
Class Hierarchy Complementation:
Soundly Completing a Partial Type Graph

George Balatsouras Yannis Smaragdakis
Department of Informatics

University of Athens, 15784, Greece
{gbalats,smaragd}@di.uoa.gr

Abstract
We present the problem of class hierarchy complementa-
tion: given a partially known hierarchy of classes together
with subtyping constraints (“A has to be a transitive sub-
type of B”) complete the hierarchy so that it satisfies all con-
straints. The problem has immediate practical application to
the analysis of partial programs—e.g., it arises in the process
of providing a sound handling of “phantom classes” in the
Soot program analysis framework. We provide algorithms to
solve the hierarchy complementation problem in the single
inheritance and multiple inheritance settings. We also show
that the problem in a language such as Java, with single in-
heritance but multiple subtyping and distinguished class vs.
interface types, can be decomposed into separate single- and
multiple-subtyping instances. We implement our algorithms
in a tool, JPhantom, which complements partial Java byte-
code programs so that the result is guaranteed to satisfy the
Java verifier requirements. JPhantom is highly scalable and
runs in mere seconds even for large input applications and
complex constraints (with a maximum of 14s for a 19MB
binary).

Categories and Subject Descriptors F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming
Languages—Program Analysis; D.3.4 [Programming Lan-
guages]: Processors—Compilers; D.1.5 [Programming
Techniques]: Object-oriented Programming

Keywords type hierarchy; Java; single inheritance; multi-
ple inheritance; JPhantom; bytecode engineering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
OOPSLA ’13, October 29–31, 2013, Indianapolis, Indiana, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2374-1/13/10. . . $15.00.
http://dx.doi.org/10.1145/2509136.2509530

1. Introduction
Whole-program static analysis is essential for clients that re-
quire high-precision and a deeper understanding of program
behavior. Modern applications of program analysis, such as
large scale refactoring tools [9], race and deadlock detectors
[16], and security vulnerability detectors [11, 15], are virtu-
ally inconceivable without whole-program analysis.

For whole-program analysis to become truly practical,
however, it needs to overcome several real-world challenges.
One of the somewhat surprising real-world observations
is that whole-program analysis requires the availability of
much more than the “whole program”. The analysis needs an
overapproximation of what constitutes the program. Further-
more, this overapproximation is not merely what the anal-
ysis computes to be the “whole program” after it has com-
pleted executing. Instead, the overapproximation needs to be
as conservative as required by any intermediate step of the
analysis, which has not yet been able to tell, for instance,
that some method is never called.

Consider the example of trying to analyze a program P
that uses a third-party library L. Program P will likely only
need small parts of L. However, other, entirely separate, parts
of L may make use of a second library, L′. It is typically
not possible to analyze P with a whole program analysis
framework without also supplying the code not just for L
but also for L′, which is an unreasonable burden. In modern
languages and runtime systems, L′ is usually not necessary
in order to either compile P or run it under any input. The
problem is exacerbated in the current era of large-scale li-
brary reuse. In fact, it is often the case that the user is not
even aware of the existence of L′ until trying to analyze P.

Unsurprisingly, the issue has arisen before, in different
guises. The FAQ document1 of the well-known Soot frame-
work for Java analysis [19, 20] contains the question:

How do I modify the code in order to enable soot to
continue loading a class even if it doesn’t find some of
it[s] references? Can I create a dummy soot class so
it can continue with the load? How?

1 http://www.sable.mcgill.ca/soot/faq.html

This frequently asked question does not lead to a solution.
The answer provided is:

You can try -use-phantom-refs but often that does not
work because not all analyses can cope with such
references. The best way to cope with the problem is
to find the missing code and provide it to Soot.

The “phantom refs” facility of Soot, referenced in the
above answer, attempts to model missing classes (phan-
tom classes) by providing dummy implementations of their
methods referenced in the program under analysis. However,
there is no guarantee that the modeling is in any way sound,
i.e., that it satisfies the well-formedness requirements that
the rest of the program imposes on the phantom class.

Our research consists precisely of addressing the above
need in full generality. Given a set of Java class and inter-
face definitions, in bytecode form, we compute a “program
complement”, i.e., skeletal versions of any referenced miss-
ing classes and interfaces so that the combined result consti-
tutes verifiable Java bytecode. Our solution to this practical
problem has two parts:

• A program analysis part, requiring analysis of bytecode
and techniques similar to those employed by the Java ver-
ifier and Java decompilers. This analysis computes con-
straints involving the missing types. For instance, if a vari-
able of a certain type C is direct-assigned to a variable of a
type S , then C must be a subtype of S .

• An algorithmic part, solving a novel typing problem,
which we call the class hierarchy complementation, or
simply hierarchy complementation, problem. The problem
consists of computing a type hierarchy that satisfies a set
of subtyping constraints without changing the direct par-
ents of known types.

The algorithmic part of our solution, i.e., solving the
hierarchy complementation problem, constitutes the main
novelty of our approach. The problem appears to be fun-
damental, and even of a certain interest in purely graph-
theoretic terms. For a representative special case, consider
an object-oriented language with multiple inheritance (or,
equivalently, an interface-only hierarchy in Java or C#).2 A
partial hierarchy, augmented with constraints, can be repre-
sented as a graph, as shown in Figure 1a. The known part
of the hierarchy is shown as double circles and solid edges.
Unknown (i.e., missing) classes are shown as single circles.
Dashed edges represent subtyping constraints, i.e., indirect

2 We avoid the terms “subclassing” or “inheritance” as synonyms for “direct
subtyping” to prevent confusion with other connotations of these terms.
In our context, we only care about the concept of subtyping, i.e., of a
(monomorphic) type as a special case of another. Subtyping can be direct
(e.g., when a Java class is declared to “extend” another or “implement” an
interface) or indirect, i.e., transitive. We do, however, use the compound
terms “single inheritance” and “multiple inheritance” as they are more
common in the classification of languages than “single subtyping” and
“multiple subtyping”.

B

D

E

F G

A

C

(a) Constraint Graph

A

B

D

E C

FG

(b) Solution

Figure 1: Example of constraints in a multiple inheritance set-
ting. Double-circles signify known classes, single circles signify
unknown classes. Solid edges (“known edges”) signify direct sub-
typing, dashed edges signify transitive subtyping.

subtyping relations that have to hold in the resulting hierar-
chy. In graph-theoretic terms, a dashed edge means that there
is a path in the solution between the two endpoints. For in-
stance, the dashed edge from C to D in Figure 1a means that
the unknown part of the class hierarchy has a path from C to
D. This path cannot be a direct edge from C to D, however:
C is a known class, so the set of its supertypes is fixed.

In order to solve the above problem instance, we need
to compute a directed acyclic graph (DAG) over the same
nodes,3 so that it preserves all known nodes and edges, and
adds edges only to unknown nodes so that all dashed-edge
constraints are satisfied. That is, the solution will not con-
tain dashed edges (indirect subtyping relationships), but ev-
ery dashed edge in the input will have a matching directed
path in the solution graph. Figure 1b shows one such pos-
sible solution. As can be seen, solving the constraints (or
determining that they are unsatisfiable) is not trivial. In this
example, any solution has to include an edge from B to
E, for reasons that are not immediately apparent. Accord-
ingly, if we change the input of Figure 1a to include an edge
from E to B, then the constraints are not satisfiable—any at-
tempted solution introduces a cycle. The essence of the algo-
rithmic difficulty of the problem (compared to, say, a simple
topological sort) is that we cannot add extra direct parents
to known classes A and C—any subtyping constraints over
these types have to be satisfied via existing parent types. This
corresponds directly to our high-level program requirement:
we want to compute definitions for the missing types only,
without changing existing code.

For a language with single inheritance, the problem is
similar, with one difference: the solution needs to be a tree

3 Inventing extra nodes does not contribute to a solution in this problem.

C

D

A

H

I

B

E

G F

(a) Constraint Graph

B

A

C

E

F

G

H

I

D

(b) Solution

Figure 2: Example of full-Java constraint graph. Double circles de-
note known classes/interfaces, whose outgoing edges in the solu-
tion are already determined (solid input edges). White nodes are
classes, black nodes are interfaces, grey nodes are unknown types
that are initially undetermined (i.e., the input does not explicitly
identify them as classes or interfaces, although constraint reason-
ing may do so later).

instead of a DAG. (Of course, the input in Figure 1a already
violates the tree property since it contains known nodes with
multiple known parents.) We offer an algorithm that solves
the problem by either detecting unsatisfiability or always
ordering the nodes in a tree that respects all constraints.

The practical version of the hierarchy complementation
problem is more complex. Mainstream OO languages often
distinguish between classes and interfaces and only allow
single direct subtyping among classes and multiple direct
subtyping from a class/interface to an interface—a combi-
nation often called “single-inheritance, multiple subtyping”.
In this case, the graph representation of the problem is less
intuitive. Consider Figure 2a that gives a problem instance.
(A possible solution for these constraints is in Figure 2b, but
is given purely for reference, as it is not central to our discus-
sion.) There are now several node types: classes, interfaces
(both known and unknown), as well as undetermined nodes.
There are also more implicit constraints on them: classes can
only have an edge to one other class, interfaces can only have
edges to other interfaces. The latter constraint, for instance,
forces D to be an interface and H to be a class. Thus, we
see that the full version of the problem requires additional
reasoning. We show that such reasoning can be performed
as a pre-processing step. The problem can be subsequently
broken up into two separate instances of the aforementioned
single- and multiple-inheritance versions of hierarchy com-
plementation.

In brief, the contributions of our work are as follows:

• We introduce a new typing problem, motivated by real-
world needs for whole program analysis. To our knowl-
edge, the hierarchy complementation problem has not been
studied before, in any context.

• We produce algorithms that solve the problem in three
different settings: single inheritance, multiple inheritance,
and mixture of the two, as in Java or C#.

