate ed
the complex structures is that the hierarchical capabilities of the graphical environment are exploite
user can click on a class, choose one of its methods, then edit the migration policy for arguments
method. In general, a hierarchical philosophy in the user interface is a good way to deal with comp
The user should be able to group classes together to form larger entities that are used as a unit. The
should then be able to summarize profiling and static analysis information for the entire group.

A General, Efficient Rewriting Engine that Allows Object Mobility. The most important part of an
automatic partitioning approach is the rewriting it performs. The issues involved range from engine
considerations (supporting complex language features like inheritance, arrays, self-reference, etc.)
research problems (e.g., partitioning applications when they include unmodifiable code). The J-Orc
rewriting algorithm is described in detail in [12]—here we will just sketch the main features.

Briefly, J-Orchestra allows turning local objects in the application into mobile objects. Static ana
ensures that the partitioning is correct by finding all dependencies between objects that would preven
from being placed on different network sites. Such dependencies arise only from unmodifiable code
native code in the Java system classes). Modifiable objects (i.e., instances of regular application c
can always be turned into mobile objects and migrate at will. Unmodifiable objects are always rem
accessible but cannot migrate. When unmodifiable objects are passed into unmodifiable code, t
dynamically “unwrapped” so they can be accessed like regular Java local objects. Similarly, objec
“wrapped” when they are passed out of unmodifiable code so that all other objects can refer to them
anywhere on the network. (Strictly speaking, object references are wrapped and unwrapped, not the
themselves.) The result is a very general rewriting algorithm that automatically guarantees the corre
of partitioning and allows good performance through object mobility. No previous automatic partitio
system offers these features.
5

d
(e.g.,
uted
hich
m this
y and
ent.
tion.
the

s. Thus,
ndle
ely
mput-
tition

indus-
ance.
to be

ies?

tatic

s a
ed at

tant
tition-
to tra-

t all
tions

auto-
ution
e system
nviron-
s of mil-
ent is
artition-
s) can
Enabling the User to Add Failure Handling Code.The overall approach of programming distribute
systems as if they were centralized (“papering over the network”) has been occasionally criticized
see the best known “manifesto” on the topic [13]). The main point of criticism has been that distrib
systems fundamentally differ from centralized systems because of the possibility of partial failure, w
needs to be handled differently for each application. Nevertheless, J-Orchestra does not suffer fro
problem: although the input of the system is a binary application, the output is both a rewritten binar
the source codeof new front-end classes required to run the application in a distributed environm
These front-end classes offer a wrapper for the rewritten binary functionality of the original applica
Application-specific (i.e., non-default) partial-failure handling can be effected by manually editing
source code of the front-end classes and handling the corresponding Java language exception
although J-Orchestra involves hiding (much of) the complexity of distribution, it allows the user to ha
distribution-specific failure exactly like it would be handled through manual partitioning. Alternativ
viewed, the user can concentrate on the part of the application that really matters for distributed co
ing: partial failure handling. This part is the only code that needs to be written by hand in order to par
an application.

4. Questions to Resolve

The main goal of our research to evaluate whether automatic application partitioning can become an
trial-strength technique, scaling to large third-party applications and providing acceptable perform
We believe that J-Orchestra makes the right general design choices. Many issues still remain
resolved, however.

• Profiling: what kind of profiling information can lead to choosing good object migration strateg
Can we automate the discovery of good mobility strategies based on profiling information?

• Static analysis: how can more advanced static analysis help with optimization? How should s
analysis interact with profiling information?

• Supporting Technology: how important is the underlying middleware for performance? What i
good middleware infrastructure for automatic partitioning? What optimizations can be perform
the bytecode level to eliminate the overhead of the rewriting process?

• Applications and Evaluation: what applications can be successfully partitioned? Are there impor
practical benefits of the approach? What application domains most benefit from automatic par
ing? Is automatic partitioning suitable to high-performance applications? How does it compare
ditional Distributed Shared Memory systems?

A large part of our work has to do with evaluating the impact of automatic partitioning. Although no
applications can be partitioned automatically, it will be beneficial to have a classification of applica
that are amenable to automatic partitioning.

