
Threads

1 / 66

Threads

◮ Threads are an alternative to multiple processes.

◮ Different “flows” (or sequences) of execution operate on the
same data (heap).

2 / 66

Thread (Solaris) Model

Proc1 Proc2 Proc3
Proc4 Proc5

Processors

Kernel

Hardware

Space

User

Traditional processes

threads
kernel

lightweight process

3 / 66

Thread Highlights

◮ One or more threads may be executed in the context of a
process.

◮ The entity that is being scheduled is the thread – not the
process itself.

◮ In the presence of a single processor, threads are executed by
sharing the processor (time slicing).

◮ If there is more than one processor, threads can be assigned
to different kernel threads (and, thus, different CPUs) and run
in parallel.

◮ Any thread may create a new thread.

4 / 66

Thread Highlights (continued)

◮ All threads of a single process share the same address space
(static/global variables, heap, file descriptors, etc.) BUT have
their own program counter (PC), and stack (incl. registers).

◮ An OS can switch faster from one thread to another than
from one process to another.

◮ The header #include <pthread.h> is required by all programs
that use threads.

◮ Programs have to be compiled with the pthread library.
gcc <filename>.c -lpthread

5 / 66

Thread Highlights (continued)

◮ The functions of the pthread library do not set the value of
the variable errno, so we cannot use the function perror() for
the printing of a diagnostic message.

◮ If there is an error in one of the thread functions, strerror() is
used for the printing of the diagnostic code (which is the
“function return” for the thread).

◮ Function char *strerror(int errnum)
◮ returns a pointer to a string that describes the error code

passed in the argument errnum.
◮ requires: #include <string.h>

6 / 66

Threads vs. Processes

Threads Processes

Address Space Common. Any change made Different for each process
to heap or static/globals Afer a fork we have
by one thread is visible different address spaces
to all

File Descriptors Common. Any two threads Two processes use copies
can use the same descriptor of the file descriptors
One close on this is
sufficient

7 / 66

What happens to threads when...

What happens..

fork Only the thread that invoked fork is duplicated.
exit All threads die together (pthread exit for the

termination of a single thread).
exec All threads disappear (the shared/common address space

is replaced)
signals This is somewhat more complex - Section 13.5 of the e-book.

8 / 66

Creation of Threads
◮ The function that helps generate a thread is:

int pthread create(pthread t *thread,
const pthread attrt *attr,
void *(*start routine)(void*), void *arg);

◮ creates a new thread with attributes specified by attr within a
process.

◮ if attr is NULL, default attributes are used.

◮ Upon successful completion, pthread create() shall store the
ID of the created thread in the location referenced by thread.

◮ Through the attr we can change features of the thread but
oftentimes we let the default value work, giving a NULL.

◮ If successful, the function returns zero; otherwise, an error
number shall be returned to indicate the error.

9 / 66

Terminating a Thread

◮ void pthread exit(void *value ptr)

◮ terminates the calling thread and makes the value value ptr
available to any successful join with the terminating thread.

◮ After a thread has terminated, the result of access to local
(auto) variables of the thread is undefined. So, references to
local variables of the exiting thread should not be used for the
value ptr parameter value.

10 / 66

pthread join - waiting for thread termination

◮ int pthread join(pthread t thread, void **value ptr)

◮ suspends execution of the calling thread until the target thread
terminates (unless the target thread has already terminated).

◮ On return from a successful pthread join() call with a
non-NULL value ptr argument, the value passed to
pthread exit() by the terminating thread shall be made
available in the location referenced by value ptr.

◮ When a pthread join() returns successfully, the target thread
has been terminated.

◮ On successful completion, the function returns 0.

11 / 66

Identifying - Detaching Threads

=⇒ Get the calling thread-ID:

◮ pthread t pthread self(void)

◮ returns the thread-ID of the calling thread.

=⇒ Detaching a thread:

◮ int pthread detach(pthread t thread)

◮ indicates that the thread cannot be joined. Storage for the
thread can be reclaimed only when the thread terminates.

◮ If thread has not terminated, pthread detach() shall not cause
it to terminate.

◮ If the call succeeds, pthread detach() shall return 0;
otherwise, an error number shall be returned.

◮ Issuing a pthread join on a detached thread fails.

12 / 66

Creating and using threads
#include <stdio .h>

#include <string.h> /* For strerror */

#include <stdlib.h> /* For exit */

#include <pthread .h> /* For threads */

#define perror2(s,e) fprintf(stderr , "%s: %s\n", s, strerror (e))

void *thread_f (void *argp){ /* Thread function */

printf("I am the newly created thread %ld\n", pthread_self ());

pthread_exit ((void *) 47); // Not recommended way of "exit "ing

} // avoid using automatic variables

// use malloc -ed structs to return status

main (){

pthread_t thr;

int err , status;

if (err = pthread_create (&thr , NULL , thread_f , NULL)) { /* New thread */

perror2 (" pthread_create ", err);

exit (1);

}

printf("I am original thread %ld and I created thread %ld\n",

pthread_self (), thr);

if (err = pthread_join (thr , (void **) &status)) { /* Wait for thread */

perror2 ("pthread_join ", err); /* termination */

exit (1);

}

printf("Thread %ld exited with code %d\n", thr , status);

printf("Thread %ld just before exiting (Original)\n", pthread_self ());

pthread_exit (NULL);