• We implement our algorithms in JPhantom: a practical
tool for Java program complementation that addresses the
soundness shortcomings of previous Java “phantom class”
approaches. We show that JPhantom scales well and takes
only a few seconds to process even large benchmarks with
complex constraints—e.g., less than 6sec for a 3.2MB bi-
nary that induces more than 100 constraints.

• We discuss the problem of hierarchy complementation in
more general settings. The simplicity of our approach is a
result of only assuming (for the input) and satisfying (for
the output) the fairly weak Java bytecode requirements. We
show that the problem becomes harder at the level of the
type system for the source language.

2. Motivation and Practical Setting
We next discuss the practical setting that gives rise to the
hierarchy complementation problem.

Our interest in hierarchy complementation arose from ef-
forts to complement existing Java bytecode in a way that sat-
isfies the soundness guarantees of the Java verifier. Consider
a small fragment of known Java bytecode and the constraints
it induces over unknown types. (We present bytecode in a
slightly condensed form, to make clear what method names
or type names are referenced in every instruction.) In this
code, classes A and B are available, while types X, Y, and Z
are phantom, i.e., their definition is missing.

public void foo(X, Y)

0: aload_2 // load on stack 2nd argument (of type Y)

1: aload_1 // load on stack 1st argument (of type X)

2: invokevirtual X.bar:(LA;)LZ; //method ’Z bar(A)’ in X

3: invokevirtual B.baz:()V; //method ’void baz()’ in B

...

The instructions of this fragment induce several con-
straints for our phantom types. For instance:

• X has to be a class (and not an interface) since it contains a
method called via the invokevirtual bytecode instruction.

• X has to support a method bar accepting an argument of
type A and returning a value of type Z.

• Y has to be a subtype of A, since an actual argument
of declared type Y is passed to bar, which has a formal
parameter of type A. This constraint also means that if A is
known to be a class (and not an interface) then Y is also a
class.

• Z has to be a subtype of B, since a method of B is invoked
on an object of declared type Z (returned on top of the stack
by the earlier invocation).

The goal of our JPhantom tool is to satisfy all such con-
straints and generate definitions of phantom types X, Y, and Z
that are compatible with the bytecode that is available to the
tool (i.e., exists in known classes). Compatibility with exist-
ing bytecode is defined as satisfying the requirements of the
Java verifier, which concern type well-formedness.

Of these constraints, the hardest to satisfy are those in-
volving subtyping. Constraints on members (e.g., X has to
contain a “Z bar(A)”) are easy to satisfy by just adding
type-correct dummy members to the generated classes. This
means that the problem in the core of JPhantom is solving
the class hierarchy complementation problem, as presented
in the introduction and defined rigorously in later sections.
The binding of the problem to practical circumstances de-
serves some discussion, however.

First, note that, in our setting of the problem, we explic-
itly disallow modification of known code, e.g., in order to re-
move dependencies, or to add a supertype or a member to it.
Such modifications would have a cascading effect and make
it hard to argue about what properties are really preserved.
Additionally, we do not assume any restrictions on the in-
put, other than the well-formedness condition of being legal
Java bytecode (according to the verifier). Strictly speaking,
our well-formedness condition for the input is defined as fol-
lows: a legal input is bytecode that can be complemented (by
only adding extra class and interface definitions) so that it
passes the Java verifier. Note that this well-formedness con-
dition does not depend on the program complement that our
approach produces: an input is legal if there is some comple-
ment for it, not necessarily the one that JPhantom computes.

A final interesting point concerns the practical impact of
the JPhantom soundness condition. For most program analy-
ses, omitting parts of the code introduces unsoundness, if we
make no other assumptions about the program or the omitted
part. E.g., it is impossible to always soundly compute points-
to information, or may-happen-in-parallel information when
part of the program is missing. Therefore, guaranteed sound-
ness for all clients is inherently unachievable for any partial
program analysis approach. The practical reality is that there
is a large need for facilities for handling partial programs.
For instance, the Soot phantom class machinery has been one
of the most common sources of discussion and questions on
the Soot support lists, and it has been a central part of several
Soot revisions.4 The only “correctness condition” that Soot
phantom class support is trying to achieve, however, is the
low-level “the analyzer should not crash”.

Given the practical interest for the solution of a worst-
case unsolvable problem, we believe that our soundness

4 Even the most recent Soot release, 2.5.0, lists improved support for phan-
tom classes and excluding methods from an analysis as one of the major
changes in the release notes.

guarantee makes a valuable contribution: it is much better
to analyze a partial program in a way such that the Java ver-
ifier requirements (for type-level well-formedness) are sat-
isfied than to ignore any correctness considerations, as past
approaches do.

3. Hierarchy Complementation for Multiple
Inheritance

We begin with a modeling of the hierarchy complementation
problem in the setting of multiple inheritance. This means
that every class in our output can have multiple parents.

We can model our problem as a graph problem. Our input
is a directed graph G = (V, E), with two disjoint sets of
nodes V = Vknown

⋃̇
Vphantom and two disjoint sets of edges

E = Edirect
⋃̇

Epath, where Edirect ⊆ Vknown × V (i.e., direct
edges have to originate from known nodes—the converse is
not true, as known nodes can be inferred to subtype unknown
ones due to assignment instructions in the bytecode). The
set of nodes V is a set of types, while the set of edges E
corresponds to our subtyping constraints. That is, an edge
(vs, vt) encodes the constraint vs <: vt. The Edirect subset
encodes the direct-subtype constraints. The output of our
algorithm should be a DAG (with edges from children to
their parents), GD = (V, E′), such that:

1. ∀vs ∈ Vknown : (vs, vt) ∈ E′ ⇔ (vs, vt) ∈ Edirect (i.e., all
direct edges from known nodes are preserved and no new
ones are added to such nodes)

2. (vs, vt) ∈ Epath ⇒ there is a path from vs to vt in GD

Note that our only limiting constraint here is that we
cannot have cycles in the resulting hierarchy. Moreover,
since each type may have multiple supertypes in this setting,
a directed acyclic graph is fitting as our intended output.

In contrast to the general case, the problem is trivial if
we have a phantom-only input, i.e., if we ignore Vknown and
Edirect. It suffices to employ a cycle-detection algorithm,
and—if no cycles are present—return the input constraint
graph as our solution: all path edges can become direct
subtyping edges. If our input graph contains a cycle, then our
problem is unsolvable. If not, our solution would probably
contain some redundant edges (i.e., edges connecting nodes
that are already connected by another path) that we could
prune to minimize our output. In either case, our solution
would be valid w.r.t. our constraints.

The problem becomes much more interesting when we
take Vknown into account. The source of the difficulty is the
combination of cycle detection with nodes whose outgoing
edge set cannot be extended. Consider first the pattern of
Figure 3.

This pattern is a basic instance of interesting reasoning
in the case of multiple inheritance. We have A ∈ Vknown

such that (A, B), (A,C), (A,D) ∈ Edirect and (A, E) ∈ Epath.
We cannot, however, satisfy the path ordering constraint by
adding edges to the known node A. Therefore the output

B C D

E

A

Figure 3: In any solution of these constraints, either B or C or D
have to be ordered below E, since no new outgoing edges can be
added to A and the path constraint to E needs to be satisfied.

I

B

H

C

F G E

A

D

Figure 4: The phantom projection set of A is {C, E,H}. In order
to satisfy path-edge (A, B) we can either add a path-edge (C, B),
(E, B), or (H, B). The last one creates a cycle.

must have one of B,C,D ordered below E. We refer to the
set of {B,C,D} as the projection set of node A, which is a
more generally useful concept.

Definition 3.1. Projection Set. A node t ∈ Vphantom belongs
to the projection set of a node s ∈ Vknown iff t is reachable
from s through a path of direct edges.

proj(s) ≡ {t ∈ Vphantom : (s, t) ∈ Edirect
+}

with the + symbol denoting transitive closure.

That is, for each known node we can follow its outgoing
direct-edges recursively, ending each path when we reach
a phantom node. For instance, in Figure 4, the phantom
projection set for node A is {C, E,H}.

Referring again to Figure 4, we can see that if H is chosen
from the projection set of A in order to satisfy the path-edge
(A, B), and therefore edge (H, B) is added, then this would
immediately create a cycle because of the existing (B,H)
edge. Our algorithm should prevent such a cycle by making
the correct choice from the relevant projection set.

Combining this projection set choice with cycle detection
leads to interesting search outcomes. Figure 5a shows an
example of unsatisfiable input. The path edge (B,D) makes

either E or F be subtypes of D, and similarly the path edge
(A,C) makes either E or F be subtypes of C. Nevertheless,
any choice leads to cycles. In contrast, Figure 5b shows an
input for which a solution is possible, and which we use to
illustrate our algorithm.

C

F

D

E

A B

(a) Unsatisfiable input.

C D

E FG H

A B

(b) Satisfiable input.

Figure 5: Multiple Inheritance Examples

Algorithm 3.1 solves in polynomial time (an easy bound
is O(|V | · |E|)) any instance of the hierarchy complementation
problem in the multiple inheritance setting. The main part of
the algorithm is function stratify(), which computes a strat-
ification with the property that any constraint edge is facing
upwards (i.e., from a lower to a higher stratum). Moreover,
this stratification ensures that, for any path-edge (s, t) origi-
nating from a known node, there will exist a phantom node
p in the projection set of s that is placed lower than t. Given
this stratification, it is easy to compute the final solution (as
in function solve()). To satisfy any such path-edge (s, t), we
add a direct-edge from p to t. This respects our invariant of
all edges facing upwards, thus ensuring that no cycles will
be present in our solution.

