
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Stream Fusion, to Completeness

Oleg Kiselyov
Tohoku University, Japan

oleg@okmij.org

Aggelos Biboudis
University of Athens, Greece

biboudis@di.uoa.gr

Nick Palladinos
Nessos IT S.A. Athens, Greece

npal@nessos.gr

Yannis Smaragdakis
University of Athens, Greece

smaragd@di.uoa.gr

Abstract
Stream processing is mainstream (again): Widely-used stream li-
braries are now available for virtually all modern OO and func-
tional languages, from Java to C# to Scala to OCaml to Haskell.
Yet expressivity and performance are still lacking. For instance, the
popular, well-optimized Java 8 streams do not support the zip op-
erator and are still an order of magnitude slower than hand-written
loops.

We present the first approach that represents the full general-
ity of stream processing and eliminates overheads, via the use of
staging. It is based on an unusually rich semantic model of stream
interaction. We support any combination of zipping, nesting (or
flat-mapping), sub-ranging, filtering, mapping—of finite or infi-
nite streams. Our model captures idiosyncrasies that a program-
mer uses in optimizing stream pipelines, such as rate differences
and the choice of a “for” vs. “while” loops. Our approach delivers
hand-written–like code, but automatically. It explicitly avoids the
reliance on black-box optimizers and sufficiently-smart compilers,
offering highest, guaranteed and portable performance.

Our approach relies on high-level concepts that are then readily
mapped into an implementation. Accordingly, we have two distinct
implementations: an OCaml stream library, staged via MetaOCaml,
and a Scala library for the JVM, staged via LMS. In both cases, we
derive libraries richer and simultaneously many tens of times faster
than past work. We greatly exceed in performance the standard
stream libraries available in Java, Scala and OCaml, including the
well-optimized Java 8 streams.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; D.3.4 [Programming Languages]: Processors—Code
Generation; D.3.4 [Programming Languages]: Processors—
Optimization

General Terms Languages, Performance

Keywords Code generation, multi-stage programming, optimiza-
tion, stream fusion, streams

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

POPL’17 January 15-21, 2017, Paris, France.
Copyright © 2017 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4660-3/17/01. . . $15.00
DOI: http://dx.doi.org/10.1145/3009837.3009880

1. Introduction
Stream processing defines a pipeline of operators that transform,
combine, or reduce (even to a single scalar) large amounts of
data. Characteristically, data is accessed strictly linearly rather than
randomly and repeatedly—and processed uniformly. The upside
of the limited expressiveness is the opportunity to process large
amount of data efficiently, in constant and small space. Functional
stream libraries let us easily build such pipelines, by composing
sequences of simple transformers such as map or filter with pro-
ducers (backed by an array, a file, or a generating function) and
consumers (reducers). The purely applicative approach of building
a complex pipeline from simple immutable pieces simplifies pro-
gramming and reasoning: the assembled pipeline is an executable
specification. To be practical, however, a library has to be efficient:
at the very least, it should avoid creating intermediate structures
(files, lists, etc.) whose size grows with the length of the stream.

Most modern programming languages—Java, Scala, C#, F#,
OCaml, Haskell, Clojure, to name a few—currently offer func-
tional stream libraries. They all provide basic mapping and filter-
ing. Handling of infinite, nested or parallel (zipping) streams is
rare—especially all in the same library. Although all mature li-
braries avoid unbounded intermediate structures, they all suffer, in
various degrees, from the overhead of abstraction and composition-
ality: extra function calls, the creation of closures, objects and other
bounded intermediate structures.

An excellent example is the Java 8 Streams, often taken as the
standard of stream libraries. It stresses performance: e.g., stream-
ing from a known source, such as an array, amounts to an ordi-
nary loop, well-optimized by a Java JIT compiler [3]. However,
Java 8 Streams are still much slower than hand-optimized loops for
non-trivial pipelines (e.g., over 10x slower on the standard carte-
sian product benchmark [2]). Furthermore, the library cannot han-
dle (‘zip’) several streams in parallel1 and cannot deal with nesting
of infinite streams. These are not mere omissions: infinite nested
streams demand a different iteration model, which is hard to effi-
ciently implement with a simple loop.

This paper presents strymonas: a streaming library design that
offers both high expressivity and guaranteed, highest performance.
First, we support the full range of streaming operators (a.k.a. stream
transformers or combinators) from past libraries: not just map

and filter but also sub-ranging (take), nesting (flat_map—a.k.a.
concatMap) and parallel (zip_with) stream processing. All oper-
ators are freely composable: e.g., zip_with and flat_map can be

1 One could emulate zip using iterator from push-streams—at signifi-
cant drop in performance.

used together, repeatedly, with finite or infinite streams. Our novel
stream representation captures the essence of stream processing for
virtually all combinators examined in past literature.

Second, our stream representation allows eliminating the ab-
straction overhead altogether, for the full set of stream operators.
We perform stream fusion (§3) and other aggressive optimization.
The generated code contains no extra heap allocations in the main
loop (Thm.1). By not generating tuples or other objects, we avoid
the overhead of dynamic object construction and pattern-matching,
and also the hidden, often significant overhead of memory pressure
and boxing of primitive types. The result not merely approaches
but attains the performance of hand-optimized code, from the sim-
plest to the most complex cases, up to well over the complexity
point where hand-written code becomes infeasible. Although the
library combinators are purely functional and freely composable,
the actual running stream code is loop-based, highly tangled and
imperative.

Our technique relies on staging (§4.1), a form of metapro-
gramming, to achieve guaranteed stream fusion. This is in con-
trast to past use of source-to-source transformations of functional
languages [14], of AST run-time rewriting [21, 22], compile-time
macros [25] or Haskell GHC RULES [5, 23] to express domain-
specific streaming optimizations. Rather than relying on an opti-
mizer to eliminate artifacts of stream composition, we do not intro-
duce the artifacts in the first place. Our library transforms highly ab-
stract stream pipelines to code fragments that use the most suitable
imperative features of the host language. The appeal of staging is
its certainty and guarantees. Unlike the aforementioned techniques,
staging also ensures that the generated code is well-typed and well-
scoped, by construction. We discuss the trade-offs of staging in §9.

Our work describes a general approach, and not just a single
library design. To demonstrate the generality of the principles, we
implemented two library versions 2, in diverse settings. The first is
an OCaml library, staged with BER MetaOCaml [17]. The second
is a Scala library (also usable by client code in Java and other JVM
languages), staged with Lightweight Modular Staging (LMS) [26].

We evaluate strymonas on a suite of benchmarks (§7), compar-
ing with hand-written code as well as with other stream libraries
(including Java 8 Streams). Our staged implementation is up to
more than two orders-of-magnitude faster than standard Java/S-
cala/OCaml stream libraries, matching the performance of hand-
optimized loops. (Indeed, we occasionally had to improve hand-
written baseline code, because it was slower than the library.)

Thus, our contributions are: (i) the principles and the design of
stream libraries that support the widest set of operations from past
libraries and also permit the full elimination of abstraction over-
head. The main principle is a novel representation of streams that
captures rate properties of stream transformers and the form of ter-
mination conditions, while separating and abstracting components
of the entire stream state. This decomposition of the essence of
stream iteration is what allows us to perform very aggressive opti-
mization, via staging, regardless of the streaming pipeline config-
uration. (ii) The implementation of the design in terms of two dis-
tinct library versions for different languages and staging methods:
OCaml/MetaOCaml and Scala/JVM/LMS.

2. Overview: A Taste of the Library
We first give an overview of our approach, presenting the client
code (i.e., how the library is used) alongside the generated code
(i.e., what our approach achieves). Although we have imple-
mented two separate library versions, one for OCaml and one for
Scala/JVM languages, for simplicity, all examples in the paper will
be in (Meta)OCaml, which was also our original implementation.

2 https://strymonas.github.io/.

Stream representation (abstract)
type α stream

Producers
val of_arr : α array code → α stream
val unfold : (ζ code → (α * ζ) option code) →

ζ code → α stream

Consumer
val fold : (ζ code → α code → ζ code) →

ζ code → α stream → ζ code

Transformers
val map : (α code → β code) → α stream →

β stream
val filter : (α code → bool code) →

α stream → α stream
val take : int code → α stream → α stream
val flat_map : (α code → β stream) →

α stream → β stream
val zip_with : (α code → β code → γ code) →

(α stream → β stream → γ stream)

Figure 1: The library interface
For the sake of exposition, we take a few liberties with the

OCaml notation, simplifying the syntax of the universal and ex-
istential quantification and of sum data types with record compo-
nents. (The latter simplification—inline records—is supported in
the latest, 4.03, version of OCaml.) The paper is accompanied by
the complete code for the strymonas library (as an open-source
repository), also including our examples, tests, and benchmarks.

MetaOCaml is a dialect of OCaml with staging annotations
.〈e〉. and ∼e, and the code type [17, 34]. In the Scala version of
our library, staging annotations are implicit: they are determined
by inferred types. Staging annotations are optimization directives,
guiding the partial evaluation of library expressions. Thus, staging
annotations are not crucial to understanding what our library can
express, only how it is optimized. On first read, staging annotations
may be simply disregarded. We get back to them, in detail, in §4.1.

The (Meta)OCaml library interface is given in Figure 1. The
library includes stream producers (one generic—unfold, and one
specifically for arrays—of_arr), the generic stream consumer (or
stream reducer) fold, and a number of stream transformers. Ignor-
ing code annotations, the signatures are standard. For instance, the
generic unfold combinator takes a function from a state, ζ, to a
value α and a new state (or nothing at all), and, given an initial
state ζ, produces an opaque stream of αs.

The first example is summing the squares of elements of an
array arr—in mathematical notation,

∑
a2
i . The code

let sum = fold (fun z a → .〈∼a + ∼z〉.) .〈0〉.

of_arr .〈arr〉.
. map (fun x → .〈∼x * ∼x〉.)
. sum

is not far from the mathematical notation. Here, ., like the similar
operator in F#, is the inverse function application: argument to the
left, function to the right. The stream components are first-class
and hence may be passed around, bound to identifiers and shared;
in short, we can build libraries of more complex components.
In this simple example, the generated code is understandable:

let s_1 = ref 0 in
let arr_2 = arr in
for i_3 = 0 to Array.length arr_2 -1 do

let el_4 = arr_2.(i_3) in
let t_5 = el_4 * el_4 in
s_1 := t_5 + !s_1

done;
!s_1

https://strymonas.github.io/

It is relatively easy to see which part of the code came from
which part of the pipeline “specification”. The generated code has
no closures, tuples or other heap-allocated structures: it looks as
if it were hand-written by a competent OCaml programmer. The
iteration is driven by the source operator, of_arr, of the pipeline.
This is precisely the iteration pattern that Java 8 streams optimize.
As we will see in later examples, this is but one of the optimal
iteration patterns arising in stream pipelines.

The next example sums only some elements:

let ex = of_arr .〈arr〉. . map (fun x → .〈∼x * ∼x〉.)

ex . filter (fun x → .〈∼x mod 17 > 7〉.) . sum

We have abstracted out the mapped stream as ex. The earlier ex-
ample is, hence, ex . sum. The current example applies ex to the
more complex summator that first filters out elements before sum-
ming the rest. The next example limits the number of summed ele-
ments to a user-specified value n

ex . filter (fun x → .〈∼x mod 17 >7〉.)
. take .〈n〉.
. sum

We stress that the limit is applied to the filtered stream, not to the
original input; writing this example in mathematical notation would
be cumbersome. The generated code

let s_1 = ref 0 in
let arr_2 = arr in
let i_3 = ref 0 in
let nr_4 = ref n in
while !nr_4 > 0 && !i_3 ≤ Array.length arr_2 -1 do

let el_5 = arr_2.(! i_3) in
let t_6 = el_5 * el_5 in
incr i_3;
if t_6 mod 17 > 7
then (decr nr_4; s_1 := t_6+ !s_1)

done; ! s_1

again looks as if it were handwritten, by a competent programmer.
However, compared to the first example, the code is more tangled;
for example, the take .〈n〉. part of the pipeline contributes to three
separate places in the code: where the nr_4 reference cell is created,
tested and mutated. The iteration pattern is more complex. Instead
of a for loop there is a while, whose termination conditions come
from two different pipeline operators: take and of_arr.