}

13 / 66

Outcome

ad@ad -desktop :~/ Set007 /src$./ create_a_thread

I am original thread -1216067904 and I created thread

-1216070800

I am the newly created thread -1216070800

Thread -1216070800 exited with code 47

Thread -1216067904 just before exiting (Original)

ad@ad -desktop :~/ Set007 /src$

14 / 66

Using pthread detach

#include <stdio .h>

#include <string.h>

#include <stdlib.h>

#include <pthread .h>

#define perror2(s,e) fprintf(stderr ,"%s: %s\n",s,strerror (e))

void *thread_f (void *argp){ /* Thread function */

int err;

if (err = pthread_detach (pthread_self ())) {/* Detach thread */

perror2("pthread_detach ", err);

exit (1);

}

printf("I am thread %ld and I was called with argument %d\n",

pthread_self (), *(int *) argp);

pthread_exit (NULL);

}

15 / 66

Using pthread detach

main (){

pthread_t thr;

int err , arg = 29;

if (err = pthread_create (&thr ,NULL ,thread_f ,(void *) &arg)){/* New thread */

perror2("pthread_create ", err);

exit (1);

}

printf("I am original thread %d and I created thread %d\n",

pthread_self (), thr);

pthread_exit (NULL);

}

→ Outcome:
ad@ad -desktop :~/ Set007/src$./ detached_thread

I am original thread -1217009984 and I created thread -1217012880

I am thread -1217012880 and I was called with argument 29

ad@ad -desktop :~/ Set007/src$

16 / 66

Create n threads that wait for random secs and then terminate

#include <stdio .h>

#include <string.h>

#include <stdlib.h>

#include <pthread .h>

#define MAX_SLEEP 10 /* Maximum sleeping time in seconds */

#define perror2(s, e) fprintf (stderr , "%s: %s\n", s, strerror (e))

void *sleeping (void *arg) {

int sl = (int) arg; /* Horror of horrors ! */

printf("thread %ld sleeping %d seconds ...\ n", pthread_self (), sl);

sleep (sl); /* Sleep a number of seconds */

printf("thread %ld waking up\n", pthread_self ());

pthread_exit (NULL);

}

main (int argc , char *argv []){

int n, i, sl, err;

pthread_t *tids ;

if (argc > 1) n = atoi (argv [1]) ; /* Make integer */

else exit (0);

if (n > 50) { /* Avoid too many threads */

printf("Number of threads should be up to 50\n");

exit (0);

}

if ((tids = malloc(n * sizeof(pthread_t))) == NULL) {

perror("malloc");

exit (1);

}

17 / 66

n threads waiting for random secs

srandom ((unsigned int) time (NULL)); /* Initialize generator */

for (i=0 ; i<n ; i++) {

sl = random() % MAX_SLEEP + 1; /* Sleeping time 1.. MAX_SLEEP */

if (err = pthread_create (tids +i, NULL , sleeping , (void *) sl)) {

/* Create a thread */

perror2 (" pthread_create ", err);

exit (1);

}

}

for (i=0 ; i<n ; i++)

if (err = pthread_join (*(tids +i), NULL)) {

/* Wait for thread termination */

perror2 ("pthread_join ", err);

exit (1);

}

printf("all %d threads have terminated \n", n);

}

18 / 66

Outcome
ad@ad -desktop :~/ Set007 /src$./ random_sleeps 3

thread -1216803984 sleeping 6 seconds ...

thread -1225196688 sleeping 8 seconds ...

thread -1233589392 sleeping 7 seconds ...

thread -1216803984 waking up

thread -1233589392 waking up

thread -1225196688 waking up

all 3 threads have terminated

ad@ad -desktop :~/ Set007 /src$./ random_sleeps 5

thread -1216611472 sleeping 1 seconds ...

thread -1225004176 sleeping 9 seconds ...

thread -1233396880 sleeping 3 seconds ...

thread -1241789584 sleeping 3 seconds ...

thread -1250182288 sleeping 8 seconds ...

thread -1216611472 waking up

thread -1233396880 waking up

thread -1241789584 waking up

thread -1250182288 waking up

thread -1225004176 waking up

all 5 threads have terminated

ad@ad -desktop :~/ Set007 /src$

19 / 66

Going from single- to multi-threaded programs
#include <stdio .h>

#define NUM 5

void print_mesg (char *);

int main (){

print_mesg ("hello ");

print_mesg ("world \n");

}

void print_mesg (char *m){

int i;

for (i=0; i<NUM; i++){

printf("%s", m);

fflush(stdout);

sleep (1);

}

}

ad@ad -desktop :~/ Set007 /src$./ print_single

hellohellohellohellohelloworld

world

world

world

world

ad@ad -desktop :~/ Set007 /src$

20 / 66

First Effort in Multi-threading

#include <stdio .h>

#include <pthread .h>

#define NUM 5

main ()

{ pthread_t t1 , t2;

void *print_mesg (void *);

pthread_create (&t1 , NULL , print_mesg , (void *)"hello ");

pthread_create (&t2 , NULL , print_mesg , (void *)"world \n");

pthread_join (t1, NULL);

pthread_join (t2, NULL);

}

void *print_mesg (void *m)

{ char *cp = (char *)m;

int i;

for (i=0;i<NUM; i++){

printf("%s", cp);

fflush(stdout);

sleep (2);