Function stratify() starts from a single stratum, and then
computes on each iteration a new stratification, S i+1, by
building on the stratification of the previous step, S i, and
advancing some nodes to a higher stratum in order to sat-
isfy constraints. This process is repeated until we converge
to the final stratification, which will respect all of our con-
straints (line 21). If no new node converges at some step
(i.e., all nodes that reached a certain stratum advance to the
next), then we can be certain that we are dealing with un-
satisfiable input, and terminate, thus avoiding infinite recur-
sion (line 23). The nodes to be advanced at each step are
determined at line 18, which captures the essence of the al-
gorithm. The new stratum of a node t will be either (i) its
current stratum, (ii) the stratum right above the source of an
edge (s, t), or (iii) the one right above the lowest projection
node of the source of a path-edge (s, t) originating from a
known node—whichever is higher. These conditions raise
the stratum of a node to the minimum required to satisfy the
natural constraints of the problem, per our above discussion:
edges in the solution should be from lower to higher strata.

Figure 6 presents an illustration of the algorithm’s ap-
plication to the example of Figure 5b. The sets {C,D} and

EBA CDHF G

(a) Step 1

E

B A

CDHF G

(b) Step 2

E

B A

CDH

F

G

(c) Step 3

E

B A

CD

H

F

G

(d) Step 4

E

B A

C

D

H

F

G

(e) Step 5

E

B A

C

D

H

F

G

(f) Step 6

Figure 6: An example of the stratification produced by the multiple-inheritance solver for Example 5b.

Algorithm 3.1 Multiple-inheritance solver

1: function solve(G = (V, E))
2: S ← stratify(G)
3: U ← {(s, t) ∈ Epath : s ∈ Vknown}

4: ES ← E \ U
5: for all (s, t) ∈ U do
6: let p ∈ proj(s) : S [p] < S [t] B such p always exists
7: ES ← ES ∪ {(p, t)}
8: end for
9: return ES

10: end function
11: function stratify(G = (V, E))
12: U ← {(s, t) ∈ Epath : s ∈ Vknown}

13: for all t ∈ V do
14: S 0[t]← 0
15: end for
16: for i = 0→ |V | − 1 do
17: for all t ∈ V do

18: S i+1[t]← max

S i[t]

max
(s,t)∈E

{1 + S i[s]}

max
(s,t)∈U

{1 + min
p∈proj(s)

{S i[p]}}

19: end for
20: if ∀v ∈ V : S i+1[v] = S i[v] then
21: return S i B reached a fixpoint
22: else if ∀v ∈ V : S i+1[v] = S i[v]⇒ S i[v] = S i−1[v] then
23: break B no progress made on this step
24: end if
25: end for
26: return error B unsolvable constraint graph
27: end function

{E, F} are the projection sets of nodes A and B respectively.
At the first step, all nodes will be placed in the lowest stra-
tum. Note that, at this point, all nodes could be placed in
topological order: Figure 6a is perfectly valid as the output
of a topological sort. However, this is not a solution by our
standards, since node A cannot satisfy the edge to G because
both of its projection nodes, D and C, are placed after G.
Adding an edge from either one would be subject to creat-
ing cycles. At the next step, our algorithm advances every
node except A and B, since all are edge targets. At step 3,
things become more interesting. Nodes D,C have to be ad-
vanced by the same criterion, since node H contains edges
to both, and they all reside in the same stratum at step 2.
However, nodes H and G have to be advanced for a different
reason, since they are targets of path-edges originating from
known nodes, namely A and B, whose projections ({D,C}
and {E, F} respectively) were on the second stratum during
the previous step. At step 4, this condition ceases to exist
for node H, since nodes E, F have “stabilized” at a lower
stratum. This in turn causes node D to stabilize at step 5.
At step 6, G can also stay put, since it is in a higher stra-
tum than the lowest projection of A, namely D. No nodes are
advanced at step 7 (which is omitted in Figure 6), thus signi-
fying that our stratification has successfully converged to its
final form. It is therefore simple to compute a solution, by
adding edges (H,D), (H,C), (G,C), (D,G) and either (F,H)
or (E,H) to the direct-edges (A,C), (A,D), (B, E), (B, F).
This set of edges will constitute our final solution.

It is also easy to see that our algorithm would soundly
detect that the example of Figure 5a is unsatisfiable. At

the first step, only known nodes A, B would remain in the
lowest stratum, but on the next iteration all remaining nodes
would advance again, thus triggering the condition of failure
(line 23), since an iteration passed with no progress made.

A detailed proof of the correctness of our algorithm can
be found in Appendix A.

4. Hierarchy Complementation for Single
Inheritance

The problem for a single inheritance setting has a very sim-
ilar statement as in the earlier case of multiple inheritance,
but markedly different reasoning intricacies and solution ap-
proaches, due to a newly arising constraint: every class in
this setting can only have a single parent.

Formally, our problem is modeled in much the same way
as before. Our input is again a directed graph G = (V, E),
with two disjoint sets of nodes V = Vknown

⋃̇
Vphantom

and two disjoint sets of edges E = Edirect
⋃̇

Epath, where
Edirect ⊆ Vknown × V . The difference is that the output of
our algorithm should be a directed tree (instead of a DAG),
GT = (V, E′), such that the same conditions as in the earlier
case are satisfied:

1. ∀vs ∈ Vknown : (vs, vt) ∈ E′ ⇔ (vs, vt) ∈ Edirect

2. (vs, vt) ∈ Epath ⇒ there is a path from vs to vt in GT

Without loss of generality, we assume that there exists a
“root” node nr ∈ Vknown that is a common supertype for all of
our types. If no such type exists, we can create an artificial
one, by adding extra constraint edges. In this way, we can be
certain that computing a graph with a single outgoing edge
for all nodes (but one) will form a tree instead of a forest.

The problem is quite hard in its general setting. There
are several patterns that necessitate a complex search in the
space of possibilities. Figures 7a-7d show some basic pat-
terns that induce complex constraints. All nodes reachable
from a single one need to be linearly ordered (Figure 7a
shows the simplest case). This requires computing an or-
dering (i.e., guessing a permutation) of these nodes. Other
constraints can render some of the permutations invalid. The
basic pattern behind such restrictions is that of Figure 7b:
there are hierarchies that cannot be related. Combining the
two patterns suggests that there needs to be a search in the
space of permutations for a valid one: Figures 7c and 7d
show some simple cases.

Composing such constraints into more complex hierar-
chies gives an idea of the difficulty of the search involved.
Figure 8 shows an example where it is hard to see without
complex reasoning which of the E, F, G nodes have to be
placed above A and which cannot.

Clearly the problem can be modeled as a constraint sat-
isfaction problem instance, where Vphantom is our set of vari-
ables and V is the domain of values (representing the vari-
able’s direct supertype). The path-edges and the absence of
cycles constitute our constraints. This requires an exponen-

A

B C

(a) B and C
must be subtype-
related (in either
direction).

A

D

B

E

C

(b) D and E cannot
be subtype-related.

A

D

FB

E

C

(c) A has to be a subtype
of F.

A

D

GB

E

H C

F

(d) A has to be a subtype of ei-
ther G or H.

Figure 7: Single Inheritance Basic Patterns

A

D

EB F G

H I J

C

M

K

N

L

Figure 8: Harder composite example of single-inheritance con-
straints. The (undirected) path from B to C through E, F,G implies
that (A <: E) ∨ (A <: F) ∨ (A <: G). However, since F is the first
common known supertype of M and N, and A just a supertype of
both, F <: A, and thus (A <: E) ∨ (A <: G).

tial search in the worst case. Indeed, our implementation per-
forms precisely such an exhaustive search, but with a heuris-
tic choice of nodes so that the search tries to satisfy the con-
straints introduced by the patterns in Figures 7a and 7b—i.e.,
the pattern of Figure 7a is identified, all induced permuta-
tions are tried, and the pattern of Figure 7b is used to prune
them eagerly, instead of waiting to detect failure later.

Most importantly, our approach provides special handling
for a simple but practically quite common case. In this spe-
cial case, there is a polynomial algorithm for solving the
problem and exhaustive search is avoided.

Algorithm 4.1 Single-inheritance solver for strictly known
direct-supertypes

1: function solve(G = (V, E))
2: let R be the “root” node of V
3: let S be the tree of known nodes (Vknown, Edirect)
4: for all (s, t) ∈ Epath : s ∈ Vknown do
5: if @ path s{ t in S then
6: return error (unsatisfiable constraint)
7: end if
8: Epath ← Epath \ {(s, t)} B remove already satisfied edge
9: end for

10: for all v ∈ Vphantom do
11: makeSet(v) B create single-element disjoint sets
12: end for
13: for all (s, t) ∈ Epath : t ∈ Vphantom do
14: union(s, t) B merge two connected (phantom) components
15: end for B result: undirected connected components (UCCs)
16: for all v ∈ Vphantom do
17: k← find(v)
18: top[k]← R B initially “root”
19: end for B init UCC’s lowest common known superclass (LCS)
20: for all (s, t) ∈ Epath : t ∈ Vknown do B must be s ∈ Vphantom

21: k← find(s)
22: if ∃ path t{ top[k] in S then
23: top[k]← t B lower superclass found, update LCS
24: else if @ path top[k]{ t in S then
25: return error (unsatisfiable constraint)
26: end if
27: end for
28: for all k 7→ v in top do B for each UCC and its LCS
29: U ← {(s, t) ∈ Epath : t ∈ Vphantom ∧ find(s) = k}

B directed subgraph of original over nodes of this UCC
30: L← a topological order of U B linearize subgraph
31: hd← the top node of L
32: S ← S ∪ L ∪ {(hd, v)}
33: end for
34: return S
35: end function

Simplified setting: No direct-edges to phantom nodes. It
is easy to solve the problem in the case that there are no di-
rect edges from known nodes to phantom nodes. Since we
are in a single-inheritance setting, this means that no class in
the known part of the program has a superclass in the com-
plement that we are trying to produce. In this case, we have
that Edirect ⊆ Vknown × Vknown. The extra condition allows us
to employ a fast polynomial time algorithm. This interesting
case of our problem is very common in practice. Intuitively,
the ease of dealing with this case stems from avoiding the
search in the space of permutations when the input contains
patterns such as those in Figure 7c: if two permutations have
elements in common (e.g., the permutation of B and F, and
that of F and C in Figure 7c) they cannot include nodes that
are guaranteed to be subtype-unrelated (such as B and C in
this example) and all unknown nodes have to be below the
known ones in any solution.