The dot-product of two arrays arr1 and arr2 looks just as
simple

zip_with (fun e1 e2 → .〈∼e1 * ∼e2〉.)
(of_arr .〈arr1〉.)
(of_arr .〈arr2〉.) . sum

showing off the zipping of two streams, with the straightforward,
again hand-written quality, generated code:

let s_17 = ref 0 in
let arr_18 = arr1 in let arr_19 = arr2 in
for i_20 = 0 to
min (Array.length arr_18 -1)

(Array.length arr_19 -1) do
let el_21 = arr_18.(i_20) in
let el_22 = arr_19.(i_20) in
s_17 := el_21 * el_22 + !s_17

done; ! s_17

The optimal iteration pattern is different still (though simple): the
loop condition as well as the loop body are equally influenced by
two of_arr operators.

In the final, complex example we zip two complicated streams.
The first is a finite stream from an array, mapped, subranged,
filtered and mapped again. The second is an infinite stream of

natural numbers from 1, with a filtered flattened nested substream.
After zipping, we fold everything into a list of tuples.

zip_with (fun e1 e2 → .〈(∼e1,∼e2)〉.)
(of_arr .〈arr1〉. (* 1st stream *)
. map (fun x → .〈∼x * ∼x〉.)
. take .〈12〉.
. filter (fun x → .〈∼x mod 2 = 0〉.)
. map (fun x → .〈∼x * ∼x〉.))

(iota .〈1〉. (* 2nd stream *)
. flat_map (fun x → iota .〈∼x+ 1〉. . take .〈3〉.)
. filter (fun x → .〈∼x mod 2 = 0〉.))

. fold (fun z a → .〈∼a :: ∼z〉.) .〈[]〉.

We did not show any types, but they exist (and have been
inferred). Therefore, an attempt to use an invalid operation on
stream elements (like concatenating integers or applying an ill-
fitting stream component) will be immediately rejected by the type-
checker.

Although the above pipeline is purely functional, modular and
rather compact, the generated code (shown in Appendix A of the
extended version) is large, entangled and highly imperative. Writ-
ing such code correctly by hand is clearly challenging.

3. Stream Fusion Problem
The key to an expressive and performant stream library is a repre-
sentation of streams that fully captures the generality of streaming
pipelines and allows desired optimizations. To understand how the
representation affects implementation and optimization choices, we
review past approaches. We see that, although some of them take
care of the egregious overhead, none manage to eliminate all of
it: the assembled stream pipeline remains slower than hand-written
code.

The most straightforward representation of streams is a linked
list, or a file, of elements. It is also the least performing. The first ex-
ample in §2, of summing squares, will entail: (1) creating a stream
from an array by copying all elements into it; (2) traversing the
list creating another stream, with squared elements; (3) traversing
the result, summing the elements. We end up creating three inter-
mediate lists. Although the whole processing still takes time linear
in the size of the stream, it requires repeated traversals and the pro-
duction of linear-size intermediate structures. Also, this straightfor-
ward representation cannot cope with sources that are always ready
with an element: “infinite streams”.

The problem, thus, is deforestation [35]: eliminating intermedi-
ate, working data structures. For streams, in particular, deforesta-
tion is typically called “stream fusion”. One can discern two main
groups of stream representations that let us avoid building interme-
diate data structures of unbounded size.

Push Streams. The first, heavily algebraic approach, represents a
stream by its reducer (the fold operation) [20]. If we introduce the
“shape functor” for a stream with elements of type α as

type (α,ζ) stream_shape =
| Nil
| Cons of α * ζ

then the stream is formally defined as:3

type α stream = ∀ω. ((α,ω) stream_shape → ω) → ω

A stream of αs is hence a function with the ability to turn any
generic “folder” (i.e., a function from (α,ω) stream_shape to ω)
to a single ω. The “folder” function is formally called an F-algebra
for the (α,-) stream_shape functor.

For instance, an array is easily representable as such a fold:
3 Strictly speaking, stream should be a record type: in OCaml, only record
or object components may have the type with explicitly quantified type
variables. For the sake of clarity we lift this restriction in the paper.

let of_arr : α array → α stream =
fun arr → fun folder →
let s = ref (folder Nil) in
for i=0 to Array.length arr - 1 do

s := folder (Cons (arr.(i),!s))
done; !s

Reducing a stream with the reducing function f and the initial
value z is especially straightforward in this representation:

let fold : (ζ → α → ζ) → ζ → α stream → ζ =
fun f z str →
str (function Nil → z | Cons (a,x) → f x a)

More germane to our discussion is that mapping over the stream
(as well as filter-ing and flat_map-ing) are also easily express-
ible, without creating any variable-size intermediate data struc-
tures:

let map : (α → β) → α stream → β stream =
fun f str →
fun folder → str (fun x → match x with
| Nil → folder Nil
| Cons (a,x) → folder (Cons (f a,x)))

A stream element a is transformed “on the fly” without collect-
ing in working buffers. Our sample squaring-accumulating pipeline
runs in constant memory now. Deforestation, or stream fusion, has
been accomplished. The simplicity of this so-called “push stream”
approach makes it popular: it is used, for example, in the reducers
of Clojure as well as in the OCaml “batteries” library. It is also the
basis of Java 8 Streams, under an object-oriented reformulation of
the same concepts.

In push streams, it is the stream producer, e.g., of_arr, that
drives the optimal execution of the stream. Implementing take and
other such combinators that restrict the processing to a prefix of
the stream requires extending the representation with some sort
of a “feedback” mechanism (often implemented via exceptions).
Where push streams stumble is the zipping of two streams, i.e.,
the processing of two streams in parallel. This simply cannot be
done with constant per-element processing cost. Zipping becomes
especially complicated (as we shall see in §6.3) when the two
pipelines contain nested streams and hence produce elements at
generally different rates.4

Pull Streams. An alternative representation of streams, pull
streams, has a long pedigree, all the way from the generators of
Alphard [28] in the ’70s. These are objects that implement two
methods: init to initialize the state and obtain the first element,
and next to advance the stream to the next element, if any. Such a
“generator” (or IEnumerator, as it has come to be popularly known)
can also be understood algebraically—or rather, co-algebraically.
Whereas push streams represent a stream as a fold, pull streams,
dually, are the expression of an unfold [8, 20]:5

type α stream = ∃σ. σ * (σ → (α,σ) stream_shape)

The stream is, hence, a pair of the current state and the so-called
“step” function that, given a state, reports the end-of-stream condi-
tion Nil, or the current element and the next state. (Formally, the
step function is the F-co-algebra for the (α,-) stream_shape func-
tor.) The existential quantification over the state keeps it private: the
only permissible operation is to pass it to the step function.

4 The Reactive Extensions (Rx) framework [1] gives a real-life example
of the complexities of implementing zip. Rx is push-based and supports
zip at the cost of maintaining an unbounded intermediate queue. This
deals with the “backpressure in Zip” issue, extensively-discussed in the
Rx github repo. Furthermore, Rx seems to have abandoned blocking zip
implementations since 2014.
5 For the sake of explanation, we took another liberty with the OCaml
notation, avoiding the GADT syntax for the existential.

When an array is represented as a pull stream, the state is the
tuple of the array and the current index:

let of_arr : α array → α stream =
let step (i,arr) =

if i < Array.length arr
then Cons (arr.(i), (i+ 1,arr)) else Nil

in fun arr → ((0,arr),step)

The step function—a pure combinator rather than a closure—
dereferences the current element and advances the index. Reduc-
ing the pull stream now requires an iteration, of repeatedly call-
ing step until it reports the end-of-stream. (Although the types of
of_arr, fold, and map, etc. nominally remain the same, the mean-
ing of α stream has changed.)

let fold : (ζ → α → ζ) → ζ → α stream → ζ =
fun f z (s,step) →
let rec loop z s = match step s with
| Nil → z
| Cons (a,t) → loop (f z a) t
in loop z s

With pull streams, it is the reducer, i.e., the stream consumer, that
drives the processing. Mapping over the stream

let map : (α → β) → α stream → β stream =
fun f (s,step) →

let new_step = fun s → match step s with
| Nil → Nil
| Cons (a,t) → Cons (f a, t)
in (s,new_step)

merely transforms its step function: new_step calls the old step
and maps the returned current element, passing it immediately to
the consumer, with no buffering. That is, like push streams, pull
streams also accomplish fusion. Befitting their co-algebraic nature,
pull streams can represent both finite and infinite streams. Stream
combinators, like take, that cut evaluation short are also easy. On
the other hand, skipping elements (filtering) and nested streaming
is more complex with pull streams, requiring the generalization of
the stream_shape, as we shall see in §6. The main advantage of
pull streams over push streams is in expressiveness: pull streams
have the ability to process streams in parallel, enabling zip_with

as well as more complex stream merging. Therefore, we take pull
streams as the basis of our library.

Imperfect Deforestation. Both push and pull streams eliminate
the intermediate lists (variable-size buffers) that plague a naive im-
plementation of the stream library. Yet they do not eliminate all
the abstraction overhead. For example, the map stream combina-
tor transforms the current stream element by passing it to some
function f received as an argument of map. A hand-written imple-
mentation would have no other function calls. However, the pull-
stream map combinator introduces a closure: new_step, which re-
ceives a stream_shape value from the old step, pattern-matches on
it and constructs the new stream_shape. The push-stream map has
the same problem: The step function of of_arr unpacks the cur-
rent state and then packs the array and the new index again into
the tuple. This repeated deconstruction and construction of tuples
and co-products is the abstraction overhead, which a complete de-
forestation should eliminate, but pull and push streams, as com-
monly implemented, do not. Such “constant” factors make library-
assembled stream processing much slower than the hand-written
version (by up to two orders of magnitude—see §7).

4. Staging Streams
A well-known way of eliminating abstraction overhead and deliv-
ering “abstraction without guilt” is program generation: compiling

a high-level abstraction into efficient code. In fact, the original de-
forestation algorithm in the literature [35] is closely related to par-
tial evaluation [30]. This section introduces staging: one particular,
manual technique of partial evaluation. It lets us achieve our goal of
eliminating all abstraction overhead from the stream library. Perfect
stream fusion with staging is hard: §4.2 shows that straightforward
staging (or automated partial evaluation) does not achieve full de-
forestation. We have to re-think general stream processing (§5).

4.1 Multi-Stage Programming
Multi-stage programming (MSP), or staging for short, is a way to
write programs that generate programs. MSP may be thought of
as a principled version of the familiar “code templates”, where the
templates ensure by their very construction that the generated code
is not only syntactically well-formed but also well-scoped and well-
typed.

In this paper we use BER MetaOCaml [17], which is a dialect
of OCaml with MSP extensions. The first MSP feature is brackets,
.〈 and 〉., which enclose a code template. For example, .〈1+ 2〉. is a
template for generating code to add two literals 1 and 2.

let c = .〈1 + 2〉.
 val c : int code = .〈1 + 2〉.

The output of the interpreter demonstrates that the code template
is a first-class object; moreover, it is a value: a code value. MetaO-
Caml can print such values, and also write them into a file to com-
pile it later. The code value is typed: our sample template generates
integer-valued code.

As behooves templates, they can have holes to splice-in other
templates. The splicing MSP feature, ∼, is called an escape. In
the following example, the template cf has two holes, to be filled
in with the same expression. Then cf c fills the holes with the
expression c created earlier.

let cf x = .〈∼x + ∼x〉.
 val cf : int code → int code = <fun>
cf c
 - : int code = .〈(1 + 2) + (1 + 2)〉.

One may regard brackets and escapes as annotating code: which
portions should be evaluated as usual (at the present stage, so
to speak) and which in the future (when the generated code is
compiled and run).

4.2 Simple Staging of Streams
We can turn a library into, effectively, a compiler of efficient code
by adding staging annotations. This is not a simple matter of anno-
tating one of the standard definitions (either pull- or push-style) of
α stream, however. To see this, we next consider staging a set of
pull-stream combinators. Staging helps with performance, but the
abstraction overhead still remains.

The first step in using staging is the so-called “binding-time
analysis”: finding out which values can be known only at run-
time (“dynamically”) and what is known already at code-generation
time, (“statically”) and hence can be pre-computed. Partial evalu-
ators perform binding-time analysis, with various degrees of so-
phistication and success, automatically and opaquely. In staging,
binding-time analysis is manual and explicit.