}

return NULL ;

}

21 / 66

Outcome

ad@ad -desktop :~/ Set007 /src$

ad@ad -desktop :~/ Set007 /src$

ad@ad -desktop :~/ Set007 /src$./ multi_hello

hello world

hello world

hello world

hello world

hello world

ad@ad -desktop :~/ Set007 /src$

22 / 66

What is “unexpected” here?
#include <stdio .h>

#include <pthread .h>

#define NUM 5

int counter =0;

main (){

pthread_t t1;

void *print_count (void *);

int i;

pthread_create (&t1 , NULL , print_count , NULL);

for (i=0; i<NUM; i++){

counter ++;

sleep (1);

}

pthread_join (t1,NULL);

}

void *print_count (void *m)

{

/* counter is a shared variable */

int i;

for (i=0;i<NUM;i++){

printf("count = %d\n",counter);

sleep (1);

/* changing this 1 -->> 0 has an effect */

}

return NULL ;

}

23 / 66

The “unexpected” outcome:

ad@ad -desktop :~/ Set007/src$./ incprint

count = 1

count = 2

count = 3

count = 4

count = 5

ad@ad -desktop :~/ Set007/src$

⊙ Changing sleep(1) =⇒ sleep(0):

ad@ad -desktop :~/ Set007/src$ vi incprint .c

ad@ad -desktop :~/ Set007/src$ gcc incprint .c -o incprint -lpthread

ad@ad -desktop :~/ Set007/src$./ incprint

count = 1

count = 1

count = 1

count = 1

count = 1

ad@ad -desktop :~/ Set007/src$

⇒ Race Condition!

24 / 66

More problems!

#include <stdio .h>

#include <stdlib.h>

#include <pthread .h>

#include <ctype .h>

int total_words ;

int main (int ac, char *av[]){

pthread_t t1 , t2;

void *count_words (void *);

if (ac != 3) {

printf("usage : %s file1 file2 \n", av [0]) ;

exit (1);

}

total_words =0;

pthread_create (&t1 , NULL , count_words , (void *)av [1]) ;

pthread_create (&t2 , NULL , count_words , (void *)av [2]) ;

pthread_join (t1, NULL);

pthread_join (t2, NULL);

printf("Main thread with ID: %ld reports %5d total words \n",

pthread_self (), total_words);

}

25 / 66

More problems!

void *count_words (void *f)

{

char *filename = (char *)f;

FILE *fp; int c, prevc = ’\0’;

printf("In thread with ID: %ld counting words .. \n",pthread_self ());

if ((fp=fopen (filename ,"r")) != NULL){

while ((c = getc (fp))!= EOF){

if (!isalnum (c) && isalnum(prevc))

total_words ++;

prevc = c;

}

fclose(fp);

} else perror(filename);

return NULL ;

}

26 / 66

Outcome:

ad@ad -desktop :~/ Set007/src$

ad@ad -desktop :~/ Set007/src$ wc -w fileA fileB

48 fileA

61 fileB

109 total

ad@ad -desktop :~/ Set007/src$./ twordcount1 fileA fileB

In thread with ID: -1216558224 counting words ..

In thread with ID: -1224950928 counting words ..

Main thread with ID: -1216555328 reports 107 total words

ad@ad -desktop :~/ Set007/src$./ twordcount1 fileA fileB

In thread with ID: -1217348752 counting words ..

In thread with ID: -1225741456 counting words ..

Main thread with ID: -1217345856 reports 105 total words

ad@ad -desktop :~/ Set007/src$./ twordcount1 fileA fileB

In thread with ID: -1217287312 counting words ..

In thread with ID: -1225680016 counting words ..

Main thread with ID: -1217284416 reports 108 total words

ad@ad -desktop :~/ Set007/src$./ twordcount1 fileA fileB

In thread with ID: -1215718544 counting words ..

In thread with ID: -1224111248 counting words ..

Main thread with ID: -1215715648 reports 109 total words

ad@ad -desktop :~/ Set007/src$

27 / 66

Race Condition

total_words++

........

........

Thread2

........

total_words++

........

Thread 1

address space
total_words=0

◮ total words might NOT have a consistent value after
executing the above two (concurrent) assignments.

28 / 66

POSIX Mutexes

◮ When theads share common structures (resources), one needs
to use a control structure termed a mutex.

◮ A mutex can find itself in only two states: locked or unlocked.

◮ int pthread mutex init(pthread mutex t *mutex,
const pthread mutexattr t *mutexattr)

initializes the mutex-object pointed to by mutex according to
the mutex attributes specified in mutexattr.

◮ A mutex may be initialized only once by setting its value to
PTHREAD MUTEX INITIALIZER

static pthread_mutex_t mymutex =

PTHREAD_MUTEX_INITIALIZER ;

◮ pthread mutex init always returns 0

29 / 66

Locking mutexes

◮ Locking a mutex is carried out by:
int pthread mutex lock(pthread mutex t *mutex)

◮ If the mutex is currently unlocked, it becomes locked and
owned by the calling thread, and pthread mutex lock returns
immediately.

◮ If successful, pthread mutex lock returns 0.

◮ If the mutex is already locked by another thread,
pthread mutex lock blocks (or “suspends” for the user) the
calling thread until the mutex is unlocked.