G

H

B

I

J

A

K

L

F

M

C

R

D E

(a) Constraint Graph

G

B

H

I

J

L

K

F

M

R

A

C D E

(b) Solution

Figure 9: Algorithm 4.1 - Example

Algorithm 4.1 first removes path-edges originating from
known-nodes, after verifying that the corresponding paths
indeed exist. It then uses union/find data structures to com-
pute connected components of phantom nodes, while treat-
ing path-edges as undirected edges: anything connected
through such edges can safely end up in a single linear or-
dering. Then, for each phantom undirected connected com-
ponent, it computes the lowest known-node to serve as the
first-common-supertype of all of this component’s phantom
nodes. Note that when two known-nodes are reachable by
two phantom nodes of the same connected component (in
the phantom subgraph), then one of them ought to be a su-
pertype of the other, or else no solution can exist in a single
inheritance setting. This condition is captured in line 24. Af-
ter the first common (known) supertype for every connected
component has been computed, a mere topological sort, i.e.
placing all relevant nodes in a total order, is enough to sat-
isfy all of this component’s constraints. This may introduce
many superfluous edges in the solution: these edges are not
actually required by our constraints (since a topological or-
der is a total order). In practice, we produce a partial order
by using a variant of topological sort that generates a tree
instead of a list as its result, but a full topological sort also
satisfies the correctness requirements of the algorithm. (We
return to the topic of why we actually want a weaker order-
ing in Section 5.)

In the example of Figure 9, Algorithm 4.1 first checks and
removes the (F, A) path-edge. Then the phantom nodes are
divided in the following phantom connected components:
{G,H, I}, {J,K, L}, and {M}. The first common known su-
pertype for each component is B, F, and F respectively.
Each component is then linearized, which generates the fol-
lowing complete orders that are appended to the output:
I <: H <: G <: B, K <: J <: L <: F, and M <: F.

5. Single Inheritance, Multiple Subtyping:
Classes and Interfaces
It is easy to combine the single- and multiple-inheritance
approaches of the last two sections in the context of a lan-
guage that has single inheritance but multiple subtyping. It
is a common case for strongly-typed languages to allow mul-
tiple inheritance only for a subset of types. Java and C# in-
terfaces [10, 12], and Scala traits [17] are such examples.

In order to support such a separation, we have to intro-
duce a new dimension to our problem that can be simulated
as a graph coloring variant. Each node in V can be assigned
a color denoting its inheritance type. A black node can have
many direct supertypes (i.e., multiple inheritance), while a
white node can only have one (i.e., single inheritance). We
will use the terms “white node” (resp. “black node”) and
“class” (resp. “interface”) interchangeably.

Note that, initially, our input may not fully determine the
final color for each of its types. Thus, we have to introduce
a new color (grey) to refer to the subset of nodes whose
color is yet undetermined. In the end, our solution should
soundly determine a safe color (black or white) for each of
the (grey) input nodes, so that no constraints of the verifier
will be violated.

Therefore, our solution in this new setting is a synthesis of
a single inheritance and a multiple inheritance solution. That
is, the output of our algorithm should be a DAG that satisfies
the same conditions as those in the multiple inheritance
setting, GS = (V, E′), and a function fc : V → {black,white},
such that the restriction of GS to {v ∈ V : fc(v) = white} (i.e.,
white nodes) is a tree.

To safely decompose our problem into two different sub-
problems (one for single and one for multiple inheritance),
we assign colors to all nodes as a preprocessing step. There
are two kinds of constraints that lead to restricting the col-
ors of a node. First, we have local constraints: we may get a
node color from the initial input—i.e., an observed bytecode
instruction (such as invokeinterface) may directly restrict
the color of a phantom type. (More constraints of this form
are discussed in Section 6.) Second, we may get transitive
constraints, due to restrictions on subtyping. Interfaces can
only subtype interfaces (except for the Object class in Java).
This leads to two types of transitive constraints: If a black
node s has a path to node t, then t must also be black (inter-
faces can only extend interfaces). Symmetrically, if a node
s has a path to a white node t, then s must also be white
(classes can only be extended by other classes).

Furthermore, phantom nodes with no color constraints
can be safely assumed to be interfaces (black), for maximum
flexibility in solving other constraints. It is always easier to
satisfy a given set of constraints in a multiple inheritance
setting instead of a single inheritance setting, since the con-
ditions of single inheritance are stricter (a tree is a DAG).

As a result of the above observations, we can color all
nodes by applying local or transitive constraints to the orig-

inal input before solving a single and a multiple inheritance
hierarchy complementation problem separately. That is, we
can follow every possible path from any node whose color
has already been set and mark the nodes we find along the
way accordingly. The color of our source node determines
the direction of movement (i.e., from white source nodes, we
have to go backwards). When this process is over, we can as-
sign the color black to all remaining undetermined (in terms
of color) nodes. An example of this process can be seen in
our earlier Figure 2. Once we have assigned a black-or-white
color to every node, we can split our constraint graph into
two subgraphs by isolating white-to-white edges (and feed-
ing them to a single inheritance solver). After we have de-
termined our class hierarchy, we can proceed with satisfying
the rest of the edges using multiple inheritance rules.

The key to this approach is that the single inheritance
solver does not need the output of the multiple inheritance
solver to compute a solution, and vice versa. All we need to
ensure (for the multiple inheritance solver) is that we take
into account class supertypes that are reachable through di-
rect edges of a known class when determining the class’s
projection set. Thus, the class/interface decomposition in-
deed produces two independent subproblems that can be
solved separately. The composition of the two solutions will
certainly not create any cycles, if its two subparts do not con-
tain any. If that was not the case, then there would be a cycle
that contained at least one class and one interface, which
is impossible since no interface can be a subtype of a class
(other than Object) in Java.

As for our arbitrary choice of defaulting undetermined
nodes to interfaces, suppose that a solution exists if a sub-
set U of those undetermined nodes were treated as classes.
We could then transform this solution to another one where
these nodes were interfaces instead. The single inheritance
solution could be produced by replacing each node in U
with its parent (in the former single inheritance solution),
w.r.t. its incoming edges, and then removing it, until no
nodes in U were present. This process would still satisfy
all constraints on the remaining class nodes. A multiple in-
heritance solution also exists. Consider the union of the for-
mer multiple plus single inheritance solution. The result is a
DAG that respects all of the multiple inheritance setting con-
straints. Again, we can erase any edges to class-determined
nodes (i.e., all class nodes that are not in U) in a way that
all subtype relations involving the rest of the nodes remain
unaltered, i.e., by iteratively replacing an edge to a class-
determined node with edges to all of its direct supertypes,
until no edges to class-determined nodes are left. This pro-
cess would yield a valid multiple inheritance solution that
can be safely combined with the single inheritance one.
Therefore, marking undetermined nodes as interfaces does
not affect the outcome of our algorithm, i.e., no solution will
be found if and only if no solution existed.

6. Implementation and Practical Evaluation
We next discuss practical aspects of our implementation.
First, we consider the program analysis part of our work,
which solves the problem of producing complements of
a partial Java program by appealing to the solver of the
class hierarchy complementation problem. Subsequently, we
present experiments applying our JPhantom tool to real pro-
grams.

6.1 JPhantom Implementation
JPhantom is a practical and scalable tool for program com-
plementation, based on the algorithms we have presented in
this paper. 5 JPhantom uses the ASM library [7] to read and
trasform Java bytecode. Given a jar file that contains phan-
tom references, it produces a new jar file with dummy im-
plementations for each phantom class. The resulting jar file
satisfies all formal constraints of the JVM Specification [14].
We give a brief explanation of the different stages of compu-
tation for the analysis of an input jar file by JPhantom.

JPhantom execution consists of the following steps. It (1)
performs a first pass over the jar contents in order to recreate
the existing class hierarchy (type signatures only) and store
the field and method declarations of the contained classes,
then (2) makes a second pass to extract all phantom refer-
ences and store the full class representations. A third pass
(3) extracts all relevant type constraints, before (4) they are
fed to JPhantom’s hierarchy complementation solver, which
computes a valid solution, if such a solution is possible. At
this point, we can proceed to (5) bytecode generation, where
we create new class files for our missing (phantom) types.
Finally, we compute method bodies to add to each type.
For instance, when the solver determines that a phantom-
class type X must implement an interface type Y , all missing
methods of Y should be added to X, so that the resulting
bytecode is valid. After all such methods have been com-
puted, they are added in the last (6) step of execution.

Phantom references include references to missing classes,
as well as references to missing fields and methods. Note
that both phantom and existing classes may have references
to missing members, since there are cases of existing classes
calling a method or referencing a field declared in one of
their phantom supertypes. JPhantom detects all such refer-
ences and adds the relevant missing declarations to its out-
put. If a member is missing from a phantom class, we add it
directly to that class as part of JPhantom’s output. Otherwise,
if a member is missing from an existing class, we add it to an
appropriate phantom supertype in its projection set instead.
We encode these declarations as additional constraints over
the missing classes, generated in the second step of JPhan-
tom’s execution. It suffices to use the existing class hierarchy
and declared members (step 1), to perform member lookup

5 JPhantom is available online at https://github.com/gbalats/
jphantom.

for the purpose of determining if a member is missing and
where it should be added.

The most interesting aspects of the above steps have to do
with analyzing the bytecode to produce the constraints (step
3) used as input to the hierarchy complementation algorithm.
In order to extract type constraints, we have to simulate
a symbolic execution of Java bytecode by following every
possible execution path, while computing the types of stack
and local variables. This is necessary because, in general,
bytecodes receive some untyped arguments whose types we
need to infer, in order to extract our constraints. This process
is analogous to Pass 3 [14, Section 4.9.2] of the bytecode
verification process.