We start with the pull streams map combinator, which, recall, has
a type signature:

type α stream = ∃σ. σ * (σ → (α,σ) stream_shape)
val map : (α → β) → α stream → β stream

Its first argument, the mapping function f, takes the current stream
element, which is clearly not known until the processing pipeline
is run. The result is likewise dynamic. However, the mapping op-
eration itself can be known statically. Hence the staged f may be

given the type α code → β code: given code to compute αs, the
mapping function, f, is a static way to produce code to compute βs.

The second argument of map is the pull stream, a tuple of the
current state (σ) and the step function. The state is not known
statically. The result of the step function depends on the current
state and, hence, is fully dynamic. The step function itself, however,
can be statically known. Hence we arrive at the following type of
the staged stream

type α st_stream =
∃σ. σ code * (σ code → (α,σ) stream_shape code)

Having done such binding-time analysis for the arguments of the
map combinator, it is straightforward to write the staged map, by
annotating—i.e., placing brackets and escapes on—the original map
code according to the decided binding-times:

let map : (α code → β code) →
α st_stream → β st_stream =

fun f (s,step) →
let new_step = fun s → .〈match ∼(step s) with
| Nil → Nil
| Cons (a,t) → Cons (∼(f .〈a〉.), t)〉.
in (s,new_step)

The combinators of_arr and fold are staged analogously. We use
the method of [11] to prove the correctness, which easily applies
to this case, given that map is non-recursive. The sample processing
pipeline (the first example from §2)

of_arr .〈[|0;1;2;3;4|]〉.
. map (fun a → .〈∼a * ∼a〉.)
. fold (fun x y → .〈∼x + ∼y〉.) .〈0〉.

then produces the following code:

- : int code = .〈
let rec loop_1 z_2 s_3 =

match match match s_3 with
| (i_4,arr_5) →

if i_4 < (Array.length arr_5)
then Cons ((arr_5.(i_4)),

((i_4 + 1), arr_5))
else Nil

with
| Nil → Nil
| Cons (a_6,t_7) → Cons ((a_6 * a_6), t_7)

with
| Nil → z_2
| Cons (a_8,t_9) → loop_1 (z_2 + a_8) t_9 in

loop_1 0 (0, [|0;1;2;3;4|])〉.

As expected, no lists, buffers or other variable-size data structures
are created. Some constant overhead is gone too: the squaring
operation of map is inlined. However, the triple-nested match be-
trays the remaining overhead of constructing and deconstructing
stream_shape values. Intuitively, the clean abstraction of streams
(encoded in the pull streams type of α stream) isolates each oper-
ator from others. The result does not take advantage of the property
that, for this pipeline (and others of the same style), the looping of
all three operators (of_arr, map, and fold) will synchronize, with
all of them processing elements until the same last one. Eliminating
the overhead requires a different computation model for streams.

5. Eliminating All Abstraction Overhead in
Three Steps

We next describe how to purge all of the stream library abstrac-
tion overhead and generate code of hand-written quality and per-
formance. We will be continuing the simple running example of
the earlier sections, of summing up squared elements of an array.
(§6 will later lift the same insights to more complex pipelines.) As

in §4.2, we will be relying on staging to generate well-formed and
well-typed code. The key to eliminating abstraction overhead from
the generated code is to move it to a generator, by making the gen-
erator take better advantage of the available static knowledge. This
is easier said than done: we have to use increasingly more sophisti-
cated transformations of the stream representation to expose more
static information and make it exploitable. The three transforma-
tions we show next require more-and-more creativity and domain
knowledge, and cannot be performed by a simple tool, such as an
automated partial evaluator. In the process, we will identify three
interesting concepts in stream processing: the structure of iteration
(§5.1), the state kept (§5.2), and the optimal kind of loop construct
and its contributors (§5.3).

5.1 Fusing the Stepper
Modularity is the cause of the abstraction overhead we observed
in §4.2: structuring the library as a collection of composable com-
ponents forces them to conform to a single interface. For example,
each component has to use the uniform stepper function interface
(see the st_stream type) to report the next stream element or the
end of the stream. Hence, each component has to generate code to
examine (deconstruct) and construct the stream_shape data type.

At first glance, nothing can be done about this: the result of
the step function, whether it is Nil or a Cons, depends on the cur-
rent state, which is surely not known until the stream processing
pipeline is run. We do know however that the step function invari-
ably returns either Nil or a Cons, and the caller must be ready to
handle both alternatives. We should exploit this static knowledge.

To statically (at code generation-time) make sure that the caller
of the step function handles both alternatives of its result, we have
to change the function to accept a pair of handlers: one for a Nil

result and one for a Cons. In other words, we have to change the
result’s representation, from the sum stream_shape to a product
of eliminators. Such a replacement effectively removes the need to
construct the stream_shape data type at run-time in the first place.
Essentially, we change step to be in continuation-passing style,
i.e., to accept the continuation for its result. The stream_shape

data type nominally remains, but it becomes the argument to the
continuation and we mark its variants as statically known (with
no need to construct it at run-time). All in all, we arrive at the
following type for the staged stream

type α st_stream =
∃σ. σ code *

(∀ω. σ code →
((α code,σ code) stream_shape → ω code) →

ω code)

That is, a stream is again a pair of a hidden state, σ (only known
dynamically, i.e., σ code), and a step function, but the step function
does not return stream_shape values (of dynamic αs and σs) but
accepts an extra argument (the continuation) to pass such values
to. The step function returns whatever (generic type ω, only known
dynamically) the continuation returns.

The variants of the stream_shape are now known when step

calls its continuation, which happens at code-generation time. The
map combinator becomes

let map : (α code → β code) →
α st_stream → β st_stream =

fun f (s,step) →
let new_step s k = step s @@ function
| Nil → k Nil
| Cons (a,t) → .〈let a' = ∼(f a) in

∼(k @@ Cons (.〈a'〉., t))〉.
in (s,new_step)

taking into account that step, instead of returning the result, calls
a continuation on it. Although the data-type stream_shape re-

mains, its construction and pattern-matching now happen at code-
generation time, i.e., statically. As another example, the fold com-
binator becomes:

let fold : (ζ code → α code → ζ code) →
ζ code → α st_stream → ζ code

= fun f z (s,step) →
.〈let rec loop z s = ∼(step .〈s〉. @@ function
| Nil → .〈z〉.
| Cons (a,t) → .〈loop ∼(f .〈z〉. a) ∼t〉.)
in loop ∼z ∼s〉.

Our running example pipeline, summing the squares of all elements
of a sample array, now generates the following code

val c : int code = .〈
let rec loop_1 z_2 s_3 =

match s_3 with
| (i_4,arr_5) →

if i_4 < (Array.length arr_5)
then

let el_6 = arr_5.(i_4) in
let a'_7 = el_6 * el_6 in
loop_1 (z_2 + a'_7) ((i_4 + 1), arr_5)

else z_2 in
loop_1 0 (0, [|0;1;2;3;4|])〉.

In stark contrast with the naive staging of §4.2, the generated code
has no traces of the stream_shape data type. Although the data type
is still constructed and deconstructed, the corresponding overhead
is shifted from the generated code to the code-generator. Generat-
ing code may take a bit longer but the result is more efficient. For
full fusion, we will need to shift overhead to the generator two more
times.

5.2 Fusing the Stream State
Although we have removed the most noticeable repeated construc-
tion and deconstruction of the stream_shape data type, the abstrac-
tion overhead still remains. The main loop in the generated code
pattern-matches on the current state, which is the pair of the index
and the array. The recursive invocation of the loop packs the in-
dex and the array back into a pair. Our task is to deforest the pair
away. This seems rather difficult, however: the state is being up-
dated on every iteration of the loop, and the loop structure (e.g.,
number of iterations) is generally not statically known. Although it
is the (statically known) step function that computes the updated
state, the state has to be threaded through the fold’s loop, which
treats it as a black-box piece of code. The fact it is a pair cannot be
exploited and, hence, the overhead cannot be shifted to the genera-
tor. There is a way out, however. It requires a non-trivial step: The
threading of the state through the loop can be eliminated if the state
is mutable.

The step function no longer has to return (strictly speaking: pass
to its continuation) the updated state: the update happens in place.
Therefore, the state no longer has to be annotated as dynamic—its
structure can be known to the generator. Finally, in order to have the
appropriate operator allocate the reference cell for the array index,
we need to employ the let-insertion technique [4], by also using
continuation-passing style for the initial state. The definition of the
stream type (α st_stream) now becomes:

type α st_stream =
∃σ.

(∀ω. (σ → ω code) → ω code) *
(∀ω. σ →

((α code,unit) stream_shape → ω code) →
ω code)

That is, a stream is a pair of an init function and a step function.
The init function implicitly hides a state: it knows how to call
a continuation (that accepts a static state and returns a generic

dynamic value, ω) and returns the result of the continuation. The
step function is much like before, but operating on a statically-
known state (or more correctly, a hidden state with a statically-
known structure).

The new of_arr combinator demonstrates the let-insertion (the
allocation of the reference cell for the current array index) in init,
and the in-place update of the state (the incr operation):

let of_arr : α array code → α st_stream =
let init arr k =
.〈let i = ref 0 and

arr = ∼arr in ∼(k (.〈i〉.,.〈arr〉.))〉.
and step (i,arr) k =
.〈if !(∼i) < Array.length ∼arr

then
let el = (∼arr).(!(∼i)) in
incr ∼i;
∼(k @@ Cons (.〈el〉., ()))

else ∼(k Nil)〉.
in
fun arr → (init arr,step)

Once again, until now the state of the of_arr stream
had the type (int * α array) code. It has become
int ref code * α array code, the statically known pair of two
code values. The construction and deconstruction of that pair now
happens at code-generation time.

The earlier map combinator did not even look at the current state
(nor could it), therefore its code remains unaffected by the change
in the state representation. The fold combinator no longer has to
thread the state through its loop:

let fold : (ζ code → α code → ζ code) →
ζ code → α st_stream → ζ code

= fun f z (init,step) →
init @@ fun s →
.〈let rec loop z = ∼(step s @@ function
| Nil → .〈z〉.
| Cons (a,_) → .〈loop ∼(f .〈z〉. a)〉.)
in loop ∼z〉.

It obtains the state from the initializer and passes it to the step
function, which knows its structure. The generated code for the
running-example stream-processing pipeline is:

val c : int code = .〈
let i_8 = ref 0
and arr_9 = [|0;1;2;3;4|] in
let rec loop_10 z_11 =

if ! i_8 < Array.length arr_9
then

let el_12 = arr_9.(! i_8) in
incr i_8;
let a'_13 = el_12 * el_12 in
loop_10 (z_11+ a'_13)

else z_11 in
loop_10 0〉.

The resulting code shows the absence of any overhead. All inter-
mediate data structures have been eliminated. The code is what we
could expect to get from a competent OCaml programmer.

5.3 Generating Imperative Loops
It seems we have achieved our goal. The library (extended for
filtering, zipping, and nested streams) can be used in (Meta)OCaml
practice. It relies, however, on tail-recursive function calls. These
may be a good fit for OCaml,6 but not for Java or Scala. (In Scala,
tail-recursion is only supported with significant run-time overhead.)
The fastest way to iterate is to use the native while-loops, especially

6 Actually, our benchmarking reveals that for- and while-loops are currently
faster even in OCaml.

in Java or Scala. Also, the dummy (α code,unit) stream_shape

in the α st_stream type looks odd: the stream_shape data type has
become artificial. Although unit has no effect on generated code, it
is less than pleasing aesthetically to need a placeholder type in our
signature. For these reasons, we embark on one last transformation.