30 / 66

Unlocking and Destroying mutexes

Unlocking a mutex

◮ int pthread mutex unlock(pthread mutex t *mutex)

◮ If the mutex has been locked and owned by the calling thread,
the mutex gets unlocked.

◮ Upon successful call, it returns 0.

Destroying a Mutex

◮ int pthread mutex destroy(pthread mutex t *mutex)

◮ Destroys the mutex, freeing resources it might hold.

◮ In the Linux implementation, the call does nothing except
checking that mutex is unlocked.

◮ Upon successful call, it returns 0.

31 / 66

Trying to obtain an lock (discouraged)

Trying to get a lock:

◮ int pthread mutex trylock(pthread mutex t *mutex)

◮ behaves identically to pthread mutex lock, except that it does
not block the calling thread if the mutex is already locked by
another thread.

◮ Instead, pthread mutex trylock returns immediately with the
error code EBUSY.

◮ If pthread mutex trylock returns the code EINVAL, the mutex
was not initialized properly.

32 / 66

Addressing the problem
#include <stdio.h>

#include <stdlib .h>

#include <pthread .h>

#include <ctype.h>

int total_words ;

pthread_mutex_t counter_lock = PTHREAD_MUTEX_INITIALIZER ;

int main(int ac , char *av[])

{ pthread_t t1, t2;

void *count_words (void *);

if (ac != 3) {

printf ("usage: %s file1 file2 \n", av[0]);

exit (1); }

total_words =0;

pthread_create(&t1, NULL , count_words , (void *)av [1]);

pthread_create(&t2, NULL , count_words , (void *)av [2]);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf ("Main thread wirth ID %ld reporting %5d total

words\n",

pthread_self(),total_words);

}
33 / 66

Addressing the problem

void * count_words (void *f)

{

char *filename = (char *)f;

FILE *fp; int c, prevc = ’\0’;

if ((fp=fopen(filename ,"r")) != NULL){

while ((c = getc(fp))!= EOF){

if (!isalnum (c) && isalnum (prevc)){

pthread_mutex_lock (& counter_lock);

total_words ++;

pthread_mutex_unlock (& counter_lock);

}

prevc = c;

}

fclose (fp);

} else perror (filename);

return NULL;

}

34 / 66

Outcome (correct!)

ad@ad -desktop :~/ Set007/src$ wc fileA fileB

1 48 279 fileA

6 61 344 fileB

7 109 623 total

ad@ad -desktop :~/ Set007/src$./ twordcount2 fileA fileB

Main thread wirth ID -1215629632 reporting 109 total words

ad@ad -desktop :~/ Set007/src$./ twordcount2 fileA fileB

Main thread wirth ID -1216395584 reporting 109 total words

ad@ad -desktop :~/ Set007/src$./ twordcount2 fileA fileB

Main thread wirth ID -1217239360 reporting 109 total words

ad@ad -desktop :~/ Set007/src$./ twordcount2 fileA fileB

Main thread wirth ID -1216395584 reporting 109 total words

ad@ad -desktop :~/ Set007/src$

35 / 66

Another Way to Accomplish the Same Correct Operation: no shared data

#include <stdio .h>

#include <stdlib.h>

#include <pthread .h>

#include <ctype .h>

#define EXIT_FAILURE 1

void *count_words (void *);

struct arg_set{

char *fname ;

int count ;

};

int main (int ac, char *av[]) {

pthread_t t1 , t2;

struct arg_set args1 , args2 ;

if (ac != 3) {

printf("usage : %s file1 file2 \n", av[0]) ; exit (EXIT_FAILURE); }

args1 .fname = av [1]; args1 .count = 0;

pthread_create (&t1 , NULL , count_words , (void *) &args1);

args2 .fname = av [2]; args2 .count = 0;

pthread_create (&t2 , NULL , count_words , (void *) &args2);

pthread_join (t1, NULL); pthread_join (t2, NULL);

printf("In file %-10s there are %5d words \n", av[1], args1 .count);

printf("In file %-10s there are %5d words \n", av[2], args2 .count);

printf("Main thread %ld reporting %5d total words \n",

pthread_self (), args1 .count +args2 .count);

}

36 / 66

Another Way to Accomplish the Same Correct Operation

void *count_words (void *a) {

struct arg_set *args = a;

FILE *fp; int c, prevc = ’\0’;

printf("Working within Thread with ID %ld and counting \n",pthread_self ());

if ((fp=fopen (args ->fname ,"r")) != NULL){

while ((c = getc (fp))!= EOF){

if (!isalnum (c) && isalnum(prevc)){

args ->count ++;

}

prevc = c;

}

fclose(fp);

} else perror(args ->fname);

return NULL ;

}

⇒ No mutexes are used in this function!

37 / 66

Outcome:

ad@ad -desktop :~/ Set007/src$ wc -w fileA fileB

48 fileA

61 fileB

109 total

ad@ad -desktop :~/ Set007/src$./ twordcount3 fileA fileB

Working within Thread with ID -1224815760 and counting

Working within Thread with ID -1216423056 and counting

In file fileA there are 48 words

In file fileB there are 61 words

Main thread -1216420160 reporting 109 total words

ad@ad -desktop :~/ Set007/src$./ twordcount3 fileA fileB

Working within Thread with ID -1215984784 and counting

Working within Thread with ID -1224377488 and counting

In file fileA there are 48 words

In file fileB there are 61 words

Main thread -1215981888 reporting 109 total words

ad@ad -desktop :~/ Set007/src$./ twordcount3 fileA fileB

Working within Thread with ID -1216459920 and counting

Working within Thread with ID -1224852624 and counting

In file fileA there are 48 words

In file fileB there are 61 words

Main thread -1216457024 reporting 109 total words

ad@ad -desktop :~/ Set007/src$

38 / 66

Things to Remember:

◮ Every mutex has to be initialized only once.