When computing such type information for stack and
local variables, there are points where we have to merge two
different paths of execution. That is, the two paths may map
the same variable to different types, in which case we have
to merge two different types into a new one. Typically, when
merging two types A, B the resulting type is the first common
superclass of A and B. In Java, there always exists such a
common superclass since every reference type (interfaces
included) is a subtype of java.lang.Object.

In our case, however, since we do not have the complete
type hierarchy at the time of constraint extraction, we cannot
compute the first common superclass for any two nodes. This
is why we apply the alternative technique of storing sets of
reference types, as presented in alternative verifier designs
[18]. I.e., our bytecode analyzer stores not a single type, but
a set of types for each variable at every point of execution.
Figure 10 lists the constraints that may be generated by the
analyzer for certain bytecodes. Since our analyzer generates
constraints due to widening reference conversions, it is easy
to see that storing a set of reference types fits our needs well.
Consider the following case:

class Test {

A foo(B b, C c) {

return (b == null) ?

c : b;

}

}

A foo(B, C);

Code:

0: aload_1

1: ifnonnull 8

4: aload_2

5: goto 9

8: aload_1

9: areturn

Our analyzer will compute that the stack contains a sin-
gle item with type {B,C}, before position 9, which is the
outcome of merging the two different execution paths. Let
us also assume that A and B are phantom classes. This toy
example demonstrates why we have chosen to store sets of
types, since we cannot compute the first common superclass
of B,C. After our tool has completed the analysis of method
foo(), it will generate (because of the ARETURN instruc-
tion) the constraint B <: A ∧C <: A.

Opcode Types Stack Types Constraints

AASTORE a : E[] i : int v : V V <: E

ARETURN obj : S S <: Rm

ASTORE T obj : S S <: T

ATHROW obj : S S <: “java.lang.Throwable”

GETFIELD T.F obj : S isClass(T) ∧ S <: T

PUTFIELD T.F obj : S v : U isClass(T) ∧ S <: T ∧ U <: F

PUTSTATIC T.F v : U isClass(T) ∧ U <: F

INVOKEINTERFACE T.(A)R arg0 : S 0 arg1 : S 1 . . . isIface(T) ∧ S 0 <: T

INVOKEVIRTUAL T.(A)R arg0 : S 0 arg1 : S 1 . . . isClass(T) ∧ S 0 <: T

INVOKESPECIAL T.(A)R arg0 : S 0 arg1 : S 1 . . . name = “<init>”⇒ isClass(T) ∧ S 0 <: T

INVOKESTATIC T.(A)R arg1 : S 1 . . . isClass(T)

INVOKE* T.(A)R (arg0 : S 0) arg1 : S 1 . . . S i <: Ai,∀i = 1, ...

Figure 10: Generated Bytecode Constraints. At this point, our analyzer has already computed the (sets of) types for every stack and local
variable at every point of execution (bytecode in method). For simplicity, we assume that each set of reference types contains a single element
(3rd column). Each bytecode may involve some declared types (2nd column) by references in the constant pool or by entries in the local
variable table (if such exists). Also, let Rm be the containing method’s return type.

6.2 JPhantom in Practice
We next detail a typical usage scenario of JPhantom, to-
gether with the complications that would arise in its absence.

Consider performing a static analysis of a large Java
program. For instance, the Doop framework [6, 13] inte-
grates points-to analysis with call-graph construction, com-
putation of heap object points-to information, and various
client analyses (escape analysis, virtual call elimination,
class cast elimination). Doop uses Soot as a front-end and
post-processes the facts generated by Soot. When faced with
an incomplete program, the user of the analysis is faced with
various issues. To illustrate and quantify them we created
a synthetic incomplete program, antlr-minus, by artificially
subtracting parts of the antlr parser generator jar. (We also
use antlr-minus as a performance benchmark in the next sec-
tion.)

A user that tries to analyze antlr-minus will encounter the
following issues:

• Crash in Soot. Earlier versions of Soot, e.g., Soot
2.3.0, will often crash when trying to analyze a pro-
gram that contains phantom references. Soot provides the
-allow-phantom flag, as a command-line option that the
user can set to inform Soot that its input contains phan-
tom references, and that Soot should try to handle them
instead of terminating with an error. However, for sev-
eral Soot versions the flag is not sufficient to prevent Soot
from crashing in some cases.
• Need to handle phantom references in the client of Soot.

Although the latest version of Soot (2.5) has increased
its tolerance of phantom references to the point where it
no longer crashes, this only prevents against crashes in
Soot itself and does not yield any meaningful handling

of phantom references. The problem is propagated to the
client of Soot. The client analysis (any external tool that
uses Soot) now needs to have special-case code for han-
dling phantom classes, in whichever way makes sense to
the client. There is no evident general-purpose solution to
fixing the Soot output for any client without adding code
to deal with phantom references, essentially duplicating
what JPhantom does already. In our case, if the Doop
front-end that reads Soot information tried to just handle
phantom references as regular references, it would crash
(as we have confirmed experimentally), since it needs to
encode for every variable its full type information (e.g.,
member methods). (The Doop front-end does not crash in
practice because it handles phantom references specially,
by merely ignoring them, as we discuss next.) In contrast,
JPhantom allows any tool completely unaware of phan-
tom references, such as the Doop front-end, to be able to
run without unexpected behavior, as long as its input is
first transformed by JPhantom.
• Incompleteness when analyzing with Doop. The Doop

front-end is coded so that it avoids crashes but only at the
cost of completely ignoring any reference to a phantom
class. A method that takes phantom types as arguments
is just skipped. This handling has been the default for
Doop since its original version. Unfortunately, this leads
to incompleteness in the resulting analysis performed by
Doop.
Figure 11 presents a Venn diagram over the sets of reach-
able methods as computed by Doop for three different
inputs: (i) the original antlr jar, (ii) our synthetic bench-
mark, antlr-minus, and (iii) the output of JPhantom after
analyzing antlr-minus, that is, a transformed version of

2628

681500

7392

42337

0

0

Original

Minus+JPhantomMinus

Figure 11: A Venn diagram that shows how three different sets
of reachable methods relate to each other. These three sets—(i)
Original, (ii) Minus, and (iii) Minus+JPhantom—correspond to the
outcomes of analyzing (i) the antlr jar (original), (ii) the antlr-
minus jar (subset of the original jar), and (iii) the antlr-minus jar
after being transformed by JPhantom, respectively. The sets are
not drawn to scale: the size of each subset is indicated only by the
number in it.

the antlr-minus jar with no phantom references. The orig-
inal jar yields 52, 357 reachable methods, out of which
only 42, 337 are detected in the presence of phantom
references (antlr-minus), without using JPhantom. Ad-
ditionally, phantom references introduce 500 false posi-
tives that correspond to non-existing methods.6 After em-
ploying JPhantom to alleviate the effect of phantom refer-
ences, Doop manages to find 7, 392 of the 10, 020 miss-
ing reachable methods, resulting in 73.77% recall (over
the missing methods alone, or 95% over all methods).
The false positives of directly analyzing antlr-minus dis-
appear but 681 new ones emerge, yielding a precision of
98.65%. Even so, this allows us to discover almost 3 out
of every 4 missing reachable methods, which originally
constituted 19.14% of the total reachable methods, drop-
ping this percentage to just 5.02%.
It is notable that this high recall is achieved although
recall could, in principle, be arbitrarily low. JPhantom
is trying to guess the structure of missing code with
as much information as remains in existing code—but
this could be a tiny fraction of the missing information.
The missing code could be hiding a huge portion of the
application, and expose only a handful of phantom types
on the unknown/known code boundary.

In summary, JPhantom avoids problems with crashes
when encountering phantom references as well as incom-

6 It may seem surprising that eliminating code can introduce new (falsely)
reachable methods. The reason is that a non-existent method m in class C
may be reported reachable, based on method signature information on the
call-site alone, whereas in the original code the true reachable method m
was defined in a, now missing, superclass S of C, and not in C.

pleteness when phantom references are merely ignored. In
practice, it is effective in discovering large parts of the in-
terface for missing methods and the produced complement
respects the requirements of the Java VM verifier, i.e., the
most fundamental Java well-formedness rules for types.

6.3 Performance Experiments
We use a 64-bit machine with a quad-core Intel i7 2.8GHz
CPU. The machine has 8GB of RAM. We ran our experi-
ments using JDK 1.7 (64-bit).

Our benchmarks consist of (1) antlr, a parser genera-
tor, (2) antlrworks, the GUI Development Environment for
antlr, (3) c3p0, a library that provides extensions to tradi-
tional JDBC drivers, (4) jruby and (5) jython, implementa-
tions of Ruby and Python programming languages respec-
tively that run on top of the JVM, (6) logback-classic and
(7) logback-core, two modules of the logback logging frame-
work, (8) pmd, a Java source code analyzer, (9) postgres, the
PosgreSQL JDBC driver, (10) sablecc, a compiler genera-
tor, and (11) antlr-minus, a synthetic benchmark described
in the previous section. Every benchmark is just a jar file that
serves as JPhantom’s input, which then detects all phantom
references and generates the complemented jar.

We encountered most of these benchmarks in our own
work doing static program analysis with the Doop frame-
work [6, 13]. For many of the benchmarks it was, upon orig-
inal encounter, an unexpected discovery that they could not
be analyzed due to dependencies to unknown classes in other
libraries.

Figure 12 presents input features and the running time of
JPhantom for each of our benchmarks. The first column is
the name of the benchmark. The second column is the size
of the output, i.e., the complemented jar, divided into the
original size of the input (benchmark) and the size of the
complement itself (i.e., the size of the generated phantom
classes). The third and fourth columns are the number of
phantom classes and constraints detected respectively. The
last column is the running time of JPhantom, including the
time to analyze the input, compute a type hierarchy that
respects all of the constraints detected, create the phantom
classes with the required members and supertypes, augment
the input jar and flush its contents to disk.