The last step of stream staging is driven by several insights. First
of all, most languages provide two sorts of imperative loops: a gen-
eral while-loop and the more specific, and often more efficient (at
least in OCaml) for-loops. We would like to be able to generate for-
loops if possible, for instance, in our running example. However,
with added subranging or zipping (described in detail in §6, below)
the pipeline can no longer be represented as an OCaml for-loop,
which cannot accommodate extra termination tests. Therefore, the
stream producer should not commit to any particular loop represen-
tation. Rather, it has to collect all the needed information for loop
generation, but leave the actual generation to the stream consumer,
when the entire pipeline is known. Thus the stream representation
type becomes as follows:

type (α,σ) producer_t =
| For of

{upb: σ → int code;
index: σ → int code → (α → unit code) →

unit code}
| Unfold of

{term: σ → bool code;
step: σ → (α → unit code) → unit code}

and α st_stream =
∃σ. (∀ω. (σ → ω code) → ω code) *

(α,σ) producer_t
and α stream = α code st_stream

That is, a stream type is a pair of an init function (which,
as before, has the ability to call a continuation with a hidden
state) and an encoding of a producer. We distinguish two sorts of
producers: a producer that can be driven by a for-loop or a general
“unfold” producer. Each of them supports two functions. A for-loop
producer carries the exact upper bound, upb, for the loop index
variable and the index function that returns the stream element
given an index. For a general producer, we refactor (with an eye
for the while-loop) the earlier representation

((α code,unit) stream_shape → ω code) → ω code

into two components: the termination test, term, producing a dy-
namic bool value (if the test yields false for the current state, the
loop is finished) and the step function, to produce a new stream
element and advance the state. We also used another insight: the
imperative-loop–style of the processing pipeline makes it unneces-
sary (moreover, difficult) to be passing around the consumer (fold)
state from one iteration to another. It is easier to accumulate the
state in a mutable cell. Therefore, the answer type of the step and
index functions can be unit code rather than ω code.

There is one more difference from the earlier staged stream,
which is a bit harder to see. Previously, the stream value was
annotated as dynamic: we really cannot know before running the
pipeline what the current element is. Now, the value produced
by the step or index functions has the type α without any code

annotations, meaning that it is statically known! Although the value
of the current stream element is determined only when the pipeline
is run, its structure can be known earlier. For example, the new
type lets the producer yield a pair of values: even though the values
themselves are annotated as dynamic (of a code type) the fact that
it is a pair can be known statically. We use this extra flexibility of
the more general stream value type extensively in §6.2.

We can now see the new design in action. The stream producer
of_arr is surely the for-loop-style producer:

let of_arr : α array code → α stream = fun arr →
let init k = .〈let arr = ∼arr in ∼(k .〈arr〉.)〉.

and upb arr = .〈Array.length ∼arr - 1〉.
and index arr i k =

.〈let el = (∼arr).(∼i) in ∼(k .〈el〉.)〉.
in (init, For {upb;index})

In contrast, the unfold combinator
let unfold : (ζ code → (α * ζ) option code) →

ζ code → α stream = ...

is an Unfold producer.
Importantly, a producer that starts as a for-loop may later be

converted to a more general while-loop producer, (so as to tack on
extra termination tests—see take in §6.2). Therefore, we need the
conversion function

let for_unfold : α st_stream → α st_stream= function
| (init,For {upb;index}) →

let init k = init @@ fun s0 →
.〈let i = ref 0 in ∼(k (.〈i〉.,s0))〉.

and term (i,s0) = .〈!(∼i) ≤ ∼(upb s0)〉.
and step (i,s0) k =

index s0 .〈!(∼i)〉. @@
fun a → .〈(incr ∼i; ∼(k a))〉.

in (init, Unfold {term;step})
| x → x

used internally within the library.
The stream mapping operation composes the mapping function

with the index or step: transforming, as before, the produced value
“in-flight”, so to speak.

let rec map_raw: (α → (β → unit code) → unit code)
→ α st_stream → β st_stream =

fun tr → function
| (init,For ({index;_} as g)) →

let index s i k = index s i @@ fun e → tr e k in
(init, For {g with index})

| (init,Unfold ({step;_} as g)) →
let step s k = step s @@ fun e → tr e k in
(init, Unfold {g with step})

We have defined map_raw with the general type (to be used later,
e.g., in §6.2); the familiar map is a special case:

let map : (α code → β code) → α stream → β stream
= fun f str → map_raw (fun a k →

.〈let t = ∼(f a) in ∼(k .〈t〉.)〉.) str

The mapper tr in map_raw is in the continuation-passing style with
the unit code answer-type. This allows us to perform let-insertion
[4], binding the mapped value to a variable, and hence avoiding the
potential duplication of the mapping operation.

As behooves pull-style streams, the consumer at the end of the
pipeline generates the loop to drive the iteration. Yet we do manage
to generate for-loops, characteristic of push-streams, see §3.

let rec fold_raw :
(α → unit code) → α st_stream → unit code
= fun consumer → function
| (init,For {upb;index}) →

init @@ fun sp →
.〈for i = 0 to ∼(upb sp) do
∼(index sp .〈i〉. @@ consumer)

done〉.
| (init,Unfold {term;step}) →

init @@ fun sp →
.〈while ∼(term sp) do
∼(step sp @@ consumer)

done〉.

It is simpler (especially when we add nesting later) to implement
a more general fold_raw, which feeds the eventually produced
stream element to the given imperative consumer. The ordinary
fold is a wrapper that provides such a consumer, accumulating the
result in a mutable cell and extracting it at the end.

let fold : (ζ code → α code → ζ code) →
ζ code → α stream → ζ code

= fun f z str →
.〈let s = ref ∼z in

(∼(fold_raw
(fun a → .〈s := ∼(f .〈!s〉. a)〉.)
str);

!s)〉.

The generated code for our running example is:
val c : int code = .〈

let s_1 = ref 0 in
let arr_2 = [|0;1;2;3;4|] in
for i_3 = 0 to (Array.length arr_2) - 1 do

let el_4 = arr_2.(i_3) in
let t_5 = el_4 * el_4 in s_1 := !s_1 + t_5

done;
! s_1〉.

This code could not be better. It is what we expect an OCaml pro-
grammer to write, and, furthermore, such code performs ultimately
well in Scala, Java and other languages. We have achieved our
goal—for simple pipelines, at least.

6. Full Library
The previous section presented our approach of eliminating all ab-
straction overhead of a stream library through the creative use of
staging—generating code of hand-written quality and efficiency.
However, a full stream library has more combinators than we have
dealt with so far. This section describes the remaining facilities:
filtering, sub-ranging, nested streams and parallel streams (zip-
ping). Consistently achieving deforestation and high performance
in the presence of all these features is a challenge. We identify
three concepts of stream processing that drive our effort: the rate
of production and consumption of stream elements (linearity and
filtering—§6.1), size-limiting a stream (§6.2), and processing mul-
tiple streams in tandem (zipping—§6.3). We conclude our core dis-
cussion with a theorem of eliminating all overhead.

6.1 Filtered and Nested Streams
Our library is primarily based on the design presented at the end of
§5. Filtering and nested streams (flat_map) require an extension,
however, which lets us treat filtering and flat-mapping uniformly.

Let us look back at this design. It centers on two operations,
term and step: forgetting for a moment the staging annotations,
term s decides whether the stream still continues, while step s

produces the current element and advances the state. Exactly one
stream element is produced per advance in state. We call such
streams linear. They have many useful algebraic properties, espe-
cially when it comes to zipping. We will exploit them in §6.3.

Clearly the of_arr stream producer and the more general
unfold producers build linear streams. The map operation pre-
serves the linearity. What destroys it is filtering and nesting. In
the filtered stream prod . filter p, the advancement of the prod

state is no longer always accompanied by the production of the
stream element: if the filter predicate p rejects the element, the
pipeline will yield nothing for that iteration. Likewise, in the
nested stream prod . flat_map (fun x → inner_prod x), the
advancement of the prod state may lead to zero, one, or many
stream elements given to the pipeline consumer.

Given the importance of linearity (to be seen in full in §6.3) we
keep track of it in the stream representation. We represent a non-
linear stream as a composition of an always-linear producer with a
non-linear transformer:

type card_t = AtMost1 | Many

type (α,σ) producer_t =

| For of
{upb: σ → int code;
index: σ → int code → (α → unit code) →

unit code}
| Unfold of

{term: σ → bool code;
card: card_t;
step: σ → (α → unit code) → unit code}

and α producer =
∃σ. (∀ω. (σ → ω code) → ω code) *

(α,σ) producer_t
and α st_stream =
| Linear of α producer
| Nested of ∃β. β producer * (β → α st_stream)

and α stream = α code st_stream

The difference from the earlier representation in §5 is the addition
of a sum data type with variants Linear and Nested, for linear and
nested streams. We also added a cardinality marker to the general
producer, noting if it generates possibly many elements or at most
one.

The flat_map combinator adds a non-linear transformer to the
stream (recursively descending into the already nested stream):

let rec flat_map_raw :
(α → β st_stream) → α st_stream → β st_stream =

fun tr → function
| Linear prod → Nested (prod,tr)
| Nested (prod,nestf) →

Nested (prod,fun a → flat_map_raw tr @@ nestf a)

let flat_map :
(α code → β stream) → α stream → β stream =
flat_map_raw

The filter combinator becomes just a particular case of flat-
mapping: nesting of a stream that produces at most one element:

let filter : (α code → bool code) →
α stream → α stream = fun f →

let filter_stream a =
((fun k → k a),
Unfold {card = AtMost1; term = f;

step = fun a k → k a})
in flat_map_raw (fun x → Linear (filter_stream x))

The addition of recursively Nested streams requires an adjustment
of the earlier, §5, map_raw and fold definitions to recursively de-
scend down the nesting. The adjustment is straightforward; please
see the accompanying source code for details. The adjusted fold

will generate nested loops for nested streams.

6.2 Sub-Ranging and Infinite Streams
The stream combinator take limits the size of the stream:

val take : int code → α stream → α stream

For example, take .〈10〉. str is a stream of the first 10 elements
of str, if there are that many. It is the take combinator that lets
us handle conceptually infinite streams. Such infinite streams are
easily created with unfold: for example, iota n, the stream of all
natural numbers from n up:

let iota n = unfold (fun n → .〈Some (∼n,∼n+ 1)〉.) n

The implementation of take demonstrates and justifies design
decisions that might have seemed arbitrary earlier. For example,
distinguishing linear streams and indexed, for-loop–style producers
in the representation type pays off. In a linear stream pipeline, the
number of elements at the end of the pipeline is the same as the
number of produced elements. Therefore, for a linear stream, take
can impose the limit close to the production. The for-loop-style
producer is particularly easy to limit in size: we merely need to
adjust the upper bound:

let take = fun n → function
| Linear (init, For {upb;index}) →

let upb s = .〈min (∼n-1) ∼(upb s)〉. in
Linear (init, For {upb;index})

...

Limiting the size of a non-linear stream is slightly more compli-
cated:

let take = fun n → function
...
| Nested (p,nestf) →

Nested (add_nr n (for_unfold p),
fun (nr,a) →
map_raw (fun a k → .〈(decr ∼nr; ∼(k a))〉.) @@
more_termination .〈! ∼nr > 0〉. (nestf a))

The idea is straightforward: allocate a reference cell nr with the
remaining element count (initially n), add the check !nr > 0 to
the termination condition of the stream producer, and arrange
to decrement the nr count at the end of the stream. Recall, for
a non-linear stream—a composition of several producers—the
count of eventually produced elements may differ arbitrarily from
the count of the elements emitted by the first producer. A mo-
ment of thought shows that the range check !nr > 0 has to be
added not only to the first producer but to the producers of all
nested substreams: this is the role of function more_termination

(see the accompanying code for its definition) in the fragment
above. The operation add_nr allocates cell nr and adds the ter-
mination condition to the first producer. Recall that, since for-
loops in OCaml cannot take extra termination conditions, a for-
loop-style producer has to be first converted to a general unfold-
style producer, using for_unfold, which we defined in §5. The
operation add_nr (definition not shown) also adds nr to the
produced value: The result of add_nr n (for_unfold p) is of
type (int ref code,α code) st_stream. Adding the operation to
decrement nr is conveniently done with map_raw from §5. We, thus,
now see the use for the more general (α and not just α code) stream
type and the general stream mapping function.

6.3 zip: Fusing Parallel Streams
This section describes the most complex operation: handling two
streams in tandem, i.e., zipping:

val zip_with : (α code → β code → γ code) →
(α stream → β stream → γ stream)

Many stream libraries lack this operation: first, because zipping is
practically impossible with push streams, due to inherent complex-
ity, as we shall see shortly. Linear streams and the general map_raw
operation turn out to be important abstractions that make the prob-
lem tractable.