◮ pthread mutex unlock should be called only by the thread
holding the mutex.

◮ NEVER have pthread mutex lock called by the thread that
has already locked the mutex. A deadlock will occur.

◮ NEVER call pthread mutex destroy on a locked mutex
(EBUSY)

39 / 66

Using pthread mutex init, pthread mutex lock, pthread mutex unlock,

pthread mutex destroy (boilerplate)
#include <stdio .h>

#include <string.h>

#include <stdlib.h>

#include <pthread .h> /* For threads */

#define perror2(s, e) fprintf (stderr , "%s: %s\n", s, strerror (e))

pthread_mutex_t mtx; /* Mutex for synchronization */

char buf [25]; /* Message to communicate */

void *thread_f (void *); /* Forward declaration */

main () {

pthread_t thr;

int err;

printf("Main Thread %ld running \n",pthread_self ());

pthread_mutex_init (&mtx , NULL);

if (err = pthread_mutex_lock (&mtx)) { /* Lock mutex */

perror2 (" pthread_mutex_lock ", err); exit (1); }

printf("Thread %ld: Locked the mutex \n", pthread_self ());

if (err = pthread_create (&thr , NULL , thread_f , NULL)) { /* New thread */

perror2 (" pthread_create ", err); exit (1); }

printf("Thread %ld: Created thread %ld\n", pthread_self (), thr);

strcpy(buf , "This is a test message ");

printf("Thread %ld: Wrote message \"%s\" for thread %ld\n",

pthread_self (), buf , thr);

40 / 66

Using pthread mutex init, pthread mutex lock, pthread mutex unlock,

pthread mutex destroy

if (err = pthread_mutex_unlock (&mtx)) { /* Unlock mutex */

perror2 (" pthread_mutex_unlock ", err); exit (1);

}

printf("Thread %ld: Unlocked the mutex \n", pthread_self ());

if (err = pthread_join (thr , NULL)) { /* Wait for thread */

perror2("pthread_join ", err); exit (1); } /* termination */

printf("Exiting Threads %ld and %ld \n", pthread_self (), thr);

if (err = pthread_mutex_destroy (&mtx)) { /* Destroy mutex */

perror2 (" pthread_mutex_destroy ", err); exit (1); }

pthread_exit (NULL);

}

41 / 66

Using pthread mutex init, pthread mutex lock, pthread mutex unlock,

pthread mutex destroy

void *thread_f (void *argp){ /* Thread function */

int err;

printf("Thread %ld: Just started\n", pthread_self ());

printf("Thread %ld: Trying to lock the mutex \n", pthread_self ());

if (err = pthread_mutex_lock (&mtx)) { /* Lock mutex */

perror2("pthread_mutex_lock ", err); exit (1); }

printf("Thread %ld: Locked the mutex \n", pthread_self ());

printf("Thread %ld: Read message \"%s\"\n", pthread_self (), buf);

if (err = pthread_mutex_unlock (&mtx)) { /* Unlock mutex */

perror2("pthread_mutex_unlock ", err); exit (1); }

printf("Thread %ld: Unlocked the mutex \n", pthread_self ());

pthread_exit (NULL);

}

42 / 66

Running the multi-threaded program

ad@ad -desktop :~/ Set007/src$./ sync_by_mutex

Main Thread -1217464640 running

Thread -1217464640: Locked the mutex

Thread -1217464640: Created thread -1217467536

Thread -1217464640: Wrote message "This is a test message" for thread

-1217467536

Thread -1217464640: Unlocked the mutex

Thread -1217467536: Just started

Thread -1217467536: Trying to lock the mutex

Thread -1217467536: Locked the mutex

Thread -1217467536: Read message "This is a test message"

Thread -1217467536: Unlocked the mutex

Exiting Threads -1217464640 and -1217467536

ad@ad -desktop :~/ Set007/src$

43 / 66

Condition Variables

◮ A condition (or “condition variable”) is a synchronization
device/means that allows POSIX threads to suspend
execution and relinquish the processors until some predicate
on shared data is satisfied.

◮ The basic operations on conditions are:
◮ signal the condition (when the predicate becomes true), and

wait for the condition, suspending the thread execution
◮ The waiting lasts until another thread signals (or notifies) the

condition.

◮ A condition variable must always be associated with a mutex
to avoid a race condition:

◮ This race may occur when a thread prepares to wait on a
condition variable and another thread signals the condition just
before the first thread actually waits on the condition variable.

44 / 66

Initializing a Condition Variable (dynamically)

◮ int pthread cond init(pthread cond t *cond,
pthread condattr t *cond attr)

◮ initializes the condition variable cond, using the condition
attributes specified in cond attr, or default attributes if
cond attr is simply NULL.

◮ The call always returns 0 upon completion.

◮ The LinuxThreads implementation supports no attributes for
conditions (cond attr is ignored).

