
Processes (Intro)

Yannis Smaragdakis, U. Athens

 2

Process: CPU Virtualization

● Process = Program, instantiated
– has memory, code, current state

● What kind of memory do we have?
– registers + address space

● Let's do a hardware review

 3

Process API

● OSes will typically let you do the following with
processes
– create
– destroy
– wait
– control (e.g., suspend) and notify
– get status, info

● Demo process queries

 4

Process Creation

● Load code in memory
● Allocate stack, set initial args for main
● Set up heap
● Set up communication channels (open files)
● Call main

 5

Example Modern Address Space
(64-bit Linux)

location of code : 0x40057d
location of heap : 0xcf2010
location of stack : 0x7fff9ca45fcc

location of code : 0x40057d
location of heap : 0xcf2010
location of stack : 0x7fff9ca45fcc

(free)(free)

Code
(Text)
Code
(Text)

StackStack

stack

heap

Address Space

DataData

HeapHeap

0x400000

0xcf2000

0x7fffca4f000

0x401000

0xd13000

0x7fffca28000

 6

Loading

code
static data

heap

stack

Process

code
static data

heap

Program

Disk

Loading:
Takes on-disk

program
and reads it into the

address space of
process

 7

Simplified Process States

RunningRunning ReadyReady

BlockedBlocked

Descheduled

Scheduled

I/O: doneI/O: initiate

 8

OS Structures

● Structure holding all processes, per state
– how do you think this looks?

● PCB (Process Control Block) per process

 9

xv6 Kernel Structures

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context {
 int eip; // Index pointer register
 int esp; // Stack pointer register
 int ebx; // Called the base register
 int ecx; // Called the counter register
 int edx; // Called the data register
 int esi; // Source index register
 int edi; // Destination index register
 int ebp; // Stack base pointer register
};

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,
 RUNNABLE, RUNNING, ZOMBIE };

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context {
 int eip; // Index pointer register
 int esp; // Stack pointer register
 int ebx; // Called the base register
 int ecx; // Called the counter register
 int edx; // Called the data register
 int esi; // Source index register
 int edi; // Destination index register
 int ebp; // Stack base pointer register
};

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,
 RUNNABLE, RUNNING, ZOMBIE };

 10

xv6 Kernel Structures

// the information xv6 tracks about each process
// including its register context and state
struct proc {
 char *mem; // Start of process memory
 uint sz; // Size of process memory
 char *kstack; // Bottom of kernel stack

// for this process
 enum proc_state state; // Process state
 int pid; // Process ID
 struct proc *parent; // Parent process
 void *chan; // If non-zero, sleeping on chan
 int killed; // If non-zero, have been killed
 struct file *ofile[NOFILE]; // Open files
 struct inode *cwd; // Current directory
 struct context context; // Switch here to run process
 struct trapframe *tf; // Trap frame for the
 // current interrupt
};

// the information xv6 tracks about each process
// including its register context and state
struct proc {
 char *mem; // Start of process memory
 uint sz; // Size of process memory
 char *kstack; // Bottom of kernel stack

// for this process
 enum proc_state state; // Process state
 int pid; // Process ID
 struct proc *parent; // Parent process
 void *chan; // If non-zero, sleeping on chan
 int killed; // If non-zero, have been killed
 struct file *ofile[NOFILE]; // Open files
 struct inode *cwd; // Current directory
 struct context context; // Switch here to run process
 struct trapframe *tf; // Trap frame for the
 // current interrupt
};

 11

How Is Kernel and User Code
Execution Interleaved?

● Principle of OSes: the same physical core runs
both kernel and user (process) code

● User code runs at full CPU speed
● But kernel maintains control

How???

 12

Example Execution

● But the OS is the boss of all resources, not just
a library, so how does it take back control?

OS Program

1. Create entry for process list
2. Allocate memory for program
3. Load program into memory
4. Set up stack with argc / argv
5. Clear registers
6. Execute call main()

f. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

 13

System Calls, Interrupts

● User vs. Kernel CPU mode
– not all programs can do everything

● System calls for all resource access
– trap, return-from-trap instructions
– “trap” = synchronous, user-initiated interrupt

 14

initialize trap table
remember address of
syscall handler ...

OS @ run
(kernel mode)

Hardware Program
(user mode)

restore regs
move to user mode
jump to main

Create process structs
Load program into memory
Setup user stack with argv
Fill kernel stack with reg/PC
return-from -trap

restore regs
move to user mode
jump to PC after trap

Handle trap
Do work of syscall
return-from-trap

save regs to kernel stack
move to kernel mode
jump to trap handler

Run main()
…
Call system
trap into OS

 15

Is This Enough?

● What if a process is stuck in infinite loop?
– historical note: cooperative multiprocessing

● Hardware again to the rescue!
– OS has set a timer interrupt
– a process only runs for a time slice
– scheduling decision afterwards
– context switch if needed

 16

xv6 (old) Context Switch Code
1 # void swtch(struct context *old, struct context *new);
2 #
3 # Save current register context in old
4 # and then load register context from new.
5 .globl swtch
6 swtch:
7 # Save old registers
8 movl 4(%esp), %eax # put old ptr into eax
9 popl 0(%eax) # save the old IP, stack contents: return,old,new
10 movl %esp, 4(%eax) # and stack
11 movl %ebx, 8(%eax) # and other registers
12 movl %ecx, 12(%eax)
13 movl %edx, 16(%eax)
14 movl %esi, 20(%eax)
15 movl %edi, 24(%eax)
16 movl %ebp, 28(%eax)
17
18 # Load new registers
19 movl 4(%esp), %eax # put new ptr into eax, was 8(%esp) but popped return
20 movl 28(%eax), %ebp # restore other registers
21 movl 24(%eax), %edi
22 movl 20(%eax), %esi
23 movl 16(%eax), %edx
24 movl 12(%eax), %ecx
25 movl 8(%eax), %ebx
26 movl 4(%eax), %esp # stack is switched here
27 pushl 0(%eax) # return addr put in place
28 ret # finally return into new ctxt

1 # void swtch(struct context *old, struct context *new);
2 #
3 # Save current register context in old
4 # and then load register context from new.
5 .globl swtch
6 swtch:
7 # Save old registers
8 movl 4(%esp), %eax # put old ptr into eax
9 popl 0(%eax) # save the old IP, stack contents: return,old,new
10 movl %esp, 4(%eax) # and stack
11 movl %ebx, 8(%eax) # and other registers
12 movl %ecx, 12(%eax)
13 movl %edx, 16(%eax)
14 movl %esi, 20(%eax)
15 movl %edi, 24(%eax)
16 movl %ebp, 28(%eax)
17
18 # Load new registers
19 movl 4(%esp), %eax # put new ptr into eax, was 8(%esp) but popped return
20 movl 28(%eax), %ebp # restore other registers
21 movl 24(%eax), %edi
22 movl 20(%eax), %esi
23 movl 16(%eax), %edx
24 movl 12(%eax), %ecx
25 movl 8(%eax), %ebx
26 movl 4(%eax), %esp # stack is switched here
27 pushl 0(%eax) # return addr put in place
28 ret # finally return into new ctxt

 17

What If Interrupted During Interrupt
Handling?

● OS can briefly disable interrupts
● ... or ensures safe access to data structures

through concurrency control mechanisms (e.g.,
locking)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