One cause of the complexity of zip_with is the need to consider
many special cases, so as to generate code of hand-written quality.
All cases share the operation of combining the elements of two
streams to obtain the element of the zipped stream. It is convenient
to factor out this operation:

val zip_raw: α st_stream → β st_stream →
(α * β) st_stream

let zip_with f str1 str2 =
map_raw (fun (x,y) k → k (f x y)) @@
zip_raw str1 str2

The auxiliary zip_raw builds a stream of pairs—statically known
pairs of dynamic values. Therefore, the overhead of constructing
and deconstructing the pairs is incurred only once, in the generator.
There is no tupling in the generated code.

The zip_raw function is a dispatcher for various special cases,
to be explained below.

let rec zip_raw str1 str2 = match (str1,str2) with
| (Linear prod1, Linear prod2) →

Linear (zip_producer prod1 prod2)
| (Linear prod1, Nested (prod2,nestf2)) →

push_linear (for_unfold prod1)
(for_unfold prod2,nestf2)

| (Nested (prod1,nestf1), Linear prod2) →
map_raw (fun (y,x) k → k (x,y)) @@
push_linear (for_unfold prod2)

(for_unfold prod1,nestf1)
| (str1,str2) →

zip_raw (Linear (make_linear str1)) str2

The simplest case is zipping two linear streams. Recall, a linear
stream produces exactly one element when advancing the state.
Zipped linear streams, hence, yield a linear stream that produces
a pair of elements by advancing the state of both argument streams
exactly once. The pairing of the stream advancement is especially
efficient for for-loop–style streams, which share a common state,
the index:

let rec zip_producer:
α producer → β producer → (α * β) producer =

fun p1 p2 → match (p1,p2) with
| (i1,For f1), (i2,For f2) →

let init k =
i1.init @@ fun s1 →
i2.init @@ fun s2 → k (s1,s2)

and upb (s1,s2) = .〈min ∼(f1.upb s1)
∼(f2.upb s2)〉.)

and index fun (s1,s2) i k =
f1.index s1 i @@ fun e1 →
f2.index s2 i @@ fun e2 → k (e1,e2)

in (init, For {upb;index})
| (* elided *)

In the general case, zip_raw str1 str2 has to determine how
to advance the state of str1 and str2 to produce one element of the
zipped stream: the pair of the current elements of str1 and str2.
Informally, we have to reason all the way from the production of
an element to the advancement of the state. For linear streams, the
relation between the current element and the state is one-to-one.
In general, the state of the two components of the zipped stream
advance at different paces. Consider the following sample streams:

let stre = of_arr arr1
. filter (fun x → .〈∼x mod 2 = 0〉.)

let strq = of_arr arr2
. map (fun x → .〈∼x * ∼x〉.)

let str2 = of_arr arr1
. flat_map (fun _ → of_arr .〈[|1;2]〉.)

let str3 = of_arr arr1
. flat_map (fun _ → of_arr .〈[|1;2;3]〉.)

To produce one element of zip_raw stre strq, the state of stre

has to be advanced a statically-unknown number of times. Zipping
nested streams is even harder—e.g., zip_raw str2 str3, where the
states advance in complex patterns and the end of the inner stream
of str2 does not align with the end of the inner stream in str3.

Zipping simplifies if one of the streams is linear, as in
zip_raw stre strq. The key insight is to advance the linear
stream strq after we are sure to have obtained the element of the
non-linear stream stre. This idea is elegantly realized as map-
ping of the step function of strq over stre (the latter, is, recall,
int stream, which is int code st_stream), obtaining the desired
zipped (int code, int code) st_stream:

map_raw (fun e1 k →
strq.step sq (fun e2 → k (e1,e2))) stre

The above code is an outline: we have to initialize strq to obtain
its state sq, and we need to push the termination condition of strq

into stre. Function push_linear in the accompanying code takes
care of all these details.

The last and most complex case is zipping two non-linear
streams. Our solution is to convert one of them to a linear stream,
and then use the approach just described. Turning a non-linear
stream to a producer involves “reifying” a stream: converting an
α stream data type to essentially a (unit → α option) code

function, which, when called, reports the new element or the end
of the stream. We have to create a closure and generate and de-
construct the intermediate data type α option. There is no way
around this: in one form or another, we have to capture the non-
linear stream’s continuation. The human programmer will have to
do the same—this is precisely what makes zipping so difficult in
practice. Our library reifies only one of the two zipped streams,
without relying on tail-call optimization, for maximum portability.

6.4 Elimination of All Overhead, Formally
Sections 2, above, and 7, below, demonstrate the elimination of
abstraction overhead on selected examples and benchmarks. We
now state how and why the overhead is eliminated in all cases.

We call the higher-order arguments of map, filter, zip_with,
etc. “user-generators”: they are specified by the library user and
provide per-element stream processing.

THEOREM 1. Any well-typed pipeline generator—built by com-
posing a stream producer, Fig.1, with an arbitrary combination
of transformers followed by a reducer—terminates, provided the
user-generators do. The resulting code—with the sole exception
of pipelines zipping two flat-mapped streams—constructs no data
structures beyond those constructed by the user-generators.

Therefore, if the user generators proceed without construc-
tion/allocation, the entire pipeline, after the initial set-up, runs with-
out allocations. The only exception is the zipping of two streams
that are both made by flattening inner streams. In this case, the rate-
adjusting allocation is inevitable, even in hand-written code, and is
not considered overhead.

Proof sketch: The proof is simple, thanks to the explicitness of
staging and treating the generated code as an opaque value that
cannot be deconstructed and examined. Therefore, the only tuple
construction operations in the generated code are those that we have
explicitly generated. Hence, to prove our theorem, we only have
to inspect the brackets that appear in our library implementation,
checking for tuples or other objects.

7. Experiments
We evaluated our approach on several benchmarks from past liter-
ature, measuring the iteration throughput:

• sum: the simplest of_arr arr . sum pipeline, summing the ele-
ments of an array;

• sumOfSquares: our running example from §4.2 on;

• sumOfSquaresEven: the sumOfSquares benchmark with added
filter, summing the squares of only the even array elements;

• cart:
∑

xiyj , using flat_map to build the outer-product stream;

• maps: consecutive map operations with integer multiplication;

• filters: consecutive filter operations using integer comparison;

• dotProduct: compute dot product of two arrays using zip_with;

• flatMap after zipWith: compute
∑

(xi+xi)yj , like cart above,
doubling the x array via zip_with (+) with itself;

• zipWith after flatMap: zip_with of two streams one of which
is the result of flat_map;

• flat map take: flat_map followed by take.

The source code of all benchmarks is available at the project’s
repository and the OCaml versions are also listed in Appendix D of
the extended version. Our benchmarks come from the sets by Mur-
ray et al. [21] and Coutts et al. [5], to which we added more com-
plex combinations (the last three on the list above). (The Murray
and Coutts sets also contain a few more simple operator combina-
tions, which we omit for conciseness, as they share the performance
characteristics of other benchmarks.)

The staged code was generated using our library (strymonas),
with MetaOCaml on the OCaml platform and LMS on Scala, as de-
tailed below. As one basis of comparison, we have implemented all
benchmarks using the streams libraries available on each platform7:
Batteries 8 in OCaml and the standard Java 8 and Scala streams. As
there is not a unifying module that implements all the combinators
we employ, we use data type conversions where possible. Java 8
does not support a zip operator, hence some benchmarks are miss-
ing for that setup.9

As the baseline and the other basis of comparison, we have
hand-coded all the benchmarks, using high-performance, impera-
tive code, with while or index-based for-loops, as applicable. In
Scala we use only while-loops as they are the analogue of imper-
ative iterations; for-loops in Scala operate over Ranges and have
worse performance. In fact, in one case we had to re-code the hand-
optimized loop upon discovering that it was not as optimal as we
thought: the library-generated code significantly outperformed it!

Input: All tests were run with the same input set. For the sum,
sumOfSquares, sumOfSquaresEven, maps, filters we used an
array of N = 100, 000, 000 small integers: xi = i mod 10. The
cart test iterates over two arrays. An outer one of 10, 000, 000
integers and an inner one of 10. For the dotProduct we used
10, 000, 000 integers, for the flatMap after zipWith 10, 000, for
the zipWith after flatMap 10, 000, 000 and for the flat map take
N numbers sub-sized by 20% of N .

Setup: The system we use runs an x64 OSX El Capitan 10.11.4
operating system on bare metal. It is equipped with a 2.7 GHz Intel
Core i5 CPU (I5-5257U) having 2 physical and 2 logical cores.
The total memory of the system is 8 GB of type 1867 MHz DDR3.
We use version build 1.8.0 65-b17 of the Open JDK. The compiler
versions of our setup are presented in the table below:

Language Compiler Staging

Java Java 8 (1.8.0 65) —
Scala 2.11.2 LMS 0.9.0

OCaml 4.02.1 BER MetaOCaml N102

Automation: For Java and Scala benchmarks we used the Java
Microbenchmark Harness (JMH) [29] tool: a benchmarking tool
for JVM-based languages that is part of the OpenJDK. JMH is
an annotation-based tool and takes care of all intrinsic details of
the execution process. Its goal is to produce as objective results as
possible. The JVM performs JIT compilation (we use the C2 JIT
compiler) so the benchmark author must measure execution time
after a certain warm-up period to wait for transient responses to
settle down. JMH offers an easy API to achieve that. In our bench-
marks we employed 30 warm-up iterations and 30 proper iterations.

7 We restrict our attention to the closest feature-rich apples-to-apples com-
parables: the industry-standard libraries for OCaml+JVM languages. We
also report qualitative comparisons in §8.
8 Batteries is the widely used “extended standard” library in OCaml http:
//batteries.forge.ocamlcore.org/.
9 One could emulate zip using iterator from Java 8 push-streams—at
significant drop in performance. This encoding also markedly differs from
the structure of our other stream implementations.

We also force garbage collection before benchmark execution and
between runs. All OCaml code was compiled with ocamlopt into
machine code. In particular, the MetaOCaml-generated code was
saved into a file, compiled, and then benchmarked in isolation.
The test harness invokes the compiled executable via Sys.command,
which is not included in the results. The harness calculates the av-
erage execution time, computing the mean error and standard de-
viation using the Student-T distribution. The same method is em-
ployed in JMH. For all tests, we do not measure the time needed
to initialize data-structures (filling arrays), nor the run-time compi-
lation cost of staging. These costs are constant (i.e., they become
proportionally insignificant for larger inputs or more iterations) and
they were small, between 5 and 10ms, for all our runs.

Results: In Figures 2 and 3 we present the results of our experi-
ments divided into two categories: a) the OCaml microbenchmarks
of baseline, staged and batteries experiments and b) the JVM mi-
crobenchmarks. The JVM diagram contains the baselines for both
Java and Scala. Shorter bars are better. Recall that all “baseline”
implementations are carefully hand-optimized code.

As can be seen, our staged library achieves extremely high
performance, matching hand-written code (in either OCaml, Java,
or Scala) and outperforming other library options by orders of
magnitude. Notably, the highly-optimized Java 8 streams are more
than 10x slower for perfectly realistic benchmarks, when those do
not conform to the optimal pattern (linear loop) of push streams.

8. Related Work
The literature on stream library designs is rich. Our approach is the
first to offer full generality while eliminating processing overhead.
We discuss individual related work in more detail next.

One of the earliest stream libraries that rely on staging is Com-
mon Lisp’s SERIES [36, 37], which extensively relies on Lisp
macros to interpret a subset of Lisp code as a stream EDSL. It
builds a data flow graph and then compiles it into a single loop.
It can handle filtering, multiple producers and consumers, but not
nested streams. The (over)reliance on macros may lead to surprises
since the programmer might not be aware that what looks like CL
code is actually a DSL, with a slightly different semantics and syn-
tax. An experimental Pipes package [15] attempts to re-implement
and extend SERIES, using, this time, a proper EDSL. Pipes ex-
tends SERIES by allowing nesting, but restricts zipping to simple
cases. It was posited that “arbitrary outputs per input, multiple con-
sumers, multiple producers: choose two” [15]. Pipes “almost man-
ages” (according to its author) to implement all three features. Our
library demonstrates the conjecture is false by supporting all three
facilities in full generality and with high performance.

Lippmeier et al. [18] present a line of work based on SERIES.
They aim to transform first-order, non-recursive, synchronous, fi-
nite data-flow programs into fused pipelines. They derive inspira-
tion from traditional data-flow languages like Lustre [10] and Lucid
Synchrone [24]. In contrast, our library supports a greater range of
fusible combinators, but for bulk data processing.

Haskell has lazy lists, which seem to offer incremental pro-
cessing by design. Lazy lists cannot express pipelines that require
side-effects such as reading or writing files.10 The all-too-common
memory leaks point out that lazy lists do not offer, again by design,
stream fusion. Overcoming the drawbacks of lazy lists, coroutine-
like iteratees [16] and many of their reimplementations support in-
cremental processing even in the presence of effects, for nested
streams and for several consumers and producers. Although iter-
atees avoid intermediate streams they still suffer large overheads
for captured continuations, closures, and coroutine calls.

10 We disregard the lazy IO misfeature [16].

http://batteries.forge.ocamlcore.org/
http://batteries.forge.ocamlcore.org/

Figure 2: OCaml microbenchmarks in msec / iteration (avg. of 30, with mean-error bars shown). “Staged” is our library (strymonas). The
figure is truncated: OCaml batteries take more than 60sec (per iteration!) for some complex benchmarks.

Figure 3: JVM microbenchmarks (both Java and Scala) in msec / iteration (avg. of 30, with mean-error bars shown). “Staged scala” is our
library (strymonas). The figure is truncated.

Coutts et al. [5] proposed Stream Fusion (the approach that
has become associated with this fixed term), building on previous
work (build/foldr [9] and destroy/unfoldr [32]) by fusing maps,
filters, folds, zips and nested lists. The approach relies on the
rewrite GHC RULES. Its notable contribution is the support for
stream filtering. In that approach there is no specific treatment of
linearity. The Coutts et al. stream fusion supports zipping, but only
in simple cases (no zipping of nested, subranged streams). Finally,
the Coutts et al. approach does not fully fuse pipelines that contain
nested streams (concatMap). The reason is that the stream created
by the transformation of concatMap uses an internal function that
cannot by optimized by GHC by employing simple case reduction.
The problem is presented very concisely by Farmer et al. in the
Hermit in the Stream work [6].

The application of HERMIT [6] to streams [7] fixes the short-
comings of the Coutts et al. Stream Fusion [5] for concatMap. As
the authors and Coutts say, concatMap is complicated because its
mapping function may create any stream whose size is not stati-
cally known. The authors implement Coutts’s idea of transforming
concatMap to flatten; the latter supports fusion for a constant in-
ner stream. Using HERMIT instead of GHC RULES, Farmer et al.
present as motivating examples two cases. Our approach handles
the non-constant inner stream case without any additional action.

The second case is about multiple inner streams (of the same
state type). Farmer et al. eliminate some overhead yet do not pro-

duce fully fused code. E.g., pipelines such as the following (in
Haskell) are not fully fused:

concatMapS (\x → case even x of
True → enumFromToS 1 x
False → enumFromToS 1 (x + 1))

(Farmer et al. raise the question of how often such cases arise in a
real program.) Our library internally places no restrictions on inner
streams; it may well be that the flat-mapping function produces
streams of different structure for each element of the outer stream.
On the other hand, the flat_map interface only supports nested
streams of a fixed structure—hence with the applicative rather than
monadic interface. We can provide a more general flat_map with
the continuation-passing interface for the mapping function, which
then implements:

flat_map_cps (fun x k →
.〈if (even ∼x) then ∼(k (enumFromToS ...))

else ∼(k (enumFromToS ...))〉.)

We have refrained from offering this more general interface since
there does not seem to be a practical need.

GHC RULES [23], extensively used in Stream Fusion, are ap-
plied to typed code but by themselves are not typed and are not
guaranteed type-preserving. To write GHC rules, one has to have
a very good understanding of GHC optimization passes, to ensure
that the RULE matches and has any effect at all. RULES by them-

selves offer no guarantee, even the guarantee that the re-written
code is well-typed. Multi-stage programming ensures that all stag-
ing transformations are type-correct.

Jonnalagedda et al. present a library using only CPS encodings
(fold-based) [12]. It uses the Gill et al. foldr/build technique [9] to
get staged streams in Scala. Like foldr/build, it does not support
combinators with multiple inputs such as zip.

In our work, we employ the traditional MSP programming
model to implement a performant streaming library. Rompf et
al. [27] demonstrate a loop fusion and deforestation algorithm for
data parallel loops and traversals. They use staging as a compiler
transformation pass and apply to query processing for in-memory
objects. That technique lacks the rich range of fused combinators
over finite or infinite sources that we support, but seems adequate
for the case studies presented in that work. Porting our technique
from the staged-library level to the compiler-transformation level
may be applicable in the context of Scala/LMS.

Generalized Stream Fusion [19] puts forward the idea of bun-
dled stream representations. Each representation is designed to fit a
particular stream consumer following the documented cost model.
Although this design does not present a concrete range of optimiza-
tions to fuse combinators and generate loop-based code directly, it
presents a generalized model that can “host” any number of special-
ized stream representations. Conceptually, this framework could
be used to implement our optimizations. However, it relies on the
black-box GHC optimizer—which is the opposite of our approach
of full transparency and portability.

Ziria [31], a language for wireless systems’ programming, com-
piles high-level reconfigurable data-flow programs to vectorized,
fused C-code. Ziria’s tick and process (pull and push respec-
tively) demonstrate the benefits of having both processing styles
in the same library. It would be interesting to combine our general-
purpose stream library with Ziria’s generation of vectorized C code.

Svensson et al.[33] unify pull- and push- arrays into a single li-
brary by defunctionalizing push arrays, concisely explaining why
pull and push must co-exist under a unified library. They use a com-
pile monad to interpret their embedded language into an imperative
target one. In our work we get that for free from staging. Simi-
larly, the representation of arrays in memory, with their CMMem data
type, corresponds to staged arrays (of type α array code) in our
work. The library they derive from the defunctionalization of Push
streams is called PushT and the authors provide evidence that in-
dexing a push array can, indeed, be efficient (as opposed to sim-
ple push-based streams). The paper does not seem to handle more
challenging combinators like concatMap and take and does not effi-
ciently handle the combinations of infinite and finite sources. Still,
we share the same goal: to unify both styles of streams under one
roof. Finally, Svensson et al. target arrays for embedded languages,
while we target arrays natively in the language. Fusion is achieved
by our library without relying on a compiler to intelligently handle
all corner cases.

9. Discussion: Why Staging?
Our approach relies on staging. This may impose a barrier to the
practical use of the library: staging annotations are unfamiliar to
many programmers. Furthermore, it is natural to ask whether our
approach could be implemented as a compiler optimization pass.

Complexity of staging. How much burden staging really imposes
on a programmer is an empirical question. As our library becomes
known and more-used we hope to collect data to answer this. In the
meantime, we note that staging can be effectively hidden in code
combinators. The first code example of §2 (summing the squares
of elements of an array) can be written without the use of staging
annotations as:

let sum = fold (fun z a → add a z) zero

of_arr arr
. map (fun x → mul x x)
. sum

In this form, the functions that handle stream elements are
written using a small combinator library, with operations add, mul,
etc. that hide all staging. The operations are defined simply as

let add x y = .〈∼x + ∼y〉. and mul x y = .〈∼x * ∼y〉.
let zero = .〈0〉.

Furthermore, our Scala implementation has no explicit staging
annotations, only Rep types (which are arguably less intrusive). For
instance, a simple pipeline is shown below:

def test (xs : Rep[Array[Int]]) : Rep[Int] =
Stream[Int](xs).filter(d ⇒ d % 2 == 0).sum

Staging vs. compiler optimization. Our approach can certainly
be cast as an optimization pass. The current staging formulation is
an excellent blueprint for such a compiler rewrite. However, stag-
ing is both less intrusive and more disciplined—with high-level
type safety guarantees—than changing the compiler. Furthermore,
optimization is guaranteed only with full control of the compiler.
Such control is possible in a domain-specific language, but not
in a general-purpose language, such as the ones we target. Rely-
ing on a general-purpose compiler for library optimization is slip-
pery. Although compiler analyses and transformations are (usually)
sound, they are almost never complete: a compiler generally offers
no guarantee that any optimization will be successfully applied.11

There are several instances when an innocuous change to a pro-
gram makes it much slower. The compiler is a black box, with the
programmer forced into constantly reorganizing the program in un-
intuitive ways in order to achieve the desired performance.

10. Conclusions
We have presented the principles and the design of stream libraries
that support the widest set of operations from past libraries and also
permit elimination of the entire abstraction overhead. The design
has been implemented as the strymonas library, for OCaml and for
Scala/JVM. As confirmed experimentally, our library indeed offers
the highest, guaranteed, and portable performance. Underlying the
library is a representation of streams that captures the essence of it-
eration in streaming pipelines. It recognizes which operators drive
the iteration, which contribute to filtering conditions, whether parts
of the stream have linearity properties, and more. This decomposi-
tion of the essence of stream iteration is what allows us to perform
very aggressive optimization, via staging, regardless of the stream-
ing pipeline configuration.

Acknowledgments
We thank the anonymous reviewers of both the program committee
and the artifact evaluation committee for their constructive com-
ments. We gratefully acknowledge funding by the European Re-
search Council under grant 307334 (SPADE).

11 A recent quote by Ben Lippmeier, discussing RePa [13] on Haskell-Cafe,
captures well the frustrations of advanced library writers: “The compilation
method [...] depends on the GHC simplifier acting in a certain way—yet
there is no specification of exactly what the simplifier should do, and no
easy way to check that it did what was expected other than eyeballing
the intermediate code. We really need a different approach to program
optimisation [...] The [current approach] is fine for general purpose code
optimisation but not ‘compile by transformation’ where we really depend
on the transformations doing what they’re supposed to.”—http://mail.
haskell.org/pipermail/haskell-cafe/2016-July/124324.html

http://mail.haskell.org/pipermail/haskell-cafe/2016-July/124324.html
http://mail.haskell.org/pipermail/haskell-cafe/2016-July/124324.html

References
[1] Reactive extensions, 2016. URL https://github.com/

Reactive-Extensions.
[2] A. Biboudis, N. Palladinos, and Y. Smaragdakis. Clash of the Lamb-

das. arXiv preprint arXiv:1406.6631, 9th International Workshop on
Implementation, Compilation, Optimization of Object-Oriented Lan-
guages, Programs and Systems, 2014. URL http://arxiv.org/
abs/1406.6631.

[3] A. Biboudis, N. Palladinos, G. Fourtounis, and Y. Smaragdakis.
Streams a la carte: Extensible Pipelines with Object Algebras. In 29th
European Conference on Object-Oriented Programming (ECOOP
2015), volume 37, pages 591–613, 2015. ISBN 978-3-939897-86-6.

[4] A. Bondorf. Improving binding times without explicit CPS-
conversion. In Lisp & Functional Programming, pages 1–10, 1992.

[5] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion: From lists
to streams to nothing at all. In Proceedings of the 12th ACM SIG-
PLAN International Conference on Functional Programming, ICFP
’07, pages 315–326, New York, NY, USA, 2007. ACM. ISBN 978-
1-59593-815-2. doi: 10.1145/1291151.1291199. URL http://doi.
acm.org/10.1145/1291151.1291199.

[6] A. Farmer, A. Gill, E. Komp, and N. Sculthorpe. The HERMIT in the
Machine: A Plugin for the Interactive Transformation of GHC Core
Language Programs. In Proceedings of the 2012 Haskell Symposium,
Haskell ’12, pages 1–12, New York, NY, USA, 2012. ACM. ISBN
978-1-4503-1574-6. doi: 10.1145/2364506.2364508. URL http:
//doi.acm.org/10.1145/2364506.2364508.

[7] A. Farmer, C. Hoener zu Siederdissen, and A. Gill. The HERMIT in
the Stream: Fusing Stream Fusion’s concatMap. In Proceedings of the
ACM SIGPLAN 2014 Workshop on Partial Evaluation and Program
Manipulation, PEPM ’14, pages 97–108, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2619-3. doi: 10.1145/2543728.2543736.
URL http://doi.acm.org/10.1145/2543728.2543736.

[8] J. Gibbons and G. Jones. The under-appreciated unfold. In ICFP
’98: Proceedings of the ACM International Conference on Functional
Programming, volume 34(1), pages 273–279, New York, Sept. 1998.
ACM Press.

[9] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to de-
forestation. In Proceedings of the Conference on Functional Pro-
gramming Languages and Computer Architecture, FPCA ’93, pages
223–232, New York, NY, USA, 1993. ACM. ISBN 0-89791-595-
X. doi: 10.1145/165180.165214. URL http://doi.acm.org/10.
1145/165180.165214.

[10] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
data flow programming language LUSTRE. Proceedings of the IEEE,
79(9):1305–1320, 1991.

[11] J. Inoue and W. Taha. Reasoning about multi-stage programs. In
ESOP, volume 7211 of Lecture Notes in Computer Science, pages
357–376. Springer, 2012. URL http://dx.doi.org/10.1007/
978-3-642-28869-2.

[12] M. Jonnalagedda and S. Stucki. Fold-based Fusion As a Library:
A Generative Programming Pearl. In Proceedings of the 6th ACM
SIGPLAN Symposium on Scala, SCALA 2015, pages 41–50, New
York, NY, USA, 2015. ACM. ISBN 978-1-4503-3626-0. doi:
10.1145/2774975.2774981. URL http://doi.acm.org/10.1145/
2774975.2774981.

[13] G. Keller, M. M. Chakravarty, R. Leshchinskiy, S. Peyton Jones,
and B. Lippmeier. Regular, shape-polymorphic, parallel arrays in
Haskell. In Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’10, pages 261–272,
New York, NY, USA, 2010. ACM. ISBN 978-1-60558-794-3. doi:
10.1145/1863543.1863582. URL http://doi.acm.org/10.1145/
1863543.1863582.

[14] R. Kelsey and P. Hudak. Realistic compilation by program transforma-
tion (detailed summary). In Proceedings of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’89, pages 281–292, New York, NY, USA, 1989. ACM. ISBN 0-
89791-294-2. doi: 10.1145/75277.75302. URL http://doi.acm.
org/10.1145/75277.75302.

[15] P. Khuong. Introducing pipes, a lightweight stream fusion edsl, 2011.
URL http://pvk.ca/Blog/Lisp/Pipes/.

[16] O. Kiselyov. Iteratees. In FLOPS, volume 7294 of LNCS, pages 166–
181. Springer, 2012.

[17] O. Kiselyov. The Design and Implementation of BER MetaOCaml.
In Functional and Logic Programming, pages 86–102. Springer,
2014. URL http://link.springer.com/chapter/10.1007/
978-3-319-07151-0_6.

[18] B. Lippmeier, M. M. Chakravarty, G. Keller, and A. Robinson. Data
flow fusion with series expressions in Haskell. In Proceedings of the
2013 ACM SIGPLAN Symposium on Haskell, Haskell ’13, pages 93–
104, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2383-3.
doi: 10.1145/2503778.2503782. URL http://doi.acm.org/10.
1145/2503778.2503782.

[19] G. Mainland, R. Leshchinskiy, and S. Peyton Jones. Exploiting vec-
tor instructions with generalized stream fusion. In Proceedings of
the 18th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP ’13, pages 37–48, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-2326-0. doi: 10.1145/2500365.2500601. URL
http://doi.acm.org/10.1145/2500365.2500601.

[20] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming
with bananas, lenses, envelopes and barbed wire. In J. Hughes,
editor, Functional Programming Languages and Computer Ar-
chitecture: 5th Conference, number 523 in Lecture Notes in
Computer Science, pages 124–144, Berlin, 1991. The Association
for Computing Machinery, Springer. URL http://research.
microsoft.com/~emeijer/Papers/fpca91.pdfhttp:
//wwwhome.cs.utwente.nl/~fokkinga/mmf91m.pshttp:
//www.cse.ogi.edu/~erik/Personal/classic.htm#bananas.

[21] D. G. Murray, M. Isard, and Y. Yu. Steno: automatic optimization
of declarative queries. In ACM SIGPLAN Notices, volume 46, pages
121–131. ACM, 2011. URL http://dl.acm.org/citation.cfm?
id=1993513.

[22] N. Palladinos and K. Rontogiannis. LinqOptimizer: An automatic
query optimizer for LINQ to Objects and PLINQ. Technical report,
Nessos Information Technologies S.A., 2013. URL http://nessos.
github.io/LinqOptimizer/.

[23] S. Peyton Jones, A. Tolmach, and T. Hoare. Playing by
the rules: rewriting as a practical optimisation technique in
GHC. In Haskell workshop, volume 1, pages 203–233, 2001.
URL https://www.haskell.org/haskell-symposium/2001/
2001-62.pdf#page=209.

[24] M. Pouzet. Lucid synchrone, version 3. Tutorial and reference
manual. Université Paris-Sud, LRI, 2006.

[25] A. Prokopec and D. Petrashko. ScalaBlitz: Lightning-fast Scala collec-
tions framework. Technical report, LAMP Scala Team, EPFL, 2013.
URL http://scala-blitz.github.io/.

[26] T. Rompf and M. Odersky. Lightweight modular staging: A prag-
matic approach to runtime code generation and compiled dsls. Com-
mun. ACM, 55(6):121–130, June 2012. ISSN 0001-0782. doi:
10.1145/2184319.2184345. URL http://doi.acm.org/10.1145/
2184319.2184345.

[27] T. Rompf, A. K. Sujeeth, N. Amin, K. J. Brown, V. Jovanovic, H. Lee,
M. Jonnalagedda, K. Olukotun, and M. Odersky. Optimizing data
structures in high-level programs: New directions for extensible com-
pilers based on staging. In Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’13, pages 497–510, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-1832-7. doi: 10.1145/2429069.2429128. URL
http://doi.acm.org/10.1145/2429069.2429128.

[28] M. Shaw, W. A. Wulf, and R. L. London. Abstraction and verification
in Alphard: defining and specifying iteration and generators. Commu-
nications of the ACM, 20(8):553–564, 1977.

[29] A. Shipilev, S. Kuksenko, A. Astrand, S. Friberg, and H. Loef.
OpenJDK: jmh. URL http://openjdk.java.net/projects/
code-tools/jmh/.

[30] M. H. B. Sørensen, R. Glück, and N. D. Jones. Towards unifying
deforestation, supercompilation, partial evaluation, and generalized

https://github.com/Reactive-Extensions
https://github.com/Reactive-Extensions
http://arxiv.org/abs/1406.6631
http://arxiv.org/abs/1406.6631
http://doi.acm.org/10.1145/1291151.1291199
http://doi.acm.org/10.1145/1291151.1291199
http://doi.acm.org/10.1145/2364506.2364508
http://doi.acm.org/10.1145/2364506.2364508
http://doi.acm.org/10.1145/2543728.2543736
http://doi.acm.org/10.1145/165180.165214
http://doi.acm.org/10.1145/165180.165214
http://dx.doi.org/10.1007/978-3-642-28869-2
http://dx.doi.org/10.1007/978-3-642-28869-2
http://doi.acm.org/10.1145/2774975.2774981
http://doi.acm.org/10.1145/2774975.2774981
http://doi.acm.org/10.1145/1863543.1863582
http://doi.acm.org/10.1145/1863543.1863582
http://doi.acm.org/10.1145/75277.75302
http://doi.acm.org/10.1145/75277.75302
http://pvk.ca/Blog/Lisp/Pipes/
http://link.springer.com/chapter/10.1007/978-3-319-07151-0_6
http://link.springer.com/chapter/10.1007/978-3-319-07151-0_6
http://doi.acm.org/10.1145/2503778.2503782
http://doi.acm.org/10.1145/2503778.2503782
http://doi.acm.org/10.1145/2500365.2500601
http://research.microsoft.com/~emeijer/Papers/fpca91.pdf http://wwwhome.cs.utwente.nl/~fokkinga/mmf91m.ps http://www.cse.ogi.edu/~erik/Personal/classic.htm#bananas
http://research.microsoft.com/~emeijer/Papers/fpca91.pdf http://wwwhome.cs.utwente.nl/~fokkinga/mmf91m.ps http://www.cse.ogi.edu/~erik/Personal/classic.htm#bananas
http://research.microsoft.com/~emeijer/Papers/fpca91.pdf http://wwwhome.cs.utwente.nl/~fokkinga/mmf91m.ps http://www.cse.ogi.edu/~erik/Personal/classic.htm#bananas
http://research.microsoft.com/~emeijer/Papers/fpca91.pdf http://wwwhome.cs.utwente.nl/~fokkinga/mmf91m.ps http://www.cse.ogi.edu/~erik/Personal/classic.htm#bananas
http://dl.acm.org/citation.cfm?id=1993513
http://dl.acm.org/citation.cfm?id=1993513
http://nessos.github.io/LinqOptimizer/
http://nessos.github.io/LinqOptimizer/
https://www.haskell.org/haskell-symposium/2001/2001-62.pdf#page=209
https://www.haskell.org/haskell-symposium/2001/2001-62.pdf#page=209
http://scala-blitz.github.io/
http://doi.acm.org/10.1145/2184319.2184345
http://doi.acm.org/10.1145/2184319.2184345
http://doi.acm.org/10.1145/2429069.2429128
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/

partial computation. In D. Sannella, editor, Programming Languages
and Systems: Proceedings of ESOP’94, 5th European Symposium on
Programming, number 788 in Lecture Notes in Computer Science,
pages 485–500, Berlin, 11–13 Apr. 1994. Springer. URL ftp://ftp.
diku.dk/diku/semantics/papers/D-190.ps.gz.

[31] G. Stewart, M. Gowda, G. Mainland, B. Radunovic, D. Vytiniotis, and
C. L. Agullo. Ziria: A DSL for wireless systems programming. In
Proceedings of the Twentieth International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
ASPLOS ’15, pages 415–428, New York, NY, USA, 2015. ACM.
ISBN 978-1-4503-2835-7. doi: 10.1145/2694344.2694368. URL
http://doi.acm.org/10.1145/2694344.2694368.

[32] J. Svenningsson. Shortcut fusion for accumulating parameters & zip-
like functions. In Proceedings of the Seventh ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP ’02, pages
124–132, New York, NY, USA, 2002. ACM. ISBN 1-58113-487-
8. doi: 10.1145/581478.581491. URL http://doi.acm.org/10.
1145/581478.581491.

[33] B. J. Svensson and J. Svenningsson. Defunctionalizing Push Ar-
rays. In Proceedings of the 3rd ACM SIGPLAN Workshop on Func-
tional High-performance Computing, FHPC ’14, pages 43–52, New

York, NY, USA, 2014. ACM. ISBN 978-1-4503-3040-4. doi:
10.1145/2636228.2636231. URL http://doi.acm.org/10.1145/
2636228.2636231.

[34] W. Taha. A Gentle Introduction to Multi-stage Programming. In
C. Lengauer, D. Batory, C. Consel, and M. Odersky, editors, Domain-
Specific Program Generation, number 3016 in Lecture Notes in
Computer Science, pages 30–50. Springer Berlin Heidelberg, 2004.
ISBN 978-3-540-22119-7 978-3-540-25935-0. URL http://link.
springer.com/chapter/10.1007/978-3-540-25935-0_3.

[35] P. L. Wadler. Deforestation: Transforming programs to elim-
inate trees. Theoretical Computer Science, 73(2):231–248,
June 1990. URL http://homepages.inf.ed.ac.uk/wadler/
topics/deforestation.html.

[36] R. C. Waters. User manual for the series macro package. MIT
AI Memo 1082, 1989. URL ftp://publications.ai.mit.edu/
ai-publications/pdf/AIM-1082.pdf.

[37] R. C. Waters. Automatic transformation of series expressions into
loops. ACM Trans. Program. Lang. Syst., 13(1):52–98, Jan. 1991.
ISSN 0164-0925. doi: 10.1145/114005.102806. URL http://doi.
acm.org/10.1145/114005.102806.

ftp://ftp.diku.dk/diku/semantics/papers/D-190.ps.gz
ftp://ftp.diku.dk/diku/semantics/papers/D-190.ps.gz
http://doi.acm.org/10.1145/2694344.2694368
http://doi.acm.org/10.1145/581478.581491
http://doi.acm.org/10.1145/581478.581491
http://doi.acm.org/10.1145/2636228.2636231
http://doi.acm.org/10.1145/2636228.2636231
http://link.springer.com/chapter/10.1007/978-3-540-25935-0_3
http://link.springer.com/chapter/10.1007/978-3-540-25935-0_3
http://homepages.inf.ed.ac.uk/wadler/topics/deforestation.html
http://homepages.inf.ed.ac.uk/wadler/topics/deforestation.html
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-1082.pdf
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-1082.pdf
http://doi.acm.org/10.1145/114005.102806
http://doi.acm.org/10.1145/114005.102806

A. Generated code for the Complex example
We show the generated code for the last example of Section §2,
repeated below for reference:

(* Zipping function *)
zip_with (fun e1 e2 → .〈(∼e1,∼e2)〉.)
(* First stream to zip *)
(of_arr .〈arr1〉.
. map (fun x → .〈∼x * ∼x〉.)
. take .〈12〉.
. filter (fun x → .〈∼x mod 2 = 0〉.)
. map (fun x → .〈∼x * ∼x〉.))

(* Second stream to zip *)
(iota .〈1〉.
. flat_map (fun x → iota .〈∼x+ 1〉. . take .〈3〉.)
. filter (fun x → .〈∼x mod 2 = 0〉.))

. fold (fun z a → .〈∼a :: ∼z〉.) .〈[]〉.

The generated code is:
let s_23 = ref [] in
let arr_24 = arr1 in
let i_25 = ref 0 in
let curr_26 = ref None in
let nadv_27 = ref None in
let adv_32 () =

curr_26 := None;
while

((! curr_26) = None) &&
((! nadv_27 6= None) ||

(! i_25 ≤ (min (12 - 1)
(Array.length arr_24 - 1))))

do
match ! nadv_27 with
| Some adv_28 → adv_28 ()
| None →

let el_29 = arr_24.(! i_25) in
let t_30 = el_29 * el_29 in
incr i_25;
if (t_30 mod 2) = 0
then let t_31 = t_30 * t_30 in

curr_26 := Some t_31
done in

adv_32 ();
let s_33 = ref (Some (1, (1 + 1))) in
let term1r_34 = ref (! curr_26 6= None) in
while ! term1r_34 && ! s_33 6= None do

match ! s_33 with
| Some (el_35,s'_36) →

s_33 := (Some (s'_36, (s'_36 + 1)));
let s_37 =

ref (Some (el_35 + 1,
(el_35 + 1) + 1)) in

let nr_38 = ref 3 in
while (! term1r_34) &&

(((! nr_38) > 0) &&
((! s_37) 6= None)) do

match ! s_37 with
| Some (el_39,s'_40) →

s_37 := Some (s'_40, (s'_40 + 1));
decr nr_38;
if el_39 mod 2 = 0
then
(match ! curr_26 with
| Some el_41 →

adv_32 ();
term1r_34 := !curr_26 6= None;
s_23 := (el_41, el_39) :: ! s_23)

done
done;

! s_23

B. Cartesian Product

let cart = fun (arr1, arr2) →
ofArr arr1
. flat_map (fun x →

ofArr arr2 . map (fun y → .〈 ∼x * ∼y〉.))
. fold (fun z a → .〈∼z + ∼a〉.) .〈0〉.;;

C. Generated code for Cartesian Product
let x = Array.init 1000 (fun i_1 → i_1) in
let y = Array.init 10 (fun i_2 → i_2) in
let arr_1 = x in
let size_1 = Array.length arr_1 in
let iarr_1 = ref 0 in
let rec loop_1 acc_1 =

if (!iarr_1) ≥ size_1
then acc_1
else

(let el_1 = arr_1.(!iarr_1) in
incr iarr_117;
(let acc1_tmp =

let arr_2 = y in
let size_2 = Array.length arr_2 in
let iarr_2 = ref 0 in
let rec loop_2 acc_2 =

if (!iarr_2) ≥ size_2
then acc_2
else

(let el_2 = arr_2.(!iarr_2) in
incr iarr_2;
(let acc2_tmp =

acc_2 + (el_1 * el_2) in
loop_2 acc2_tmp)) in

loop_2 acc_1 in
loop_1 acc1_tmp)) in

loop_1 0

D. Streams and baseline benchmarks
let sumS
= fun arr →

of_arr arr
. fold (fun z a → .〈∼z + ∼a〉.) .〈0〉.;;

let sumShand
= fun arr1 → .〈

let sum = ref 0 in
for counter1 = 0 to Array.length ∼arr1 - 1 do

sum := !sum + (∼arr1).(counter1);
done;
!sum 〉.;;

let sumOfSquaresS
= fun arr →

of_arr arr
. map (fun x → .〈∼x * ∼x〉.)
. fold (fun z a → .〈∼z + ∼a〉.) .〈0〉.;;

let sumOfSquaresShand
= fun arr1 → .〈

let sum = ref 0 in
for counter1 = 0 to Array.length ∼arr1 - 1 do
let item1 = (∼arr1).(counter1) in
sum := !sum + item1*item1;

done;
!sum〉.;;

let mapsS
= fun arr →

of_arr arr
. map (fun x → .〈∼x * 1〉.)
. map (fun x → .〈∼x * 2〉.)
. map (fun x → .〈∼x * 3〉.)

. map (fun x → .〈∼x * 4〉.)

. map (fun x → .〈∼x * 5〉.)

. map (fun x → .〈∼x * 6〉.)

. map (fun x → .〈∼x * 7〉.)

. fold (fun z a → .〈∼z + ∼a〉.) .〈0〉.;;

let maps_hand
= fun arr1 → .〈

let sum = ref 0 in
for counter1 = 0 to Array.length ∼arr1 - 1 do
let item1 = (∼arr1).(counter1) in
sum := !sum + item1*1*2*3*4*5*6*7;

done;
!sum〉.;;

let filtersS
= fun arr →

of_arr arr
. filter (fun x → .〈∼x > 1〉.)
. filter (fun x → .〈∼x > 2〉.)
. filter (fun x → .〈∼x > 3〉.)
. filter (fun x → .〈∼x > 4〉.)
. filter (fun x → .〈∼x > 5〉.)
. filter (fun x → .〈∼x > 6〉.)
. filter (fun x → .〈∼x > 7〉.)
. fold (fun z a → .〈∼z + ∼a〉.) .〈0〉.;;

let filters_hand
= fun arr1 → .〈

let sum = ref 0 in
for counter1 = 0 to Array.length ∼arr1 - 1 do

let item1 = (∼arr1).(counter1) in
if (item1 > 1 && item1 > 2 && item1 > 3 &&

item1 > 4 && item1 > 5 && item1 > 6 &&
item1 > 7) then

begin
sum := !sum + item1;
end;

done;
!sum〉.;;

let sumOfSquaresEvenS
= fun arr →

of_arr arr
. filter (fun x → .〈∼x mod 2 = 0〉.)
. map (fun x → .〈∼x * ∼x〉.)
. fold (fun z a → .〈∼z + ∼a〉.) .〈0〉.;;

let sumOfSquaresEvenShand
= fun arr1 → .〈

let sum = ref 0 in
for counter1 = 0 to Array.length ∼arr1 - 1 do
let item1 = (∼arr1).(counter1) in
if item1 mod 2 = 0 then
begin

sum := !sum + item1*item1
end;
done;
!sum〉.;;

let cartS
= fun (arr1, arr2) →

of_arr arr1
. flat_map (fun x →

of_arr arr2 . map (fun y → .〈 ∼x * ∼y〉.))
. fold (fun z a → .〈∼z + ∼a〉.) .〈0〉.;;

let cartShand
= fun (arr1, arr2) → .〈

let sum = ref 0 in
for counter1 = 0 to Array.length ∼arr1 - 1 do

let item1 = (∼arr1).(counter1) in
for counter2 = 0 to Array.length ∼arr2 - 1 do

let item2 = (∼arr2).(counter2) in
sum := !sum + item1 * item2;

done;
done;
!sum 〉.;;

let dotProductS
= fun (arr1, arr2) →

zip_with (fun e1 e2 → .〈∼e1 * ∼e2〉.)
(of_arr arr1) (of_arr arr2)

. fold (fun z a → .〈∼z + ∼a〉.) .〈0〉.;;

let dotProductShand
= fun (arr1, arr2) → .〈

let sum = ref 0 in
for counter = 0 to

min (Array.length ∼arr1)
(Array.length ∼arr2) - 1 do

let item1 = (∼arr1).(counter) in
let item2 = (∼arr2).(counter) in
sum := !sum + item1 * item2;

done;
!sum〉.;;

let flatMap_after_zipWithS
= fun (arr1, arr2) →

zip_with (fun e1 e2 → .〈∼e1 + ∼e2〉.)
(of_arr arr1) (of_arr arr1)

. flat_map (fun x → of_arr arr2
. map (fun el → .〈∼el + ∼x〉.))

. fold (fun z a → .〈∼z + ∼a〉.) .〈0〉.;;

let flatMap_after_zipWithShand
= fun (arr1, arr2) → .〈

let sum = ref 0 in
for counter1 = 0 to Array.length ∼arr1 - 1 do

let x = (∼arr1).(counter1)
+ (∼arr1).(counter1) in

for counter2 = 0 to Array.length ∼arr2 - 1 do
let item2 = (∼arr2).(counter2) in

sum := !sum + item2 + x;
done;

done;
!sum〉.;;

let zipWith_after_flatMapS
= fun (arr1, arr2) →

of_arr arr1
. flat_map (fun x →

of_arr arr2 . map (fun y → .〈∼y + ∼x〉.))
. zip_with (fun e1 e2 → .〈∼e1 + ∼e2〉.)

(of_arr arr1)
. fold (fun z a → .〈∼z + ∼a〉.) .〈0〉.;;

let zipWith_after_flatMapShand
= fun (arr1, arr2) → .〈

let sum = ref 0 in
let i1 = ref 0 in
let i2 = ref 0 in
let flag1 =

ref ((!i1) ≤ ((Array.length ∼arr1) - 1)) in
while (!flag1) &&

((!i2) ≤ ((Array.length ∼arr2) - 1)) do
let el2 = (∼arr2).(!i2) in
incr i2;
(let i_zip = ref 0 in
while (!flag1) &&

((!i_zip)
≤ ((Array.length ∼arr1) - 1)) do

let el1 = (∼arr1).(!i_zip) in
incr i_zip;
let elz = (∼arr1).(!i1) in

incr i1;
flag1 := ((!i1) ≤

((Array.length ∼arr1) - 1));
sum := ((!sum) + (elz + el1 + el2))
done)

done;
!sum〉.;;

let flat_map_takeS
= fun (arr1, arr2) →

of_arr arr1
. flat_map (fun x → of_arr arr2

. map (fun y → .〈 ∼x * ∼y〉.))
. take .〈20000000〉.
. fold (fun z a → .〈∼z + ∼a〉.) .〈0〉.;;

let flat_map_takeShand
= fun (arr1, arr2) → .〈

let counter1 = ref 0 in
let counter2 = ref 0 in

let sum = ref 0 in
let n = ref 0 in
let flag = ref true in
let size1 = Array.length ∼arr1 in
let size2 = Array.length ∼arr2 in
while !counter1 < size1 && !flag do

let item1 = (∼arr1).(!counter1) in
while !counter2 < size2 && !flag do

let item2 = (∼arr2).(!counter2) in
sum := !sum + item1 * item2;
counter2 := !counter2 + 1;
n := !n + 1;
if !n = 20000000 then
flag := false

done;
counter2 := 0;
counter1 := !counter1 + 1;

done;
!sum 〉.;;

	Introduction
	Overview: A Taste of the Library
	Stream Fusion Problem
	Staging Streams
	Multi-Stage Programming
	Simple Staging of Streams

	Eliminating All Abstraction Overhead in Three Steps
	Fusing the Stepper
	Fusing the Stream State
	Generating Imperative Loops

	Full Library
	Filtered and Nested Streams
	Sub-Ranging and Infinite Streams
	zip: Fusing Parallel Streams
	Elimination of All Overhead, Formally

	Experiments
	Related Work
	Discussion: Why Staging?
	Conclusions
	Generated code for the Complex example
	Cartesian Product
	Generated code for Cartesian Product
	Streams and baseline benchmarks