◮ Variables of type pthread cond t can also be initialized
statically, using the constant PTHREAD COND INITIALIZER.

45 / 66

Waiting on a condition

◮ int pthread cond wait(pthread cond t *cond,
pthread mutex t *mutex)

◮ atomically unlocks the mutex and waits for the condition
variable cond to be signaled.

◮ The call always returns 0.

◮ The thread execution is suspended and does not consume any
CPU time until the condition variable is signaled (with the
help of a pthread cond signal/broadcast).

◮ Before returning to the calling thread, pthread cond wait
re-acquires mutex.

46 / 66

Signaling variables

⇒ Signaling a variable:

◮ int pthread cond signal(pthread cond t *cond)

◮ restarts one of the threads that are waiting on the condition
variable cond.

◮ If no threads are waiting on cond, nothing happens.

◮ If several threads are waiting on cond, exactly one is restarted.

◮ The call always returns 0.

47 / 66

Broadcasting to variables

⇒ Broadcasting to a condition variable:

◮ int pthread cond broadcast(pthread cond t *cond)

◮ restarts all the threads that are waiting on the condition
variable cond.

◮ Nothing happens if no threads are waiting on cond.

◮ The call always returns 0.

48 / 66

Destroying condition variables

◮ int pthread cond destroy(pthread cond t *cond)

◮ destroys a condition variable cond, freeing the resources it
might hold.

◮ No threads must be waiting on the condition variable on
entrance to pthread cond destroy.

◮ In the LinuxThreads, the call does nothing except checking
that the condition has no waiting threads.

◮ Upon successful return the call returns 0.

◮ In case some threads are waiting on cond,
pthread cond destroy returns EBUSY.

49 / 66

While working with mutexes/condition vars keep in mind:

◮ Associate (in your mind+comments) every piece of shared
data in your program with a mutex that protects it.

◮ For every boolean condition use a separate condition variable.

◮ For every condition variable, use a single, distinctly-associated
with the condition, mutex.

◮ Get the mutex, before checking of any condition.

◮ Always use the same mutex when changing variables of a
condition.

◮ Keep a mutex for the shortest possible time.

◮ Do not forget to release locks at the end with
pthread mutex unlock.

50 / 66

Using system calls on condition variables
#include <stdio .h>

#include <string.h>

#include <stdlib.h>

#include <pthread .h>

#define perror2(s, e) fprintf (stderr , "%s: %s\n", s, strerror (e))

pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER ;

pthread_cond_t cvar ; /* Condition variable */

char buf [25]; /* Message to communicate */

void *thread_f (void *); /* Forward declaration */

main (){

pthread_t thr; int err;

pthread_cond_init (&cvar , NULL); /* Initialize condition variable */

if (err = pthread_mutex_lock (&mtx)) { /* Lock mutex */

perror2("pthread_mutex_lock ", err); exit (1); }

printf("Thread %ld: Locked the mutex \n", pthread_self ());

if (err = pthread_create (&thr , NULL , thread_f , NULL)) { /* New thread */

perror2("pthread_create ", err); exit (1); }

printf("Thread %ld: Created thread %ld\n", pthread_self (), thr);

printf("Thread %ld: Waiting for signal\n", pthread_self ());

pthread_cond_wait (&cvar , &mtx); /* Wait for signal */

printf("Thread %ld: Woke up\n", pthread_self ());

printf("Thread %ld: Read message \"%s\"\n", pthread_self (), buf);

51 / 66

Using system calls on condition variables

if (err = pthread_mutex_unlock (&mtx)) { /* Unlock mutex */

perror2("pthread_mutex_unlock ", err); exit (1); }

printf("Thread %ld: Unlocked the mutex \n", pthread_self ());

if (err = pthread_join (thr , NULL)) { /* Wait for thread */

perror2("pthread_join ", err); exit (1); } /* termination */

printf("Thread %ld: Thread %ld exited\n", pthread_self (), thr);

if (err = pthread_cond_destroy (& cvar)) {

/* Destroy condition variable */

perror2("pthread_cond_destroy ", err); exit (1); }

pthread_exit (NULL);

}

52 / 66

Using system calls on condition variables

void *thread_f (void *argp){ /* Thread function */

int err;

printf("Thread %ld: Just started\n", pthread_self ());

printf("Thread %ld: Trying to lock the mutex \n", pthread_self ());

if (err = pthread_mutex_lock (&mtx)) { /* Lock mutex */

perror2("pthread_mutex_lock ", err); exit (1); }

printf("Thread %ld: Locked the mutex \n", pthread_self ());

strcpy(buf , "This is a test message");

printf("Thread %ld: Wrote message \"%s\"\n", pthread_self (), buf);

pthread_cond_signal (&cvar); /* Awake other thread */

printf("Thread %ld: Sent signal\n", pthread_self ());

if (err = pthread_mutex_unlock (&mtx)) { /* Unlock mutex */

perror2("pthread_mutex_unlock ", err); exit (1); }

printf("Thread %ld: Unlocked the mutex \n", pthread_self ());

pthread_exit (NULL);