Even the largest benchmark (jruby) takes seconds to com-
plete. Moreover, the size of the input is highly correlated
with the running time of JPhantom and much less correlated
with the number of constraints. This suggests that most of
the time is spent on reading and analyzing the input, rather
than on the type hierarchy solver. The only slight exception
is the logback-classic benchmark, which requires about 1.8
seconds to complete despite its small size. This is due to the
large number of phantom classes and constraints this bench-
mark produces, which is to be expected since it is built on
top of logback-core (which is not supplied as part of the in-
put). This practice of creating such a strong dependency is
probably justified by logback’s design. The framework im-

Input jar Size Phantom Constraints Time

antlr 3.3M + 0.7K 1 2 4.82s

antlrworks 3.5M + 2.2K 5 7 6.11s

c3p0 597K + 1.8K 4 2 2.05s

jruby 19M + 5.9K 16 20 13.70s

jython 2.5M + 4.0K 8 9 3.26s

logback-classic 247K + 55K 148 212 1.76s

logback-core 358K + 7.9K 22 22 1.61s

pmd 1.2M + 11K 28 36 2.62s

postgres 499K + 0 0 0 1.95s

sablecc 306K + 2.3K 5 8 1.59s

antlr-minus 3.2M + 17K 37 103 5.82s

Figure 12: Results of experiments.

plements the SLF4J (Simple Logging Facade for Java) pro-
tocol, which acts as a common interface for a variety of
logging frameworks, and hides the actual framework (called
binding) to be used underneath. From both logback-classic
and antlr-minus we can see that JPhantom scales well as the
number of constraints increases.

To see the constraints and their solution for a benchmark
instance, consider the list below, which is the actual execu-
tion output of a JPhantom run on the jruby benchmark:

Phantom Classes Detected: [constraint]

org.apache.tools.ant.BuildException must be a class

org.apache.tools.ant.Task must be a class

org.apache.tools.ant.Project

org.apache.bsf.util.BSFFunctions must be a class

org.apache.bsf.util.BSFEngineImpl must be a class

org.apache.bsf.BSFException must be a class

org.apache.bsf.BSFManager must be a class

org.apache.bsf.BSFDeclaredBean must be a class

org.apache.bsf.BSFEngine

org.osgi.framework.Bundle must be an interface

org.osgi.framework.BundleReference

org.osgi.framework.FrameworkUtil must be a class

org.osgi.framework.BundleException

org.osgi.framework.BundleContext must be an interface

java.dyn.Coroutine must be a class

java.dyn.CoroutineBase

Constraints:

org.apache.bsf.BSFException <: Throwable

org.apache.tools.ant.BuildException <: Throwable

org.osgi.framework.BundleException <: Throwable

org.jruby.embed.bsf.JRubyEngine <:

org.apache.bsf.util.BSFEngineImpl

org.jruby.embed.bsf.JRubyEngine <:

org.apache.bsf.BSFEngine

org.jruby.ant.RakeTaskBase <: org.apache.tools.ant.Task

org.jruby.javasupport.bsf.JRubyEngine <:

org.apache.bsf.BSFEngine

org.jruby.ext.fiber.CoroutineFiber$1 <:

java.dyn.Coroutine

org.jruby.javasupport.bsf.JRubyEngine <:

org.apache.bsf.util.BSFEngineImpl

Class Hierarchy

* class java.lang.Object

* class org.apache.bsf.BSFManager

* class org.osgi.framework.FrameworkUtil

* class Throwable (implements java.io.Serializable)

* class org.osgi.framework.BundleException

* class org.apache.tools.ant.BuildException

* class org.apache.bsf.BSFException

* class org.apache.bsf.BSFDeclaredBean

* class org.apache.bsf.util.BSFFunctions

* class org.apache.tools.ant.Task

* class org.jruby.ant.RakeTaskBase

* class java.dyn.Coroutine

* class org.jruby.ext.fiber.CoroutineFiber$1

* class org.apache.bsf.util.BSFEngineImpl (implements

org.apache.bsf.BSFEngine)

* class org.jruby.javasupport.bsf.JRubyEngine

* class org.jruby.embed.bsf.JRubyEngine

Interface Hierarchy

* interface org.osgi.framework.Bundle

* interface org.apache.bsf.BSFEngine

* interface java.io.Serializable

* interface org.osgi.framework.BundleContext

It is evident that the final hierarchy respects
all of the reported constraints. Some interesting
points are that: (i) org.apache.bsf.BSFEngine de-
faults to interface since no constraint determines
whether it is actually an interface or a class, (ii)
org.osgi.framework.BundleException is inferred to be a
class since it is a subtype of the class Throwable, and (iii) two
known classes, org.jruby.javasupport.bsf.JRubyEngine
and org.jruby.embed.bsf.JRubyEngine, used as sub-
types of interface org.apache.bsf.BSFEngine, add the
latter to the supertypes of their phantom projection,
org.apache.bsf.util.BSFEngineImpl.

7. Discussion
We next discuss the problem of hierarchy complementation
speculatively, in settings different from ours. The general
problem is that of complementing programs so that they re-
spect static well-formedness requirements. Thus, the prob-
lem applies to language-level type systems, static analyses
(e.g., “complement this program so that it passes this anal-
ysis, defined a priori”) and other settings more general than
our Java bytecode domain. Indeed, much of our ability to
solve the problem effectively has to do with the simple type
checking performed by the Java bytecode verifier. The veri-
fier effectively checks monomorphic types, i.e., that a refer-
ence to an object is statically guaranteed to refer to memory
with the expected layout.

If we were to transpose the problem to the domain of Java
source code, the constraints to be derived are richer and more
complex than the ones we encountered. The Java language-
level type system has intricate requirements relative to over-

riding, casts, exceptions, and more. By way of example, we
discuss some of these complications below.

• Exception handling at the Java language level immediately
introduces very powerful constraints for types. The Java
language requires that a method that overrides another may
throw an exception only if it was already declared to be
thrown. Consider two methods:

class S {

void foo() throws A, B {...}

}

class C extends S {

void foo() throws X, Y, Z {...}

}

The requirement in this case is hard to reason about with-
out an exhaustive search. It can be stated as: “for C.foo
to be a valid overriding of S.foo, X, Y and Z have to be
subtypes of either A or B.” Consider how this rich con-
straint would affect our ability to solve the hierarchy com-
plementation problem at the source level. Imagine that S
is a known class while C, X, Y, and Z are phantom classes.
If the language allowed us to infer through observation of
other code that C is a subtype of S and that it provides
a method “void foo() throws X, Y, Z” then in order to
generate a complement we would need to satisfy the fol-
lowing: C <: S⇒ ∀t ∈ {X,Y,Z} : (t <: A ∨ t <: B).

In contrast, the bytecode verifier only ensures a much
simpler constraint: that a type declared to be thrown by a
method is a subtype of Throwable.

• A similar kind of constraint at the Java language level is
also produced by the overriding rule for return types. Java
(5 and above) allows overriding methods to have a covari-
ant return type. That is, the overriding method can declare
to return a subtype of the overridden method’s return type.
Much as in the case of exceptions, this induces complex
constraints, especially when combined with search to ex-
amine whether a type can be a subtype of another. Consider
the following case:

interface S {

R foo();

}

// R,X,Y phantom types

// we know X contains method "Y foo()"

For phantom types R and X, if some other constraint (e.g.,
of the kind induced in the case of multiple inheritance in
Section 3) can be satisfied by making X a sybtype of S, then
we get the additional constraint: “if X becomes a subtype
of S then Ymust be a subtype of R”. This is again a very ex-
pressive constraint kind and, consequently, hard to reason
about. For instance, the above constraint allows us to deter-
mine that two phantom types cannot be subtype-related. If
two types declare methods with identical argument types
but guaranteed-incompatible return types (e.g., void and

Object), then the types are guaranteed to not be ordered
by the subtyping relation, in either direction.

At the bytecode level, subtyping together with signa-
ture conformance does not imply other subtyping relation-
ships, in the above manner. By merely having a method
with the same argument types, we are not guaranteed that it
overrides the respective superclass method. Instead, over-
loading is perfectly legal among methods that differ only
in their return types. The bytecode method call resolution
procedure does not rely on name/type lookup but on direct
identifiers of methods.

• Casts yield no constraints at the bytecode level although
they do at the source level. The reason is that the bytecode
elides all unnecessary casts (i.e., upcasts). For instance, at
the source level, upon seeing in code that passes the type
checker a statement of the form “(X) new C()” we can be
certain that (assuming X and C are both classes) the classes
X and C are subtype-related: the cast can be either an up-
cast or a downcast, otherwise it would fail statically. At
the bytecode level, however, a corresponding “checkcast
X” instruction, when the object at the top of the argument
stack is of static type C, allows no inference. The corre-
sponding source code could well have been “(X)((Object)
c)”, with the intervening upcast elided during compilation
to bytecode.

• Constraints can be induced not just by varying the require-
ments for the output but also by varying the assumptions
for the input. In our setting, we only assumed that the in-
put is legal Java bytecode when complemented with some
extra definitions. This is distinctly different from assuming
that the input has been produced by the translation of Java
source code. (Bytecode could well have been produced
via compilers for other high-level languages or via byte-
code generators.) For instance, the Java language maintains
types for all local variables. At the source level, if we call
methods on the outcome of a conditional expression, we
are guaranteed to be able to assign a type to it. Consider:

A a;

B b;

x = (foo()? a : b);

x.meth(); // I::meth()

x.meth2(); // J::meth2()

In Java source, the above code means that there exists
some type X (the type given to variable x) such that X is a
subtype of I and X is a subtype of J, while also A and B are
subtypes of X. An equivalent conditional in bytecode form
does not need to assign a type to X. The constraints will
be merely: A and B are subtypes of both I and J, without
allowing us to infer the existence of such an unknown type
X. Our constraint solving process is significantly simplified
by the fact that we never need to infer the existence of more
types.

