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Abstract
Java generics are compiled by-erasure: all clients reuse the same
bytecode, with uses of the unknown type erased. C++ templates are
compiled by-expansion: each type-instantiation of a template pro-
duces a different code definition. The two approaches offer trade-
offs on multiple axes. We propose an extension of Java generics
that allows by-expansion translation relative to selected type pa-
rameters only. This language design allows sophisticated users to
get the best of both worlds at a fine granularity. Furthermore, our
proposal is based on Java 8 Type Annotations (JSR 308) and the
Checker Framework as an abstraction layer for controlling compi-
lation without changes to the internals of a Java compiler.

Categories and Subject Descriptors D.1.5 [Programming tech-
niques]: Object-oriented programming; D.3.4 [Programming lan-
guages]: Processors—Code generation; D.3.2 [Programming lan-
guages]: Language Classifications—Extensible languages

Keywords mixins, reification, type annotation, pluggable types

1. Introduction
Java generics are compiled via the technique of type erasure or just
erasure: Type parameters are removed by the compiler and replaced
by their bound (Object or other, if specified). The generated byte-
code contains no generic information and all instantiations share a
single classfile. This approach satisfies the crucial requirement of
backward compatibility and avoiding alterations of the JVM speci-
fication. The erasure technique also succeeds in lowering the code
generation burden: the generic’s code is not replicated on every
type-instantiation. Type erasure has often been criticised in the re-
search literature and developer communities. Firstly, the compiler
inserts type casts where erasure happened to ensure compatibility
with the JVM. Furthermore, data structures instantiated by primi-
tive types like int, must suffer from the cost of boxing. The greatest
issue, however, is the limited capabilities of reflective operations, as
type parameter information is not retained after type-instantiation.
As a result, Java generics cannot support important generic code
patterns and declarations such as T element = new T(); or class
Serial<T> extends T or T.class, where T is a type parameter. To
address the limitations of erasure, some solutions use clever tricks
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based on reflection following a library approach [5] but with cum-
bersome syntax or others extend directly the javac compiler [11].

The alternative to erasure is an expansion-based translation,
where the generic code is replicated at every type-instantiation site.
This addresses the expressiveness shortcomings of erasure, but at
the cost of replicating generic code. C++ templates are translated
by expansion and they also suffer from another significant draw-
back: type-checking and code generation is not performed on the
generic code but only after expansion, separately for each type in-
stantiation. The Pizza language [8], which is often considered the
predecessor and inspiration of the Java generics mechanism, de-
fined both erasure and expansion as possible translation strategies
for generics.

In this paper we propose a preliminary language design that
combines erasure and expansion of generics at a fine granularity.
Each type parameter can specify whether it is to be erased or not.
For instance, a generic class C can be defined as:
class C<@reify X,Y> { ... }

In this case, type parameter Y is to be erased, while type pa-
rameter X will not be. As can be seen, type parameters are selected
for expansion by use of a Java type annotation. In total, the new
elements of our approach are as follows:

• A fine grained language design for controlling expansion or
erasure of generic type parameters.

• An extension of the Java language entirely using advanced (up-
coming, in Java 8–JSR 308) annotations and the Checker Frame-
work. This is a case study of the expressiveness of these facili-
ties for language extensions that are both fundamental and obtru-
sive (i.e., the presence of an annotation changes the semantics of
code).

• A translation technique that performs expansion, yet strives to
minimize code replication by also leveraging delegation.

Our work is currently in the design stage, with full implementa-
tion to follow. However, we have conducted preliminary feasibility
studies and have high confidence that the mechanics of the exten-
sion to the language is realizable as described, using the advanced
annotations of JSR 308 and the Checker Framework.

2. Background
We next discuss some necessary background for our work. First,
we introduce the concept of mixins, which we will use as a moti-
vating example and demonstration of non-erased type parameters
throughout the paper. Next, we present the JSR 308 Java Type An-
notations and the Checker Framework—both essential parts of our
proposal.