}

53 / 66

Using system calls on condition variables

ad@ad -desktop :~/ Set007 /src$

ad@ad -desktop :~/ Set007 /src$./ mutex_condvar

Thread -1216870720: Locked the mutex

Thread -1216870720: Created thread -1216873616

Thread -1216870720: Waiting for signal

Thread -1216873616: Just started

Thread -1216873616: Trying to lock the mutex

Thread -1216873616: Locked the mutex

Thread -1216873616: Wrote message "This is a test message "

Thread -1216873616: Sent signal

Thread -1216873616: Unlocked the mutex

Thread -1216870720: Woke up

Thread -1216870720: Read message "This is a test message "

Thread -1216870720: Unlocked the mutex

Thread -1216870720: Thread -1216873616 exited

ad@ad -desktop :~/ Set007 /src$

ad@ad -desktop :~/ Set007 /src$

54 / 66

Another example:
⊙ Three threads increase the value of a global variable while a
fourth one suspends its operation until a maximum value is
reached.
#include <stdio .h>

#include <stdlib.h>

#include <pthread .h>

#include <string.h>

#define perror2(s, e) fprintf (stderr , "%s: %s\n", s, strerror (e))

#define COUNT_PER_THREAD 8 /* Count increments by each thread */

#define THRESHOLD 19 /* Count value to wake up thread */

int count = 0; /* The counter */

int thread_ids [4] = {0, 1, 2, 3}; /* My thread ids */

pthread_mutex_t mtx; /* mutex */

pthread_cond_t cv; /* the condition variable */

void *incr (void *argp){

int i, j, *id = argp ;

int err;

for (i=0 ; i<COUNT_PER_THREAD ; i++) {

if (err = pthread_mutex_lock (&mtx)) { /* Lock mutex */

perror2("pthread_mutex_lock ", err); exit (1); }

count ++; /* Increment counter */

if (count == THRESHOLD) { /* Check for threshold */

pthread_cond_signal (&cv); /* Signal suspended thread */

printf("incr : thrd %d, count = %d, threshold reached\n",*id ,count);

} 55 / 66

Code (Cont’ed)

printf("incr : thread %d, count = %d\n", *id, count);

if (err = pthread_mutex_unlock (&mtx)) { /* Unlock mutex */

perror2("pthread_mutex_unlock ", err); exit (1); }

for (j=0 ; j < 1000000000 ; j++);

} /* Naive: For threads to alternate */

/* on mutex lock */

pthread_exit (NULL);

}

void *susp (void *argp){

int err , *id = argp ;

printf("susp : thread %d started\n", *id);

if (err = pthread_mutex_lock (&mtx)) { /* Lock mutex */

perror2("pthread_mutex_lock ", err); exit (1);

}

while (count < THRESHOLD) { /* If threshold not reached */

pthread_cond_wait (&cv , &mtx); /* suspend */

printf("susp : thread %d, signal received \n", *id);

}

if (err = pthread_mutex_unlock (&mtx)) { /* Unlock mutex */

perror2("pthread_mutex_unlock ", err); exit (1);

}

pthread_exit (NULL);

}

56 / 66

Code (Cont’ed)
main () {

int i, err;

pthread_t threads [4];

pthread_mutex_init (&mtx , NULL); /* Initialize mutex */

pthread_cond_init (&cv , NULL); /* and condition variable */

for (i=0 ; i<3 ; i++)

if (err = pthread_create (& threads[i], NULL , incr ,(void *) &thread_ids [i

])) { perror2 ("pthread_create ", err); exit (1); /* Create threads 0,

1, 2 */

}

if (err = pthread_create (& threads [3], NULL , susp , (void *) &thread_ids [3]))

{ perror2 ("pthread_create ", err); exit (1); } /* Create thread 3 */

for (i=0 ; i<4 ; i++)

if (err = pthread_join (threads [i], NULL)) {

perror2("pthread_join ", err); exit (1);

};

/* Wait for threads termination */

printf("main : all threads terminated \n");

/* Destroy mutex and condition variable */

if (err = pthread_mutex_destroy (&mtx)) {

perror2("pthread_mutex_destroy ", err); exit (1); }

if (err = pthread_cond_destroy (&cv)) {

perror2("pthread_cond_destroy ", err); exit (1); }

pthread_exit (NULL);

}

57 / 66

Outcome:
ad@ad -desktop :~/ Set007/src$./ counter

incr : thread 0, count = 1

susp : thread 3 started

incr : thread 1, count = 2

incr : thread 2, count = 3

incr : thread 0, count = 4

incr : thread 1, count = 5

incr : thread 2, count = 6

incr : thread 0, count = 7

incr : thread 1, count = 8

incr : thread 1, count = 9

incr : thread 2, count = 10

incr : thread 0, count = 11

incr : thread 1, count = 12

incr : thread 1, count = 13

incr : thread 2, count = 14

incr : thread 0, count = 15

incr : thread 1, count = 16

incr : thread 0, count = 17

incr : thread 2, count = 18

incr : thread 1, count = 19, threshold reached

incr : thread 1, count = 19

susp : thread 3, signal received

incr : thread 0, count = 20

incr : thread 0, count = 21

incr : thread 2, count = 22

incr : thread 2, count = 23

incr : thread 2, count = 24

main : all threads terminated

ad@ad -desktop :~/ Set007/src$
58 / 66

The Producer–Consumer Synchronization Problem
◮ There is one producer and one consumer.

◮ The producer may produce upto a maximum number of
goods.

◮ An item cannot be consumed if the producer has not
successfully completed its placement on the buffer.

◮ If no items exist on the buffer, the consumer has to wait.

◮ if the buffer is full, the producer has to wait.

start

end

59 / 66

A solution for the “bounded buffer” problem

#include <stdio .h> // from www .mario - konrad .ch

#include <pthread .h>

#include <unistd.h>

#define POOL_SIZE 6

typedef struct {

int data [POOL_SIZE];

int start ;

int end;

int count ;

} pool_t;

int num_of_items = 15;

pthread_mutex_t mtx;

pthread_cond_t cond_nonempty ;

pthread_cond_t cond_nonfull ;

pool_t pool ;

void initialize (pool_t * pool) {

pool ->start = 0;

pool ->end = -1;

pool ->count = 0;

}

60 / 66

void place (pool_t * pool , int data) {

pthread_mutex_lock (&mtx);

while (pool -> count >= POOL_SIZE) {

printf(">> Found Buffer Full \n");

pthread_cond_wait (&cond_nonfull , &mtx);

}

pool ->end = (pool ->end + 1) % POOL_SIZE ;

pool ->data [pool ->end] = data ;

pool ->count ++;

pthread_mutex_unlock (&mtx);

}

int obtain(pool_t * pool) {

int data = 0;

pthread_mutex_lock (&mtx);

while (pool -> count <= 0) {

printf(">> Found Buffer Empty \n");

pthread_cond_wait (&cond_nonempty , &mtx);

}

data = pool ->data [pool ->start];

pool ->start = (pool -> start + 1) % POOL_SIZE ;

pool ->count --;

pthread_mutex_unlock (&mtx);

return data ;

}

61 / 66

void * producer (void * ptr)

{

while (num_of_items > 0) {

place (&pool , num_of_items);

printf("producer : %d\n", num_of_items);

num_of_items --;

pthread_cond_signal (& cond_nonempty);

usleep (0);

}

pthread_exit (0);

}

void * consumer (void * ptr)

{

while (num_of_items > 0 || pool .count > 0) {

printf("consumer : %d\n", obtain(& pool));

pthread_cond_signal (& cond_nonfull);

usleep (500000) ;

}

pthread_exit (0);

}

62 / 66

int main (int argc , char ** argv)

{

pthread_t cons , prod ;

initialize (& pool);

pthread_mutex_init (&mtx , 0);

pthread_cond_init (&cond_nonempty , 0);

pthread_cond_init (&cond_nonfull , 0);

pthread_create (&cons , 0, consumer , 0);

pthread_create (&prod , 0, producer , 0);

pthread_join (prod , 0);

pthread_join (cons , 0);

pthread_cond_destroy (& cond_nonempty);

pthread_cond_destroy (& cond_nonfull);

pthread_mutex_destroy (&mtx);

return 0;

}

⇒ Outcome:
ad@ad -desktop :~/ Set007/src$./prod -cons

>> Found Buffer Empty

producer : 15

consumer : 15

producer : 14

producer : 13

producer : 12

producer : 11

producer : 10

producer : 9

>> Found Buffer Full

63 / 66

consumer : 14

producer : 8

>> Found Buffer Full

consumer : 13

producer : 7

>> Found Buffer Full

consumer : 12

producer : 6

>> Found Buffer Full

consumer : 11

producer : 5

>> Found Buffer Full

consumer : 10

producer : 4

>> Found Buffer Full

consumer : 9

producer : 3

>> Found Buffer Full

consumer : 8

producer : 2

>> Found Buffer Full

consumer : 7

producer : 1

consumer : 6

consumer : 5

consumer : 4

consumer : 3

consumer : 2

consumer : 1

ad@ad -desktop :~/ Set007/src$

64 / 66

Thread Safety

• Problem: a thread may call library functions that are not
thread-safe creating spurious outcomes.

◮ A function is “thread-safe,” if multiple threads can
simultaneously execute invocations of the same function
without side-effects (or intereferences of any type!).

◮ POSIX specifies that all functions (including all those from
the Standard C Library) except those (next slide) are
implemented in a thread-safe manner.

◮ Directive: the calls of the table (next slide) should have
thread-safe implentations denoted with the postfix r.

65 / 66

System calls not required to be thread-safe

asctime basename catgets crypt ctime

dbm clearerr dbm close dbm delete dbm error dbm fetch

dbm firstkey dbm nextkey dbm open dbm store dirname

dlerror drand48 ecvt encrypt endgrent

endpwent endutxent fcvt ftw gcvt

getc unlocked getchar unlocked getdate getenv getgrent

getgrgid getgrname gethostbyaddr gethostbyname getlogin

getnetbyaddr getnetbyname getnetent getopt getprotobyname

getprotobynumber getprotoend getpwent getopwnam getpwuid

getservbyname getservbyport getservent getutxent getutxid

getutxline gmtime hcreate hdestroy hsearch

inet ntoa l64a lgamma lgammaf lgammal

localeconv localtime lrand48 mrand48 nftw

nl langinfo ptsname putc unlocked putchar unlocked putenv

pututxline rand readdir setenv setgrent

setkey setpwent setuxent strerror strtok

ttyname unsetenv wcstombs wctomb

⋄ An easy (“dirty”) way to safely use the above calls with threads
is to invoke them in conjunction with mutexes (i.e., in mutually
exclusive fashion).

66 / 66