The above is just a sampling of complications that arise
if the hierarchy complementation problem is transposed to
other domains, requiring the satisfaction of different static
requirements. The effectiveness and efficiency of our ap-
proach is largely due to the simplicity of the Java byte-
code verification requirements. However, other domains give
rise to challenging problems, with a wealth of different con-
straints, possibly appropriate for future work.

8. Related Work
The hierarchy complementation problem is in principle new,
although indirectly related to various other pieces of work in
the literature.

From a theory standpoint, our problem is an attempt to
more fully determine the structure of a partially ordered set.
There is no exact counterpart of our algorithms in the liter-
ature. However, there has been work on sorting a poset, i.e.,
completely determining the partial order [8]. The challenge
in such algorithmic research, however, is to perform the sort-
ing with a minimal number of queries. None of the interest-
ing devices of our algorithms are present. Specifically, the
device of the single inheritance case (if a node can reach two
others, they have to be ordered relative to each other) does
not apply, and neither does the interesting constraint of the
multiple inheritance case (we cannot add direct supertypes
to a known node).

Complementing a program so that the result respects
static properties is analogous to analyzing only parts of a
program but giving guarantees on the result. There are few
examples of program analyses of this nature. Notably, Lho-
tak et al. recently introduced a technique [1] for analyz-
ing an application separately from a library, while keeping
enough information (from the library analysis) to guarantee
that the application-level call-graph is correct. Furthermore,
the Averroes system [2] uses the assumption that the missing
code is independently developed in order to produce a worst-
case skeletal library. That is, Averroes takes an existing li-
brary and strips away the implementation, keeping only the
interface between the library and the application. The imple-
mentation is replaced with code (at the bytecode level) that
performs worst-case actions on the arguments passed into
the library, for the purposes of call-graph construction (i.e.,
the generated code calls all methods the eliminated original
code could ever call). Averroes is related to JPhantom but
at rather opposite ends of the spectrum: Averroes produces
worst-case skeletal implementations, while JPhantom pro-
duces minimal, best-case implementations that still respect
well-formedness at the type level. At the same time, Aver-
roes assumes the library interface is available and just tries
to avoid analyzing library implementations, while JPhantom
applies precisely when the library is completely missing.
Thus, JPhantom truly applies to the case of partial programs,
whereas Averroes analyzes a partial program but under the
assumption that the whole program was available to begin

with. It would be interesting to treat a partial program first
with JPhantom and then apply Averroes to the JPhantom-
produced program complement to obtain the worst-case be-
havior of a plausible interface for the missing code.

Our hierarchy complementation problem bears a superfi-
cial resemblance to the principal typings problem [3–5]. The
principal typings problem consists of computing types for a
Java module in complete isolation from every other module
it references. I.e., principal typings aim to achieve a more
aggressive form of separate compilation, by computing the
minimal type information on other classes that a class needs
in order to typecheck and compile. Thus, the motivation is
fairly similar to ours, but the technical problem is quite dif-
ferent. First, in our setting we already have the result of com-
pilation in the form of bytecode, and bytecode only. Second,
our emphasis is on satisfying constraints instead of captur-
ing them as a rich type. Finally, our constraints are of a very
different nature from any in the principal typings literature.
As discussed in Section 7, the input and output language as-
sumptions crucially determine the essence of an incomplete
program analysis problem.

9. Conclusions
We introduced the class hierarchy complementation prob-
lem. The problem consists of finding definitions to comple-
ment an existing partial class hierarchy together with extra
subtyping constraints, so that the resulting hierarchy satisfies
all constraints. In the context of Java bytecode and the con-
straints of the bytecode verifier, the class hierarchy comple-
mentation problem is the core challenge of complementing
partial programs soundly, i.e., so that they pass the checks of
the verifier when loaded together with the generated comple-
ment. We offered algorithms for the hierarchy complementa-
tion problem in both the single and the multiple inheritance
setting, and linked it to practice with our JPhantom bytecode
complementation tool.

We believe that the hierarchy complementation problem
is fundamental and is likely to arise in different settings in
the future, hopefully aided by our modeling of the problem
and some of its solution avenues.

Acknowledgments
We gratefully acknowledge funding by the European Union
under a Marie Curie International Reintegration Grant and
a European Research Council Starting/Consolidator grant;
and by the Greek Secretariat for Research and Technology
under an Excellence (Aristeia) award. The anonymous re-
viewers offered several useful comments that improved the
paper. Eric Bodden and Ondřej Lhoták gave valuable early
feedback on the paper’s high-level idea.

References
[1] K. Ali and O. Lhoták. Application-only call graph construc-

tion. In Proc. of the 26th European Conf. on Object-Oriented

Programming, ECOOP ’12, pages 688–712. Springer, 2012.

[2] K. Ali and O. Lhoták. Averroes: Whole-program analysis
without the whole program. In Proc. of the 27th European
Conf. on Object-Oriented Programming, ECOOP ’13, pages
378–400. Springer, 2013.

[3] D. Ancona, F. Damiani, S. Drossopoulou, and E. Zucca. Poly-
morphic bytecode: compositional compilation for Java-like
languages. In Proc. of the 32nd ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages, POPL ’05,
pages 26–37, New York, NY, USA, 2005. ACM.

[4] D. Ancona, F. Damiani, S. Drossopoulou, E. Zucca, and
D. U. D. Genova. Even more principal typings for Java-like
languages. In ECOOP Workshop on Formal Techniques for
Java Programs (FTfJP), 2004.

[5] D. Ancona and E. Zucca. Principal typings for Java-like
languages. In Proc. of the 31st ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages, POPL ’04,
pages 306–317, New York, NY, USA, 2004. ACM.

[6] M. Bravenboer and Y. Smaragdakis. Strictly declarative spec-
ification of sophisticated points-to analyses. In Proc. of the
24th Annual ACM SIGPLAN Conf. on Object Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA
’09, New York, NY, USA, 2009. ACM.

[7] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code ma-
nipulation tool to implement adaptable systems. In Adaptable
and extensible component systems, 2002.

[8] C. Daskalakis, R. M. Karp, E. Mossel, S. Riesenfeld, and
E. Verbin. Sorting and selection in posets. In Proc. of the 20th
Annual ACM-SIAM Symp. on Discrete Algorithms, SODA
’09, pages 392–401, Philadelphia, PA, USA, 2009. Society for
Industrial and Applied Mathematics.

[9] D. Dig. A refactoring approach to parallelism. IEEE Software,
28(1):17–22, Jan. 2011.

[10] J. Gosling, B. Joy, G. Steele, and G. Bracha. The
JavaTMLanguage Specification, Third Edition. Addison-
Wesley Professional, 2005.

[11] S. Guarnieri and B. Livshits. GateKeeper: mostly static en-
forcement of security and reliability policies for Javascript
code. In Proc. of the 18th USENIX Security Symposium,
SSYM ’09, pages 151–168, Berkeley, CA, USA, 2009.
USENIX Association.

[12] A. Hejlsberg, S. Wiltamuth, and P. Golde. C# Language
Specification. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003.

[13] G. Kastrinis and Y. Smaragdakis. Hybrid context-sensitivity
for points-to analysis. In Proc. of the 2013 ACM SIGPLAN
Conf. on Programming Language Design and Implementa-
tion, PLDI ’13. ACM, 2013.

[14] T. Lindholm and F. Yellin. Java Virtual Machine Specifica-
tion. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2nd edition, 1999.

[15] M. Madsen, B. Livshits, and M. Fanning. Practical static anal-
ysis of Javascript applications in the presence of frameworks
and libraries. Technical Report MSR-TR-2012-66, Microsoft
Research, July 2012.

[16] M. Naik, A. Aiken, and J. Whaley. Effective static race detec-
tion for Java. In Proc. of the 2006 ACM SIGPLAN Conf. on
Programming Language Design and Implementation, PLDI
’06, pages 308–319. ACM, 2006.

[17] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth,
S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman, and
M. Zenger. An overview of the Scala programming language.
Technical Report IC/2004/64, EPFL Lausanne, Switzerland,
2004.

[18] R. F. Stärk and J. Schmid. The problem of bytecode verifica-
tion in current implementations of the JVM. Technical report,
ETH Zürich, 2000.

[19] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan. Soot - a Java bytecode optimization frame-
work. In Proc. of the 1999 Conf. of the Centre for Advanced
Studies on Collaborative research, CASCON ’99. IBM Press,
1999.

[20] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pom-
inville, and V. Sundaresan. Optimizing Java bytecode using
the Soot framework: Is it feasible? In Proc. of the 9th Int.
Conf. on Compiler Construction, CC ’00, pages 18–34, 2000.

A. Multiple Inheritance Correctness Proof
We shall call the path-edges originating from known-nodes
kp-edges. We will also use the symbols S 0, S 1, . . . , S∞ to
denote the various stratifications computed at each step of
Algorithm 3.1. Note that our algorithm will actually produce
a finite number of stratifications (at most |V |) but we can
disregard both the upper limit of the main loop and the early-
failure condition (line 23) for proving correctness. Instead
we focus on the main computation (line 18) and the infinite
sequence of stratifications that would be produced if it was
allowed to run forever (even after reaching a fixpoint).

Lemma 1. For all v ∈ V, the sequence {S 0[v], S 1[v], . . .} is
non-decreasing.

Proof. Direct consequence of line 18 of the algorithm. �

Lemma 2. For all i ∈ N, 0 ≤ S i[v] ≤ i,∀v ∈ V.

Proof. Induction on step i.