Mixin-Based Programming. (Template-based) mixins are an im-
portant, well-known pattern in generic programming. Mixins al-
low programmers to express component-based designs with clean



and concise class-based modules. A mixin is a standalone entity
that can be composed with other entities or mixins, thereby en-
abling modular behavior sharing. A typical declaration of a mixin
class in most OO languages is: class M<T> extends T. That is, the
mixin generic class, M, inherits from its unknown type parameter, T.
Such a mixin, M, is often called an abstract subclass. Mixins can
be combined to form other mixins and can be composed with other
classes. The mixin pattern is one that has appeared many times in
the literature—e.g., [2, 12–15]. Mixins cannot be supported when
generics are subject to type erasure such as in Java programs and
adding mixin support to Java is a non-trivial task [4]. Our proposal
is not the first to enable mixin support in Java. However, mixins
are simply a use case for demonstrating our more general selective
reification approach that permits fine-grained control over expan-
sion and erasure of generics.

Use of Type Annotations and the Checker Framework. The re-
cent addition of JSR 308 permits annotating any use of a type,
such as generic type arguments, casts and type declarations. The
Checker Framework [3, 9] is an abstraction layer built on top of
JSR 308. This framework allows the implementation of our pro-
posal employing Java annotations and integrating a pluggable type
system and code generator/transformer. Our language extensions
are intrusive to standard Java: the program does not have the same
meaning (and in fact may not even compile) when our annota-
tions are erased from the source code. The main advantage of the
Checker Framework is that it automatically propagates annotations
to compilation units where no annotation appears, thereby enabling
type checking and code generation for these units. Additionally, it
allows us to use a uniform programming model for AST transfor-
mations. A similar technique has also been employed in EnerJ by
Sampson et al. [10].

3. Safe Reification for Java Generics
The standard type-erasure semantics of Java generics ensures that
the run-time behavior of programs does not depend on type infor-
mation. This abstraction principle allows generic classes to be com-
piled exactly once, allowing client classes to reuse the same byte-
code with distinct compile-time type instantiations. However, the
type erasure property prohibits the use of mixins. On the contrary,
the lack of type erasure in C++ templates enables the use of mixins,
but sacrifices separate compilation and implementation abstraction,
as well as leads to code duplication. Our proposal reconciles these
two approaches, by enabling selective reification and mixins in a
modular manner.

Selective reification. Our proposal preserves the default behav-
ior and properties of generic types: the programmer must explicitly
state that a type variable must persist, otherwise the type variable is
subject to type erasure. Therefore, we maintain backwards compat-
ibility with standard Java code and permit selective code generation
or transformation for types instantiating reified type variables.

The following example illustrates a class definition having two
generic variables X and Y respectively. However, only the latter
type variable, Y, is subject to type erasure. X is not erased, thus,
for example, it can be passed to a new operator to create a new
instance of X. Notice that classOfX will be instantiated to the object
representing the class type instantiating type variable X. In the
case of ReifiedGeneric<String,Integer>, classOfX is equal to
String.class.

1 class ReifiedGeneric <@reify X,Y> {
2 Class classOfX = X.class;
3 Y id(Y y) { return y; }
4 X newInstance () { return new X(); }
5 }

Mixin support. Type variables annotated with @reify can be
used within an extends clause, thereby enabling the formulation
of mixin classes. The following example illustrates the mixin
classes Serial and TimeStamped. The Serial mixin class dec-
laration is equivalent to what we can already express in C++
with template<class T> class Serial : public T. In method
placeOrder, the customer object is an instance of the bottom
class in the following hierarchy: TimeStampedCSerialCCustomer,
where C is a shorthand for “extends”. Therefore, customer has the
functionality of Customer along with a unique serial number and a
timestamp indicating its creation time.

1 class Serial <@reify T> extends T {
2 static long counter = 1;
3 long serialN = counter ++;
4 public long getSerialNumber () {
5 return serialN;
6 }
7 }
8

9 class TimeStamped <@reify T> extends T {
10 long timestamp = new Date (). getTime ();
11 public long getTimestamp () {
12 return timestamp;
13 }
14 }
15 ...
16 void placeOrder (){
17 TimeStamped <Serial <Customer >> customer =
18 new TimeStamped <Serial <Customer >>();
19 long x = customer.getSerialNumber ();
20 long y = customer.getTimestamp ();
21 ...
22 customer.order ();
23 }

4. Safe and modular type system
Our main goal is to enable modularly safe type-checking for our
language extension: code generation of a valid program with rei-
fied types can never fail. The inclusion of reification as a language
feature requires careful treatment of type variables and type instan-
tiation so as to preserve modular type checking. We informally de-
scribe the constraints enforced by our proposed type checker in or-
der to guarantee validity. Let us define class GenericFactory as
follows:

1 class GenericFactory <@reify X> {
2 X newInstance () { return new X(); }
3 }

Reified type invariants. Substituting a standard type variable for
a reifiable type variable is an invalid operation as there is insuffi-
cient type information for performing code generation. For instance
allowing an ordinary type variable Y to indirectly flow to the in-
stantiation point of GenericFactory will inevitably lead to code
generation failure and thus violate our safety invariant. The same
argument applies when substituting interfaces or abstract classes
where reified types are expected. In order to guarantee modular
type checking, we place the restriction that type variables anno-
tated as @reify can only be instantiated with another @reify type
variable or a concrete type. In the later case, the type must provide
a public constructor accepting no arguments.

Mixin invariants. The above constraints are sufficient for guaran-
teeing modular reified type validity. However, they are insufficient
when inheritance polymorphism (i.e., mixins) is introduced to the
language. Let us assume that GenericFactory<String> indirectly
flows to ObjectFactory through type instantiations.



1 class ObjectFactory <@reify X> extends X {
2 Object newInstance () {
3 return new Object ();
4 }
5 }

ObjectFactory<GenericFactory<String>> is not a well-formed
Java type as there exist two overloaded methods newInstance with
distinct return types Object and String respectively.

To address non-modular type errors emerging from the propa-
gation of invalid mixin instantiations, we employ structural type
constraints over reified type variables appearing in extend clauses.
Structural constraints are expressed in terms of ordinary nominal
types T at the definition of reified type variables. More specifi-
cally, the reified type variable declaration @reify(T.class) X de-
notes that T<X> extends X is a well-formed type for any X. Any
class having a subset of the methods implied by T<X> is a struc-
tural supertype of T<X>. Thus, a structural type T<X> acts merely as
a macro definition for describing a set of methods rather than as
a nominal type. Consequently, @reify(T.class) X is implied by
@reify(T′.class) X, when T<X> is a structural supertype of T′<X>.
Notice that only a constrained reified type can instantiate another
constrained type variable. We restrict types representing structural
constraints to standard Java types without reification.

1 interface Constraint <X> {
2 Object newInstance ();
3 Long getTimestamp(String );
4 }
5 class ObjectFactory <@reify(Constraint.class) X>
6 extends X {
7 Object newInstance () {
8 return new Object ();
9 }

10 }

In the example above, X is constrained by Constraint<X>, which
is a structural supertype of ObjectFactory<X>: if any X implement-
ing Constraint<X> is a well-formed type, then X extended with
ObjectFactory<X> is also well-formed. Using nominal types as
macros for structural constraints allow us to minimize the amount
of annotations required and makes our constraint specifications
modular: it suffices to alter the definition of Constraint<X> in order
to add constraints as opposed to having to perform explicit inter-
module modifications of @reify constraints. Finally, when a type
parameter X is not constrained, we issue a compiler warning (which
the user can ignore at her own risk): type safety is not guaranteed
modularly.

5. Code Generation
Once the type checking stage is complete, AST transformations are
performed in order to lower generic object allocation, type variable
type information and mixins to standard Java. The non-trivial part
of our translation is that it tries to combine traditional expansion
with reuse of the generic’s code: most functionality is translated
into indirect calls, delegating to a common implementation, rather
than always expanding the code in-place. The feasibility of this ap-
proach in a full language setting (which, notably, includes over-
loading resolution) will be a challenge in our future work.

5.1 Transforming classes with reified generics
The transformation process of reified classes entails the erasure
of reification annotations from the original class, substitution of
type variable allocation expressions with method invocations and
declarations and finally a unique interface that contains all methods
of the translated class. This interface must be implemented by the
translated class. The following example shows the code emitted by
the transformation process of our earlier GenericFactory class:

1 interface iface$GenericFactory <X> {
2 X new$X ();
3 X newInstance ();
4 }
5 class GenericFactory <X>
6 implements iface$GenericFactory <X> {
7 X new$X() { return null; }
8 X newInstance (){ return new$X (); }
9 }

A new method new$X() with no implementation and a subsequent
invocation replace the original allocation expression new$X(). A
new interface iface$GenericFactory is generated containing all
methods implied by the original class in addition to the generated
methods. Class GenericFactory implements iface$GenericFactory
and has no reification annotations.

There are two alternatives for instantiating reified type vari-
ables:

Instantiation with other reified variables. In this case, types con-
taining reified type variables are substituted for the generated in-
terfaces described above. A class instantiating a reified type with
a type variable X has no information regarding X except its upper
bound, which may be included in the generated interface signature
(i.e. in the case of mixins), thus it is safe to substitute the instan-
tiated reified type with its instantiated interface. Similar arguments
apply to the environment of the class containing the reified type,
thus the generated interface is also employed when accessing class
members (i.e. no downcasts are required).

Instantiation with nominal types. Reified variable instantiations
with concrete types are transformed to a new class, where reified
variables have been substituted for the concrete type. The following
example illustrates the generated class code corresponding to type
GenericFactory<Integer> in the original source program:

1 class GenericFactory$Integer
2 extends GenericFactory <Integer > {
3 Integer new$X () {
4 return new Integer ();
5 }
6 }

The generated class GenericFactory$Integer extends Generic
Factory<Integer> and overrides method new$X, which is unimple-
mented, by returning an allocation expression on the concrete type
instantiating X.

Translation of fields. Field member declarations are translated by
adding getter and setter methods to the generated interface. Field
accesses are substituted for invocations to appropriate interface
methods.

5.2 Mixins and constrained reification.
Let us modify the GenericFactory of the previous example to be a
mixin and declare an interface Constraint as a structural supertype
of GenericFactory:

1 interface Constraint <X> {
2 X newInstance ();
3 }
4 class GenericFactory <@reify(Constraint.class) X>
5 extends X {
6 X newInstance (){ return new X(); }
7 }

The transformation process is then modified accordingly.

Instantiation with other reified variables. As in the case of sim-
ple reified types, constrained reified types of the form GenericFacto

ry<Y> are replaced by the generated interfaces instantiated with



the same type variable Y. However, the environment of the class
containing a mixin instance may be aware of its concrete parent,
therefore downcasts from the generated interfaces to the expected
types are performed.

Instantiation with nominal types. Assume we generate code
for GenericFactory<Integer> as in the previous example. The
code generation for GenericFactory and iface$GenericFactory

are identical to the previous example. Let us rename the class of
GenericFactory$Integer of the previous example to GenericFacto

ry$$Integer in order to use it here. The code generation for
GenericFactory<Integer> differs:

1 class GenericFactory$Integer extends Integer
2 implements iface$GenericFactory <Integer > {
3 iface$GenericFactory <Integer > mixin =
4 new GenericFactory$$Integer ();
5 Integer new$X() {
6 return mixin.new$X ();
7 }
8 Integer newInstance () {
9 return mixin.newInstance ();

10 }
11 }

The key difference is that the generated class is a subtype of
both Integer and iface$GenericFactory and employs delegation
on the mixin instance in order to avoid code duplication (i.e., in-
place substitution of the mixin). Thus, although every mixin is
expanded once per instantiation, the actual code content of a mixin
(i.e., the bodies of methods) is only generated once.

6. Related work
NextGen [11] retains parametric type information of generics at
runtime to support type dependent operations supported by a cus-
tom class loader that generates template instantiations at runtime.
Our language extension is merely a pluggable module to the javac
compiler. Additionally in our work we avoid replication by a
compile-time generational step to wire class instantiations with
mixin code implementations.

Scala [7] supports limited selective reification (but no “abstract-
subclass” style mixins) with runtime reflection, a mechanism based
on a combination of implicit parameters and TypeTag objects car-
rying implicit type information.

There are many independent projects that overcome the limi-
tations of type erasure. Similarly to our approach, Gafter [5] pre-
serves generic types by declaring anonymous classes at instantia-
tion points. Other works aim to support mixins directly as a lan-
guage feature by extending Java. Java Layers [2] supports mixins
by adopting a source-to-source approach from a custom compiler to
valid Java. Jam [1] adopts the same implementation strategy as Java
Layers, but suffers from code duplication. Both Java Layers and
Jam suffer from non-modular compilation. McJava [6] is an exten-
sion of Java allowing for mixin composition with classes and other
mixins. McJava does not support modular type checking as mixin
well-formedness is validated at type instantiation without impos-
ing intra-procedural constraints. McJava code generation performs
copying of mixin declarations to instantiation points. Our approach
only generates code for each mixin once and performs wiring with
specific instantiations, thereby avoiding code duplication.

7. Summary
In this work, we presented the @reify annotation that extends
Java generics with by-expansion translation relative to selected type
parameters only. We demonstrate the translation schemes of classes
having both reified and standard generic parameters. We support

mixins and allocation expressions using generic types in a modular
manner. The logic behind type checking and generation is based on
a pluggable type system, without modifying the Java compiler.
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