Some concrete ideas in these directions follow:

• Naturally distributed environments, such as embedded systems, offer a promising domain for
matic partitioning. Consider a heterogeneous, distributed environment with functional distrib
constraints: cameras may be connected to one machine, sensors to another, while a databas
runs on a central server. Java is often used to hide the platform specific elements of each e
ment. (Lately, Java has made great inroads to the embedded systems domain, in general—ten
lions of Java-enabled cell phones are in use in Japan [4].) Ease of application developm
paramount, as the applications are not developed by systems experts. Therefore, automatic p
ing has a lot of potential in these contexts. Lots of small machines (like Java-enabled cell phone
6

st of

sites
., the

ill be
idual
he tel-
an be

redi-
-gen-

plica-
or this
oning
highly
ions.
ns are

ble for
tradi-

d. J-
ication
s way,
tion

tion

munity.
solu-

iding in
tion is
ibuted
ch. As
c par-

plica-
r tra-
.g., X-
ce that

ow or
ble to
letely

f distri-
be running parts of an application originally intended only for centralized execution, while the re
the application runs on a central server, or even on other small machines.

• J-Orchestra is ideal for interactive applications that need to receive input or produce output on
other than where computation occurs. Example applications include command shells (e.g
JShell—a Unix shell look-alike for the Java VM), and Swing applications (where the graphics w
displayed remotely). The goal is to enable a better partitioning than what would happen if indiv
keystrokes, or entire graphics windows were transferred over the network (as, for instance, in t
net or X-Windows protocols). In the case of JShell, for example, the parsing of commands c
done on the client side and only their execution needs to take place on the server side.

We show a simple comparison of J-Orchestra partitioned applications with X-Windows output
rection in [12]. J-Orchestra can get better performance than X-Windows by placing the graphics
erating code on the same machine as the graphical output screen.

• Traditional Distributed Shared Memory systems have concentrated on high-performance ap
tions and issues with parallel execution and contention for resources. J-Orchestra is not ideal f
domain because it is hard to support replication with good performance in an automatic partiti
approach. DSM systems often take advantage of virtual memory hardware mechanisms or
optimized code in order to implement consistency protocols without slowing down local operat
In an automatic partitioning approach, where the runtime system cannot change, these solutio
not applicable. Nevertheless, it is interesting to see if some well behaved applications are suita
automatic partitioning. It is also interesting to quantify the overhead of the approach relative to
tional Distributed Shared Memory systems.

• We should establish guidelines for application development with automatic partitioning in min
Orchestra can yield great benefits when used simultaneously with the development of the appl
and not only after the complete centralized application has been completely developed. In thi
the application writer will be shielded from distribution concerns, but all the testing of the applica
will be done in a distributed environment. Having distribution in mind when writing the applica
should reveal several opportunities for optimization.

5. Summary and Conclusions

Ease of application development has emerged as a primary concern of the Computer Science com
Nevertheless, facilitating application development is a very hard problem, that has generally defied
tion for many decades. The hope is now that select, domain-specific solutions can be developed, a
the development of particular classes of applications. Distributed applications, where the distribu
dictated by functional constraints, constitute a domain amenable to partial automation. Such distr
applications can be developed from centralized applications using an automatic partitioning approa
networking becomes ubiquitous and computing enters every field of life, the importance of automati
titioning can only grow.

Automatic partitioning can reduce drastically the development time and effort required to deploy ap
tions in a distributed environment. Additionally, automatic partitioning can improve performance ove
ditional techniques that enable applications to accept remote input or produce remote output (e
Windows, Java applets, Java servlets). In some cases, automatic partitioning may make the differen
will enable running the application in a distributed environment: traditional techniques may be too sl
heavyweight, and manual rewriting may be impossible or not cost-effective. For applications amena
automatic partitioning, the tedious details of programming for a distributed environment can be comp
eliminated. This will enable application developers to concentrate on the more interesting aspects o
bution (e.g., handling partial failure) and produce higher-quality partitioned applications.
7

n a

nd M.

ract

2001

note,

I

ation,

Java”,

ng”,

g”,
References

1 Yariv Aridor, Michael Factor, and Avi Teperman, “CJVM: a Single System Image of a JVM o
Cluster”, in Proc.ICPP’99.

2 Henri E. Bal, Raoul Bhoedjang, Rutger Hofman, Ceriel Jacobs, Koen Langendoen, Tim Ruhl, a
Frans Kaashoek, “Performance Evaluation of the Orca Shared-Object System”,ACM Trans. on
Computer Systems, 16(1):1-40, February 1998.

3 Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter, “Distribution and Abst
Types in Emerald”, inIEEE Trans. Softw. Eng., 13(1):65-76, 1987.

4 Ben Charny, “Cell phone industry infiltrates JavaOne show”, Special to CNET News.com, June 4,
http://news.cnet.com/news/0-1004-200-6163270.html .

5 M. Driver, “Where Are Java Programmers When You Need Them?”, Gartner Group research
4 April, 2000,
http://gartner11.gartnerweb.com/public/static/hotc/hc00087599.html .

6 James Gosling, Bill Joy, Guy Steele, and Gilad Bracha,The Java Language Specification, 2nd Ed., The
Java Series, Addison-Wesley, 2000.

7 ISO,Information Technology-Programming Languages-Ada, ISO standard, Feb. 1995, ISO/IEC/ANS
8652:1995.

8 Nelson King, “Partitioning Applications”,DBMS and Internet Systems magazine, May 1997. See
http://www.dbmsmag.com/9705d13.html .

9 Object Management Group, “The Common Object Request Broker: Architecture and Specific
rev. 2.2”, Technical Report, February 1998.

10 Michael Philippsen and Matthias Zenger, “JavaParty - Transparent Remote Objects in
Concurrency: Practice and Experience, 9(11):1125-1242, 1997.

11 Sun Microsystems, Remote Method Invocation Specification,
http://java.sun.com/products/jdk/rmi/ , 1997.

12 Eli Tilevich and Yannis Smaragdakis, “J-Orchestra: Automatic Java Application Partitioni
European Conference on Object-Oriented Programming (ECOOP), Malaga, June 2002.

13 Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall, “A note on distributed computin
Technical Report, Sun Microsystems Laboratories, SMLI TR-94-29, November 1994.

14 Weimin Yu and Alan Cox, “Java/DSM: A Platform for Heterogeneous Computing”,Concurrency:
Practice and Experience, 9(11):1213-1224, 1997.
8

	Automatic Application Partitioning: The J-Orchestra approach
	(position paper)
	Eli Tilevich and Yannis Smaragdakis Center for Experimental Research in Computer Science (CERCS),...
	Abstract
	Application partitioning is the task of breaking up the functionality of an application into dist...
	The present paper is a high-level supplement of our paper in the ECOOP 2002 technical program [12...

	1.� Introduction
	2.� Can It Be Done and Does It Matter?
	3.� Technical Issues and Design Choices
	Java Bytecodes as a Program Representation
	Graphical Front-End for User Interaction and Heuristics for Partitioning
	A General, Efficient Rewriting Engine that Allows Object Mobility
	Enabling the User to Add Failure Handling Code

	4.� Questions to Resolve
	5.� Summary and Conclusions
	References
	1 Yariv Aridor, Michael Factor, and Avi Teperman, “CJVM: a Single System Image of a JVM on a Clus...
	2 Henri E. Bal, Raoul Bhoedjang, Rutger Hofman, Ceriel Jacobs, Koen Langendoen, Tim Ruhl, and M. ...
	3 Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter, “Distribution and Abst...
	4 Ben Charny, “Cell phone industry infiltrates JavaOne show”, Special to CNET News.com, June 4, 2...
	5 M. Driver, “Where Are Java Programmers When You Need Them?”, Gartner Group research note, 4�Apr...
	6 James Gosling, Bill Joy, Guy Steele, and Gilad Bracha, The Java Language Specification, 2nd Ed....
	7 ISO, Information Technology-Programming Languages-Ada, ISO standard, Feb. 1995, ISO/IEC/ANSI 86...
	8 Nelson King, “Partitioning Applications”, DBMS and Internet Systems magazine, May 1997. See htt...
	9 Object Management Group, “The Common Object Request Broker: Architecture and Specification, rev...
	10 Michael Philippsen and Matthias Zenger, “JavaParty - Transparent Remote Objects in Java”, Conc...
	11 Sun Microsystems, Remote Method Invocation Specification, http://java.sun.com/products/jdk/rmi...
	12 Eli Tilevich and Yannis Smaragdakis, “J-Orchestra: Automatic Java Application Partitioning”, E...
	13 Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall, “A note on distributed computing”, Tech...
	14 Weimin Yu and Alan Cox, “Java/DSM: A Platform for Heterogeneous Computing”, Concurrency: Pract...