1. Base: For i = 0, we have that S i[v] = S 0[v] = 0,∀v ∈ V .
2. Inductive Step: Assume that 0 ≤ S n[v] ≤ n,∀v ∈ V

for some value of n. We must show that 0 ≤ S n+1[v] ≤
n+1,∀v ∈ V . Let k be a node in V . Either S n+1[k] = S n[k],
and therefore 0 ≤ S n+1[k] ≤ n, or there will exist a node
s, s.t. S n+1[k] = S n[s] + 1, in which case 1 ≤ S n+1[k] ≤
n + 1.

�

Definition A.1. A node v ∈ V is i-stabilized if and only if
S i[v] = S i+1[v] and either i = 0 or S i−1[v] < S i[v].

Theorem 1. (Once a node’s stratum does not change, it will
not change again.) If S i[v] = S i+1[v] for some node v ∈ V
and a value i ∈ N, then S j[v] = S i[v],∀ j ∈ N such that j ≥ i.

Proof. Induction on step i.

1. Base: For i = 0, let v be a node in V , such that S 0[v] =

S 1[v]. From Lemma 2, we have that S 0[v] = S 1[v] = 0,
which can happen if and only if v has no incoming edges
(otherwise an edge would cause the node to move to a
higher stratum on iteration 1). It is therefore impossible
for v to change in the following iterations since it has no
constraining edges.

2. Inductive Step: Assume that the theorem holds for all
i < n for some value of n ∈ N. Let t ∈ V be a node, such
that S n[t] = S n+1[t]. We will show that t’s stratum will
not change in the future. It suffices to prove that, for each
of t’s constraining edges, there will be a node s that has
already been stabilized at a lower stratum than t, and can
be used to satisfy the constraint at this point. Therefore,
the constraint will remain satisfied in future iterations due
to s, which will remain in the same stratum from now on
(induction hypothesis). For ordinary path-edges, node s
is no other than the source of the edge itself, while for
kp-edges, it is the lower phantom projection of the edge’s
source at step n that we may use instead. Let us consider
ordinary path-edges first, in more detail. From Lemma 2,
we have that 0 ≤ S n[t] ≤ n, and thus 0 ≤ S n+1[t] ≤ n.
Let (s, t) ∈ E be an incoming edge of t. We have that
0 ≤ S n[s] < S n+1[t] ≤ n which entails that 0 ≤ S n[s] ≤
n − 1. Therefore, according to Lemma 2, we have that
0 ≤ S i[s] ≤ n − 1,∀i ∈ {0, . . . , n}. By the pigeonhole
principle, and due to Lemma 1, there must surely exist
two consecutive values i, i + 1, s.t. S i[s] = S i+1[s] and
i < n. From the induction hypothesis, we know that
s will therefore not change and its constraint on t will
be irrelevant in future iterations. We proceed similarly,
for a kp-edge (s, t) (where we use the lowest phantom
projection of s at this point, instead of s itself). Thus, t
will not change in the future, since every constraint of t
will remain satisfied after this iteration.

�

Corollary 1. For all v ∈ V and n ∈ N+, S n−1[v] , S n[v] ⇒
S n[v] = n.

Theorem 2. The stratification sequence S 0, S 1, . . . will di-
verge (i.e., not reach a fixpoint) if and only if at some compu-
tation step, n, no new nodes stabilize and not all nodes have
already stabilized—that is, ∃n ∈ N+, such that: for some
v ∈ V, S n+1[v] , S n[v] and for all v ∈ V, S n+1[v] = S n[v]⇒
S n[v] = S n−1[v].

Proof.

1. (If) Let n be a computation step, such that (∀v ∈

V) (S n−1[v] , S n[v] ⇒ S n[v] , S n+1[v]). We can disre-
gard any node u such that S n−1[u] = S n[u], and observe
that for each remaining node, there must exist at least a
constraining edge that cannot be satisfied with a node that
has already been “stabilized”. That said, due to Corol-
lary 1, each remaining node v ∈ V , s.t. S n−1[v] , S n[v],
will be placed at a higher (by 1) stratum at this point, i.e.,
S i[v] = i,∀i ∈ {0, . . . , n + 1}. Since the relative positions
of all the remaining nodes will be the same at step n + 1
as they had been at step n, there is no way for a node to
be stabilized at this last iteration. In other words, there
is a cyclic dependency between the remaining nodes that
will remain unaltered, thus eliminating the possibility of
reaching a fixpoint.

2. (Only If) Due to Theorem 1, we know that we need at
most |V | computation steps, in order to reach a fixpoint,
if at each computation step there exists at least a new
node that gets stabilized. In other words, we need a finite
number of steps to reach a fixpoint, if each step results in
some progress. Thus, failure to reach a fixpoint requires
an iteration where no progress has been made, i.e., no
new nodes get stabilized.

�

Therefore, the optimization in Algorithm 3.1 of detecting
this exact condition (line 23) and terminating would be trig-
gered if and only if no fixpoint would be reached whatsoever,
had the algorithm continued its execution.

Soundness. We need to show that, if our algorithm com-
putes a solution, this solution will be sound. Firstly, our al-
gorithm maintains the invariant that ∀(s, t) ∈ E, node s will
eventually—i.e., once we reach a fixpoint—be placed some-
where lower than node t (otherwise this condition would
trigger yet another iteration). Therefore, our solution will
contain no cycles since all of its edges will be facing up-
wards, i.e., from a lower to a higher stratum. Furthermore, it
is evident that, for each kp-edge (s, t), there will always exist
a node p ∈ proj(s), such that p will be placed at a lower stra-
tum than t in our final solution. Thus, we can add the edge
(p, t) without introducing any cycles if none existed so far.
This process will therefore generate a valid solution. �

Completeness. We need to show that, if a solution exists
for a given constraint graph, then our algorithm will also
be able to compute a solution, or equivalently (according to
Theorem 2) that the stratification sequence being computed
will reach a fixpoint. Consider such a (posited but unknown)
solution. For such a solution we may generate a stratification
(since the solution may contain no cycles), such that each of
its edges is facing upwards and no empty strata exist, that is,
∀(s, t) ∈ Esol : S sol[s] < S sol[t], where Esol are the edges that
form the solution, and S sol is its stratification. We first show
an important lemma.

Lemma 3. Let S sol denote the stratification of a valid solu-
tion of the problem instance. We have that: ∀i ∈ N,∀v ∈ V :
S i[v] ≤ S sol[v].

Proof. Suppose that there is a step k ∈ N, such that it
contains at least one node u ∈ V with S k[u] > S sol[u],
and without loss of generality, suppose that k is the smallest
such integer, i.e., that before that point our stratification was
upper bounded by that of the unknown solution: ∀ j ∈ {n ∈
N | 0 ≤ n < k},∀v ∈ V : S j[v] ≤ S sol[v]. For u to be placed
at a higher stratum by our algorithm there must exist an
edge (s, u) ∈ E such that either (i) (s, u) was a constraining
ordinary path-edge: S k[u] = S k−1[s] + 1, or (ii) (s, u) was a
kp-edge and ∀p ∈ proj(s) : S k[u] = S k−1[p] + 1. In the first
case, we have that: S sol[u] ≤ S k−1[s] ≤ S sol[s], and since
(s, u) must also be present in the solution, this violates the
single-direction edge property. In the second case, S sol[u] ≤
S k−1[p] ≤ S sol[p],∀p ∈ proj(s), which leads to another
contradiction, since there must exist a node p ∈ proj(s),
such that a path exists from p to u in the solution, which
can only happen if p was placed at a strictly lower stratum
than u. Thus, since all possible cases lead to a contradiction,
we have proved our initial proposition: our algorithm always
assigns to every node a stratum that is lower than, or equal
to, that of any true solution of the problem instance. �

Let ssol =
∑

v∈V S sol[v] and si =
∑

v∈V S i[v],∀i ∈ N. It
follows that si ≤ ssol,∀i ∈ N, for any such possible solution.
Additionally, because of Lemma 1 and our two theorems,
we know that each step but the last will strictly increase the
sum of all strata values over all nodes. E.g., if our algorithm
ended its execution at step n, then we would have: s0 < s1 <
. . . < sn−1 = sn.

Suppose there is a solution but our algorithm fails to
compute one (i.e., no fixpoint will ever be reached). Since
si strictly increases at each step of our algorithm, and the
only way to return is by finding a valid solution, we know
that there will exist a step n, such that sn > ssol. However,
this contradicts our proven proposition that si ≤ ssol,∀i ∈ N.
Therefore, we conclude that if valid a solution exists, our
algorithm will also be able to compute one.

�

Theorem 3 (Principality). Any solution produced by Algo-
rithm 3.1 will have a minimum number of strata. That is, for
any possible solution of the problem instance, with t denot-
ing the solution’s total strata, we have that n ≤ t, where n is
the total number of strata produced by Algorithm 3.1.

Proof. Let S sol denote the stratification of a valid solution
of the problem instance, and t its total number of strata.
Without loss of generality we assume that strata are denoted
as consecutive integers starting from 0, beginning from the
lowest stratum. Thus, ∀v ∈ V : S sol[v] < t.

Since a solution exists and completeness has been proved,
we know that Algorithm 3.1 will also be able to terminate

successfully at some step n ∈ N, yielding its own solution.
Let ns be the total number of strata, and x ∈ V be a node
at the highest stratum of the solution computed by our algo-
rithm. That is, ∀v ∈ V : S n[v] ≤ S n[x]. Node x will also be
the node that was changed last, which is at step n − 1, i.e.,
S n[x] = S n−1[x] , S n−2[x]. Therefore, from Corollary 1, we
have: S n[x] = S n−1[x] = n − 1. Since strata are consecutive
integers starting from 0, we have that: ns = S n[x] + 1 = n.

According to Lemma 3, we have: n = ns = S n[x] + 1 ≤
S sol[x] + 1 ≤ t < t + 1. Thus, we have shown that our
algorithm minimizes the total number of strata it produces.

�

