

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Δηλωτική Ανάλυση Δεικτών σε Διαφορετικές Υλοποιήσεις της Datalog

Αναστάσιος Ι. Αντωνιάδης

Επιβλέποντες: Γιάννης Σμαραγδάκης, Αναπληρωτής Καθηγητής ΕΚΠΑ

ΑΘΗΝΑ

ΙΑΝΟΥΑΡΙΟΣ 2014

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

THESIS

Declarative Points-To Analysis on Different Datalog Engines

Anastasios I. Antoniadis

Supervisors: Yannis Smaragdakis, Associate Professor NKUA

ATHENS

JANUARY 2014

THESIS

Declarative Points-To Analysis on Different Datalog Engines

Anastasios I. Antoniadis

R.N..: 1115200600031

SUPERVISORS: Yannis Smaragdakis, Associate Professor NKUA

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Δηλωτική Ανάλυση Δεικτών σε Διαφορετικές Υλοποιήσεις της Datalog

Αναστάσιος Ι. Αντωνιάδης

Α.Μ.: 1115200600031

ΕΠΙΒΛΕΠΟΝΤΕΣ: Γιάννης Σμαραγδάκης, Αναπληρωτής Καθηγητής ΕΚΠΑ

ΠΕΡΙΛΗΨΗ

Τα τελευταία χρόνια η Datalog έχει βρει νέα εφαρμογή στην δηλωτική ανάλυση
προγραμμάτων. Σε αυτή την πτυχιακή εργασία παρουσιάζουμε ένα πρωτότυπο
framework για ανάλυση δεικτών (ανεξάρτητη συμφραζομένων) σε προγράμματα Java, η
οποία είναι μια κατηγορία στατικής ανάλυσης προγραμμάτων που εκτιμά πού μπορεί να
'δείξει' κάθε μεταβλητή του προγράμματος για κάθε πιθανή εκτέλεση του κώδικα. Το
framework αυτό χρησιμοποιεί τη Datomic, μια κατανεμημένη βάση δεδομένων η οποία
χρησιμοποιεί μια γλώσσα επερωτήσεων βασισμένη στη Datalog. Η ίδια ανάλυση
δεικτών ανεξαρτήτως συμφραζομένων υλοποιήθηκε στη διάλεκτο DatalogLB, η οποία
χρησιμοποιεί την μηχανή LogicBlox, προκειμένου να χρησιμοποιηθεί ως μέτρο
σύγκρισης. Ο στόχος μας είναι να αξιολογήσουμε το σύστημα βάσης δεδομένων της
Datomic για χρήση σε δηλωτικές αναλύσεις προγραμμάτων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Στατική Ανάλυση Προγραμμάτων.

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Datalog, Datomic, ανάλυση δεικτών ανεξάρτητη συμφραζομένων

ABSTRACT

In recent years, Datalog has found new application in declarative program
analysis. In this thesis we present a prototype framework for context-insensitive points-
to analysis of Java programs, which is a category of static program analysis that
evaluates where each variable of a program can 'point-to' for each possible execution of
the code. This framework uses Datomic, a distributed database which implements a
Datalog-based query language. The same prototype context-insensitive analysis has
been implemented using the DatalogLB dialect, which uses the LogicBlox engine in
order to be used as a benchmark for comparison. Our aim is to evaluate the
performance of the Datomic database system for the purpose of declarative program
analysis.

SUBJECT AREA: Static Program Analysis

KEYWORDS: Datalog, Datomic, context-insensitive points-to analysis

to Labros and Michael…

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Prof. Yannis Smaragdakis for providing his
expertise and guidance, which were valuable for the preparation and completion of this
work and most of all for his patience throughout the whole process.

Also, I would like to thank PhD candidates George Kastrinis and George
Balatsouras for their contributions to this work. Their assistance helped me surpass the
many obstacles I encountered during my work both in understanding DatalogLB and
Datomic in order to complete this work and I am grateful to them.

Contents

PREFACE... 13

1. INTRODUCTION .. 14

2. BACKGROUND ... 15

2.1 Points-To Analysis in Datalog .. 15

2.2 LogicBlox Datalog dialect and engine: ... 20

2.2.1 Rules ... 20

2.2.2 Entities ... 21

2.2.3 Refmodes ... 21

2.2.4 Types .. 21

2.2.5 Functional Predicates ... 21

3. OVERVIEW OF DATOMIC ... 23

3.1 Architecture .. 23

3.2 Data Model ... 23

3.3 Schema ... 25

3.3.1 Schema Attributes.. 25

3.4 Entities .. 27

3.5 Transactions .. 27

3.5.1 Adding data to a new entity ... 29

3.6 Queries ... 29

3.6.1 Unification .. 31

3.6.2 Anonymous (Placeholder) Variables .. 31

3.6.3 Querying a database .. 32

3.6.4 Expression Clauses ... 32

3.6.5 Bindings .. 33

3.7 Rules ... 33

3.8 Storage Services .. 35

4. CONTEXT-INSENSITIVE POINTS-TO ANALYSIS IN DATOMIC 37

4.1 Analysis Schema .. 37

4.2 Input Facts Conversion .. 38

4.3 Read Schema Data and Import Seed Data ... 44

4.4 Analysis Implementation .. 44

4.4.1 Iterative Context-Insensitive Points-To Analysis .. 44

4.4.2 Recursive Points-To Analysis .. 47

5. EVALUATION .. 50

5.1 Evaluation Method ... 50

5.2 Evaluation Results ... 50

5.3 Discussion ... 51

5.3.1 Execution Times ... 51

5.3.2 Memory Consumption ... 52

6. CONCLUSIONS .. 53

ABBREVIATIONS ... 54

APPENDICES ... 55

REFERENCES ... 63

List of Figures

Figure 2.1: The domain, input relations (representing program instructions–with the

matching program pattern shown in a comment–and type information) and output

relations for a context-insensitive analysis. ... 16

Figure 2.2: Datalog rules for the points-to analysis and call-graph construction 18

Figure 2.3: Excerpt of Datalog code for Java cast checking. The Java Language

Specification text for each rule is included in its comment section 20

Figure 4.1: The shell script used to obtain the input facts from the DatalogLB workspace

 .. 37

Figure 4.2: Excerpt of the Datomic analysis schema ... 38

Figure 4.3: The MethodSignatureRef class ... 39

Figure 4.4: Excerpt of the code reading from the MethodSignatureRef.facts input file,

creating MethodSignatureRef class objects and adding them to an ArrayList 39

Figure 4.5: The FactsID class which generates temporary ids 39

Figure 4.6: The HeapAllocationType class representing HeapAllocation-Type 40

Figure 4.7: Conversion of HeapAllocation-Type facts .. 41

Figure 4.8: The Type class .. 41

Figure 4.9: The HeapAllocationRef class .. 42

Figure 4.10: Excerpt of the Java code responsible for the generation of Datomic seed

data files .. 43

Figure 4.11: Datomic seed data file HeapAllocationType.dtm 43

Figure 4.12: Initial queries of the iterative analysis .. 45

Figure 4.13: Insertion of query results to the database .. 45

Figure 4.14: Excerpt of analysis queries .. 46

Figure 4.15: Query the database using the VarPointsTo rule .. 47

Figure 4.16: Excerpt of the recursive analysis rule set .. 48

List of Tables

Table 1: Datomic database structure ... 24

Table 2: Datomic database structure – most recent value ... 24

Table 3: Datomic database structure – as-of 400 value .. 24

Table 4: First match of query with data .. 30

Table 5: Second match of query with data .. 31

Table 6: Binding Patterns .. 33

Table 7: Execution times ... 50

PREFACE

This thesis aims to evaluate the Datomic database system for the purpose of pointer
analysis. It was developed in Athens, Greece and Geneva, Switzerland between July,
2012 and January, 2014. The first period of this work was associated with studying the
DatalogLB dialect, understanding the Doop framework for pointer analysis and
implementing a prototype context-insensitive analysis in DatalogLB. The second period
was associated with studying and experimenting with Datomic and using it to build a
prototype context-insensitive analysis framework in order to evaluate the database's
capabilities.

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 14

1. Introduction

An important trend in recent program analysis literature is the expression of
analyses declaratively, for clearer specification and easier modifiability [3, 6, 7, 9]. In
particular the usage of Datalog for the definition of program analysis specifications has
drown researchers’ attention, due to its ability to specify mutually recursive relations [1,
2, 4, 5, 8]. In this case we are interested in pointer analysis of Java programs, which is a
category of static program analysis that evaluates where each variable of a program
can 'point-to' for each possible execution of the code.

This thesis aims to evaluate the Datomic database system, which uses a Datalog-
based query language for the purpose of conducting declarative program analysis. In
order to perform the evaluation we have built two prototype context-insensitive pointer
analysis implementations, one in DatalogLB and the other in Datomic and the evaluation
of Datomic is done by comparing its execution times and memory usage to those of
DatalogLB.

The rest of the thesis is organized as follows:

 In Chapter 2 we give a background of points-to analysis in Datalog and then we
present the highlights of the DatalogLB dialect.

 In Chapter 3 we present an overview of Datomic, its features and capabilities.

 In Chapter 4 we present and explain all the basic steps of the Java application
performin the analysis in Datomic.

 In Chapter 5 we perform an evaluation of Datomic by comparing the execution
times and memory usage of the context-insensitive analysis implemented in our
prototype Datomic framework to those of DatalogLB.

 In Chapter 6 we present our conclusions.

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 15

2. Background

2.1 Points-To Analysis in Datalog

Datalog is a declarative logic-based programming language which is often used as
a query language for deductive databases. In recent years, Datalog has found new
application in the domain of program analysis, due to its ability to define recursive
relations. Relations are the main Datalog data type and computation consists of
inferring the contents of all relations from a set of input relations. Mutual recursion is the
source of complexity in program analysis. Due to the fact that recursive definitions are
easier to specify in Datalog, the language is very convenient for the specification of
complex program analysis algorithms.

In the case of points-to analysis for Java programs, it is to easy to represent the
actions of Java program as relations, stored as database tables. In particular, consider

the following two relations, AssignHeapAllocation(?heap, ?var)1 and

Assign(?to, ?from). The former relation represents all occurrences of an

instruction “a = new A();” in a Java program, where a heap object is allocated and

assigned to a variable.

The aforementioned relations are the outcome of a pre-processing step which
takes a Java program as input and produces the relation contents which will be the
input facts. This kind of relations which are produced directly from the input Java
program, are known in Datalog terminology as the EDB (Extensional Database)
predicates. EDB predicates normally are used to hold the facts that are explicitly
entered by the user with fact assertions.

In particular, for AssignHeapAllocation(?heap, ?var) relation, a static

abstraction of the heap is captured in variable ?heap–it can be concretely represented

as, for instance, a fully qualified class name and the allocation's bytecode instruction
index. In the same manner, the Assign relation contains an entry for each assignment
between two Java program (reference) variables.

Following the pre-processing step a simple pointer analysis can be expressed
entirely in Datalog as a transitive closure computation:

VarPointsTo(?heap, ?var) <- AssignHeapAllocation(?heap, ?var).

VarPointsTo(?heap, ?to) <- Assign(?to, ?from), VarPointsTo(?heap, ?from).

Each Datalog program consists of a series of rules, also known in Datalog semantics as
the IDB(Intensional Database) rules, that are used to establish facts about derived

relations (such as VarPointsTo, which is the points-to relation, meaning it links every

program variable, ?var, with every heap object abstraction, ?heap, it can point to) from

a conjunction of previously established facts (i.e., the body of the rule).

1We follow the convention of capitalizing the first letter of relation names, while writing variable names in
lower case and prefixing them with a question-mark.

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 16

V is a set of program variables

H is a set of heap abstractions (i.e., allocation sites)

M is a set of method identifiers

S is a set of method signatures (including name, type signature)

F is a set of fields

I is a set of instructions (mainly used for invocation sites)

T is a set of class types

N is the set of natural numbers

ASSIGNHEAPALLOC (var : V, heap : H, inMeth : M) # var=new ...

ASSIGNLOCAL(to : V, from : V, inMeth : M) # to=from

LOAD (to : V, base : V, fld : F) # to=base.fld

STORE (base : V, fld : F, from : V) # base.fld=from

VCALL (base : V, sig : S, invo : I, inMeth : M) # base.sig(..)

SCALL (meth : M, invo : I, inMeth : M) # Class.meth(..)

FORMALPARAM (i : N, meth : M, arg : V)

ACTUALPARAM (i : N, invo : I, arg : V)

RETURNVAR (ret : V, meth : M)

ASSIGNRETURNVALUE (invo : I, var : V)

THISVAR (meth : M, var : V)

HEAPTYPE (heap : H, type : T)

VARTYPE (var: V, type: T)

METHODLOOKUP (type : T, sig : S, meth : M)

VARPOINTSTO (heap : H, var : V)

CALLGRAPHEDGE (invo : I, meth : M)

FLDPOINTSTO (heap: H, fld: F, baseH: H)

ASSIGN (type :T, from : V, to : V)

REACHABLE (meth : M)

Figure 2.1: The domain, input relations (representing program instructions – with the matching
program pattern shown in a comment – and type information) and output relations for a context-
insensitive analysis.

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 17

ASSIGN (?type, ?from, ?to) <-

CALLGRAPHEDGE (?invo, ?meth),

FORMALARG (?meth, ?i, ?to),

ACTUALARG (?invo, ?i, ?from),

VARTYPE (?from, ?type).

ASSIGN (type, from, to) <-

CALLGRAPHEDGE (?invo, ?meth),

RETURNVAR (?from, ?meth),

ASSIGNRETURNVALUE(?invo, ?to),

VARTYPE(?from, ?type).

VARPOINTSTO (?heap, ?var) <-

REACHABLE (?meth),

ASSIGNHEAPALLOC (?var, ?heap, ?meth).

VARPOINTSTO (?heap, ?to) <-

ASSIGN (?type, ?from, ?to),

VARPOINTSTO (?heap, ?from).

VARPOINTSTO (?heap, ?to) <-

REACHABLE(?meth),

ASSIGNLOCAL(?from, ?to, ?meth),

VARPOINTSTO(?heap, ?from).

VARPOINTSTO (?heap, ?to) <-

REACHABLE(?meth),

LOAD (?base, ?fld, ?to, ?meth),

VARPOINTSTO (?base, ?baseH),

FLDPOINTSTO (?baseH, ?fld, ?heap).

FLDPOINTSTO (?heap, ?fld, ?baseH) <-

REACHABLE (?meth),

STORE (?from, ?base, ?fld, ?meth),

VARPOINTSTO (?heap, ?from),

VARPOINTSTO (baseH, base).

REACHABLE (?toMeth),

VARPOINTSTO (?this, ?heap),

CALLGRAPHEDGE (?invo, ?toMeth) <-

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 18

REACHABLE (?inMeth),

VCALL (?base, ?sig, ?invo, ?inMeth),

VARPOINTSTO (?base, ?heap),

HEAPTYPE (?heap, ?heapT),

METHODLOOKUP (?heapT, ?sig, ?toMeth),

THISVAR (?toMeth, ?this).

REACHABLE (?toMeth),

CALLGRAPHEDGE (?invo, ?toMeth) <-

SCALL (?toMeth, ?invo, ?inMeth),

REACHABLE (?inMeth).

Figure 2.2: Datalog rules for the points-to analysis and call-graph construction.

Figure 2.1 shows the domain of our points-to analysis (i.e., the different value sets that
constitute the space of the computation), its input relations, the intermediate and output
relations.

For the purpose of a context-insensitive analysis we ignore any kind of context. Figure
2.2 shows the points-to analysis and call-graph computation. The rule syntax is simple:
the left arrow symbol (<-) separates the inferred facts (i.e., the head of the rule) from
the previously established facts (i.e., the body of the rule). For instance, the first rule

states that, if we have computed a call-graph edge between invocation site ?invo and

method ?meth, then we infer an assignment to the i-th formal parameter of ?meth from

the i-th actual parameter at ?invo, for every i. The type ?type of the assignment

relation is the type of the ?from variable.

A more thorough explanation of the contents of both figures follows:

 The input relations correspond to the intermediate language for our analysis.
They are logically grouped into relations that represent instructions and relations
that represent name-and-type information. For instance, the
ASSIGNHEAPALLOC relation represents every instruction that allocates a new

heap object, heap, and assigns it to local variable var inside method ?inMeth.

(Note that every local variable is defined in a unique method, hence the

?inMeth argument is also implied by var but is included to simplify later rules.)

There are similar input relations for all other instruction types (ASSIGNLOCAL,
LOAD, STORE, VCALL, and SCALL). Similarly, there are relations that encode
pertinent symbol table information. Most of these are self-explanatory but some
deserve explanation. METHODLOOKUP matches a method signature to the
actual method definition inside a type. HEAPTYPE matches an object to its type,
i.e., is a function on its first argument. (Note that we are shortening the term
“heap object” to just “heap” and represent heap objects as allocation sites
throughout.) VARTYPE matches a variable to its type, i.e., is a function on its first
argument just like VARTYPE. ASSIGNRETURNVAR is also a function on its first
argument (a method invocation site) and returns the local variable at the call-site
that receives the method call’s return value.

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 19

 There are five output or intermediate computed relations (VARPOINTSTO,
CALLGRAPHEDGE, FLDPOINTSTO, ASSIGN, REACHABLE). The main output
relations are VARPOINTSTO and CALLGRAPH, encoding our points-to and call-
graph results. The VARPOINTSTO relation links a variable (var) to a heap object
(heap). Other intermediate relations (FLDPOINTSTO, ASSIGN, REACHABLE)
correspond to standard concepts and are introduced for conciseness.

The rules of Figure 2.2 show how each input instruction leads to the inference of facts
for the five output or intermediate relations. The most complex rule is the second-to-last,
which handles virtual method calls (input relation VCALL). The rule says that if a
reachable method of the program has an instruction making a virtual method call over
local variable base (this is an input fact), and the analysis so far has established that
base can point to heap object heap, then the called method is looked up inside the type
of heap and several further facts are inferred: that the looked up method is reachable,
that it has an edge in the call-graph from the current invocation site, and that its this
variable can point to heap.

The declarative nature of Datalog allows for very concise specifications of analyses. In
Figure 2.3 we demonstrate an excerpt of the logic for the Java cast checking –
answering to the question “can type A be cast to type B?”. The Datalog rules presented
are almost an exact transcription of the Java Language Specification.

/**

* - If S is an ordinary (nonarray) class, then:

*

* o If T is a class type, then S must be the same class as T, or a subclass of T.

*/

CheckCast(?s, ?s) <- ClassType(?s).

CheckCast(?s, ?t) <- Subclass(?t, ?s).

/**

* o If T is an interface type, then S must implement interface T.

*/

CheckCast(?s, ?t) <-

ClassType(?s),

Superinterface(?t, ?s).

/**

* - If S is an interface type, then:

*

* o If T is a class type, then T must be Object

*/

CheckCast(?s, t) <-

InterfaceType(?s),

Type:Value(t:"java.lang.Object").

/**

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 20

* o If T is an interface type, then T must be the same interface

* as S or a superinterface of S

*/

CheckCast(?s, ?s) <-

InterfaceType(?s).

CheckCast(?s, ?t) <-

InterfaceType(?s),

Superinterface(?t, ?s).

Figure 2.3: Excerpt of Datalog code for Java cast checking. The Java Language Specification text
for each rule is included in its comment section.

2.2 LogicBlox Datalog dialect and engine:

This version of Datalog allows ‘‘stratified negation’’, that is, negated clauses, as long as
the negation is not part of a recursive cycle. It also allows specifying that some relations
are functions, that is, the variable space is partitioned into domain and range variables,
and there is only one range value for each unique combination of values in domain
variables.

Some highlights of the language are:

2.2.1 Rules

DatalogLB rules are specified using a <- notation (instead of the traditional “:-"), as in the
example below:

VarPointsTo(?var, ?heap) <-

Reachable(?meth),

AssignHeapAllocation(?var, ?heap, ?meth);

Assign(?to, ?from),

VarPointsTo(from, heap).

MethodLookup[?name, ?descriptor, ?type] = ?method <-

MethodImpl[?name, ?descriptor, ?type] = ?method.

MethodLookup[?name, ?descriptor, ?type] = ?method <-

DirectSuperclass[?type] = ?supertype,

MethodLookup[?name, ?descriptor, ?supertype] = ?method,

!MethodImpl[?name, ?descriptor, ?type].

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 21

In this example, ; indicates disjunction while ! is used for negation. Predicate and

variable names may use lower/upper case freely. The first rule computes the

VarPointsTo predicate, essentially as the union of two conjunctive queries. The

second rule computes the MethodLookup predicate by copying data from the

MethodImpl predicate. Finally, the third rule computes the MethodLookup predicate

by looking the method up in the ?supertype if it is not implemented in the ?type and

?supertype is the direct superclass of ?type, with negation interpreted under the

stratified semantics.

2.2.2 Entities

The main building-blocks of the DatalogLB type system are entities, i.e., specially
declared unary predicates corresponding to some concrete object or abstract concept.
The DatalogLB type system also includes various primitive types (e.g., numeric types,
strings etc.). For example, the following DatalogLB program declares (using a ->

notation) that MethodSignatureRef is an entity:

MethodSignatureRef(?x) -> .

2.2.3 Refmodes

Refmodes are used in circumstances where it is necessary to define a key to identify
each entity. A refmode predicate is normally declared at the same time an entity type is
declared.

MethodSignatureRef(x), MethodSignatureRef:Value(x:s) ->

string(s).

2.2.4 Types

Entities can be arranged in subtyping hierarchies, e.g., the following example declares
that ClassType is a subtype of Type:

ClassType(x) -> Type(x).

As expected, subtypes inherit the properties of their supertypes and can be used
wherever instances of their supertypes are allowed by the type system. The -> notation
can also be used to specify runtime integrity constraints.

2.2.5 Functional Predicates

If a predicate is functional and not a refmode predicate, its arguments should be
declared using DatalogLB's functional notation, in which the arguments that functionally
determine the final argument (the keyspace) are placed in square-brackets, followed by

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 22

the equals operator and the final argument. Those arguments not in the keyspace of a
predicate are said to form its valuespace.

MethodSignature:Type[?signature] = ?type ->

MethodSignatureRef(?signature),

Type(?type).

The above syntax describes the following explicit declaration and constraint:

MethodSignature:Type(?signature,?type) ->

MethodSignatureRef(?signature),

Type(?type).

MethodSignature:Type(?signature,?type1),

MethodSignature:Type(?signature, ?type2) ->

?type1 = ?type2.

With the functional notation, however, this constraint is implicit. That is, due to the fact
that by using the functional notation, the predicate's functional nature is automatically
declared.

The prototype DatalogLB context-insensitive analysis framework demonstrated in this
thesis is based on Doop, a declarative points-to analysis framework for Java programs
implemented by Bravenboer et al [1, 2, 8].

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 23

3. Overview of Datomic

Datomic is a distributed database of flexible, time-based facts, supporting queries and
joins, with elastic scalability. Datomic is a non-relational database providing a logical
query language–Datalog, for the purpose of bringing declarative data manipulation to
the application and it runs on the JVM (Java Virtual Machine).

3.1 Architecture

In a Datomic-based system, the application (or a part of the application) is a Peer. A
Peer is a process that manipulates a database using the Datomic Peer library. Any
process can be a Peer and the Datomic-specific code written in an application is run in
the Peer(s).

Peers read facts from the Storage Service. The facts the Storage Service returns never
change, so Peers do extensive caching. Each Peer's cache represents a partial copy of
all the facts in the database. The Peer cache implements a least-recently used policy for
discarding data, making it possible to work with databases that won't fit entirely in
memory. Once a Peer's working set is cached, there is little or no network traffic for
reads.

Peers write new facts by asking the Transactor to add them to the Storage Service. The
Transactor processes these requests using ACID transactions, ensuring they succeed
or fail atomically and do not interfere with one another. The Transactor notifies all Peers
about new facts so that they can add them to their caches.

Peers can query and access data locally using a database value. Database values are
constructed when code in a Peer requests them. By default, a database value is
constructed from the most recent set of facts a Peer has. However, it is also possible to
construct a value for a database at a particular moment in the past by using the facts
stored as of that time. This is possible because old facts are immutable, remaining
unchanged over time. Database values share underlying data structures, differing only
as much as is necessary to represent changes. This structural sharing makes building
new database values very efficient in terms of both time and space.

The ability to query and access data locally has a profound effect on the code in a Peer.
Query results are directly accessible as simple data structures without having to deal
with any added abstractions.

Values are immutable and provide a stable, consistent view of data for as long as a
Peer needs one. The code in a Peer can also access multiple database values
simultaneously, making it possible use different values to process different requests,
and to compare values from different points in time.

3.2 Data Model

Datomic does not model data as documents, objects or rows in a table. Instead, data is
represented as a collection of immutable facts called “Datoms”. A datom consists of the
following four pieces:

1. Entity

2. Attributes

3. Value

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 24

4. Transaction timestamp

A more specific demonstration of a Datomic database structure would be that of a flat
set of datoms.

Table 1: Datomic database structure

Entity Attribute Value Timestamp

21005 :Var/name java.lang.Object.toString/$r4 400

21005 :Var/type java.lang.StringmoveToFront/r1 400

21006 :Var/name java.lang.Object.getClass/@this 421

21006 :Var/type java.lang.StringBuffer 421

21007 :Var/name java.lang.Object 421

21007 :Var/type java.lang.Object 421

An important characteristic of Datomic is that the time essence is built-in, since every
datom retains its transaction. Transactions are totally ordered, first-class entities. By
default Datomic retrieves the most recent database value.

Table 2: Datomic database structure - most recent value

Entity Attribute Value Timestamp

21005 :Var/name java.lang.Object.toString/$r4 400

21005 :Var/type java.lang.StringmoveToFront/r1 400

21006 :Var/name java.lang.Object.getClass/@this 421

21006 :Var/type java.lang.StringBuffer 421

21007 :Var/name java.lang.Object 421

21007 :Var/type java.lang.Object 421

Due to the fact that time is built-in it is also possible to get the database value as-of a
previous point in time.

Table 3: Datomic database structure - as-of 400 value

Entity Attribute Value Timestamp

21005 :Var/name java.lang.Object.toString/$r4 400

21005 :Var/type java.lang.StringmoveToFront/r1 400

21006 :Var/name java.lang.Object.getClass/@this 421

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 25

21006 :Var/type java.lang.StringBuffer 421

21007 :Var/name java.lang.Object 421

21007 :Var/type java.lang.Object 421

3.3 Schema

As described in section 3.3 the facts that a Datomic database stores are represented by
datoms. Each datom is an addition or retraction of a relation between an entity, an
attribute, a value, and a transaction. The set of possible attributes a datom can specify
is defined by a database's schema.

Each Datomic database has a schema that describes the set of attributes that can be
associated with entities. A schema only defines the characteristics of the attributes
themselves. It does not define which attributes can be associated with which entities.
Decisions about which attributes apply to which entities are made at the application
level.

This gives applications a great degree of freedom to evolve over time. For example, an
application that wants to model a person as an entity does not have to decide up front
whether the person is an employee or a customer. It can associate a combination of
attributes describing customers and attributes describing employees with the same
entity. An application can determine whether an entity represents a particular
abstraction, customer or employee, simply be looking for the presence of the
appropriate attributes.

3.3.1 Schema Attributes

Schema attributes are defined using the same data model used for application data.
That is, attributes are part of the Datomic meta model, which specifies the
characteristics (i.e., attributes) of the attributes themselves meaning attributes are
themselves entities with associated attributes. Datomic defines a set of built-in system
attributes that are used to define new attributes.

Every new attribute is described by three required attributes (the rest of section 3.4.1 is
copied from the Datomic Reference found in Datomic Development Resources [3]):

 :db/ident specifies the unique name of an attribute. It's value is a

namespaced keyword with the lexical form :<namespace>/<name>. It is

possible to define a name without a namespace, as in :<name>, but a

namespace is preferred in order to avoid naming collisions. Namespaces can be

hierarchical, with segments separated by ".", as in :<namespace>.<nested-

namespace>/<name>. The :db namespace is reserved for use by Datomic

itself.

 :db/valueType specifies the type of value that can be associated with an

attribute. The type is expressed as a keyword. Allowable values are listed below.

:db.type/keyword – Value type for keywords. Keywords are used as

names, and are interned for efficiency. Keywords map to the native interned-
name type in languages that support them.

:db.type/string – Value type for strings.

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 26

:db.type/boolean – Boolean value type.

:db.type/long – Fixed integer value type. Same semantics as a Java

long: 64 bits wide, two's complement binary representation.

:db.type/bigint – Value type for arbitrary precision integers. Maps to

java.math.BigInteger on Java platforms.

:db.type/float – Floating point value type. Same semantics as a Java

float: single-precision 32-bit IEEE 754 floating point.

:db.type/double – Floating point value type. Same semantics as a Java

double: double-precision 64-bit IEEE 754 floating point.

:db.type/bigdec – Value type for arbitrary precision floating point numbers.

Maps to java.math.BigDecimal on Java platforms.

:db.type/ref – Value type for references. All references from one entity to

another are through attributes with this value type.

:db.type/instant – Value type for instants in time. Stored internally as a

number of milliseconds since midnight, January 1, 1970 UTC. Maps to

java.util.Date on Java platforms.

:db.type/uuid – Value type for UUIDs. Maps to java.util.UUID on Java

platforms.

:db.type/uri – Value type for URIs. Maps to java.net.URI on Java

platforms.

:db.type/bytes – Value type for small binary data. Maps to byte array on

Java platforms.

 db/cardinality – specifies whether an attribute associates a single value or

a set of values with an entity. The values allowed for :db/cardinality are:

:db.cardinality/one – the attribute is single valued, it associates a single

value with an entity

:db.cardinality/many – the attribute is multi-valued, it associates a set of

values with an entity

Transactions can add or retract individual values for multi-valued attributes.

Apart from these three required attributes there are some optional attributes which can
be associated with an attribute definition:

 :db/doc – specifies a documentation string

 :db/unique – specifies a uniqueness constraint for the values of an attribute.

Setting an attribute :db/unique also implies :db/index. The values allowed

for :db/unique are:

:db.unique/value – the attribute value is unique to each entity; attempts to

insert a duplicate value for a different entity id will fail

:db.unique/identity – the attribute value is unique to each entity and

"upsert" is enabled; attempts to insert a duplicate value for a temporary entity id
will cause all attributes associated with that temporary id to be merged with the
entity already in the database.

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 27

:db/unique defaults to nil.

 :db/index – specifies a boolean value indicating that an index should be

generated for this attribute. Defaults to false.

 :db/fulltext – specifies a boolean value indicating that a fulltext search

index should be generated for the attribute. Defaults to false.

 :db/isComponent – specifies that an attribute whose type is :db.type/ref

refers to a subcomponent of the entity to which the attribute is applied. When an

entity is retracted with :db.fn/retractEntity, all subcomponents are also

retracted. When an entity is touched, all its subcomponent entities are touched
recursively. Defaults to nil.

 :db/noHistory – specifies a boolean value indicating whether past values of

an attribute should not be retained. Defaults to false.

3.4 Entities

Every datom in Datomic includes a database-unique entity id. Entity ids are assigned by
the transactor, and never change.

It is possible to request new entity ids by specifying a temporary id (tempid) in

transaction data. The Peer.tempid method creates a new temporary id, and the

Peer.resolveTempid method can be used to query a transaction return value for the

actual id assigned. Internally, entity ids encode the partition an entity belongs to. An
entity's partition may be useful in some cases, and can be discovered by calling the

Peer.part method.

As mentioned above, all entities in a database have an internal key, the entity id. It is

possible to use :db/unique and :db/index together to define an attribute to

represent an external key. An entity may have any number of external keys, however,
external keys must be single attributes, multi-attribute keys are not supported.

3.5 Transactions

Datomic represents transaction requests as data structures which provides the ability to
better build requests programatically.

A transaction is simply a list of lists and/or maps, each of which is a statement in the
transaction. Each list of a transaction represents either the addition or retraction of a
specific fact about an entity, attribute, and value, as shown below:

[:db/add entity-id attribute value]

[:db/retract entity-id attribute value]

Each map a transaction contains is equivalent to a set of one or more :db/add

operations. The map must include a specific :db/id key, identifying the entity which

data is being added to (as described below). It may include any number of attribute-
value pairs.

http://docs.datomic.com/javadoc/datomic/Peer.html#tempid(java.lang.Object)
http://docs.datomic.com/javadoc/datomic/Peer.html#resolveTempid(datomic.Database,%20java.lang.Object,%20java.lang.Object)
http://docs.datomic.com/javadoc/datomic/Peer.html#part(java.lang.Object)

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 28

{:db/id entity-id

attribute value

attribute value

…

}

However, internally, the map structure gets transformed to a list structure where each

attribute-value pair becomes a :db/add list, using the entity-id value associated with

the :db/id key.

[:db/add entity-id attribute value]

[:db/add entity-id attribute value]

. . .

The map structure is used as a convenience when adding data. Datomic uses an
object-oriented form to present data at application-level as each entity has an id by
which it can be addressed and a set of attributes which represent its state and
behaviour. The attribute keys in the map may be either keywords or strings.

:db/retract works similarly but we will not discuss it here.

In a transaction it is fundamental that all the statements must specify the entity id they
apply to. An entity id may take one of three possible values:

 a temporary id for a new entity being added to the database

 an existing id for an entity that already exists in the database

 an identifier for an entity that already exists in the database

Temporary ids are generated by calling the datomic.Peer.tempid method. The first

argument to Peer.tempid is the name of the partition where the new entity will reside.

The three partitions built into Datomic are:

 :db.part/db – Schema partition. It is used only for schema entities, such as

attributes and partitions.

 :db.part/tx – Transaction partition. It is used only for transaction entities,

which are automatically created for each committed transaction.

 :db.part/user – User partition. It is used for application entities.

For instance in order to generate new temporary id in the :db.part/user partition,

the following statement is required:

temp_id = Peer.tempid(“:db.part/user”);

By default, each call to Peer.tempid generates a unique temporary id, however it is

worth mentioning that there is an overloaded version of Peer.tempid which takes a

negative number as an argument and returns a temporary id based on that number. If

multiple invocations of Peer.tempid are called with the same partition and number are

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 29

called, each invocation will return the same temporary id, making it extremely useful for
the construction of transactions which add references between entities.

When a transaction containing temporary ids is processed, each unique temporary id is
mapped to an actual entity id. If a given temporary id is used more than once in a given
transaction, all instances are mapped to the same actual entity id.

In general, unique temporary ids are mapped to new entity ids. However, there is one
exception. When a fact about a new entity with a temporary id is added and one of the

attributes is specified as :db/unique :db.unique/identity, the system will

“upsert” i.e., it will map the temporary id to an existing entity if one exists with the same
attribute and value (update) or will make a new entity if one does not exist (insert). All
further adds in the transaction that apply to that same temporary id are applied to the
"upserted" entity.

Finally, in order to add, modify or retract data about existing entities in a transaction, it is
necessary to know their respective entity ids. These can be retrieved by querying the
database for an external key.

3.5.1 Adding data to a new entity

In order to add data to a new entity, a transaction must be built using :db/add implicitly

or (explicitly with the list structure), a temporary id and the attributes and values to be
added.

For instance in order to add an entity with two attributes, :Var/name and :Var/type:

[{:db/id #db/id[:db.part/user]

 :Var/name “java.lang.Object.finalize/@this”

 :Var/type “java.lang.Object”}]

The same transaction can be constructed using Java code:

temp_id = Peer.tempid(“:db.part/user”);

tx = Util.list(Util.map(":db/id", tempid,

":Var/name", "java.lang.Object.finalize/@this",

":Var/type", "java.lang.Object")

);

Note that there is no requirement and restrictions about which attributes are added to
which entities, this is left entirely up to the application. This provides a great deal of
flexibility as the system evolves.

3.6 Queries

In general, a Datalog system would have a global fact database and set of rules.
Datomic's query engine instead takes databases (and as a matter of fact, many other
data sources) and rule sets as inputs.

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 30

The basic job of a query is, given a set of variables and a set of clauses, to find (the set
of) all of the (tuples of) variables that satisfy the clauses. A most basic query in Datomic
would have the following pattern:

[:find variables :where clauses]

As an example, consider the data of Table 1:

[[21005 :Var/name java.lang.Object.toString/$r4]

[21006 :Var/name java.lang.String.moveToFront/r1]

[21007 :Var/name java.lang.Object.getClass/@this]

[21005 :Var/type java.lang.StringBuffer]

[21006 :Var/type java.lang.Object]

[21007 :Var/type java.lang.Object]]

A query invocation would take the following form:

Peer.q(query, inputs...);

A query could be formulated like this:

[:find ?e :where [?e :Var/Type “java.lang.Object”]]

This query has only one variable, ?e, and one clause [?e :Var/Type

“java.lang.Object”] and will take one input, expected to be a set of tuples with at

least three components. This first kind of clause is called a data clause. By convention
data clauses are shown in square brackets and other kinds of clauses in parentheses,
but both designate lists. A data clause consists of constants and/or variables, and a
tuple satisfies a clause if its constants match. The variables, in particular, get bound to
the corresponding part of the matching tuple. All of this matching happens by position.

In this case we have the following two matches:

Table 4: First match of query with data

Query Data

?e 21006

:Var/type :Var/type

java.lang.Object java.lang.Object

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 31

Table 5: Second match of query with data

Query Data

?e 21007

:Var/type :Var/type

java.lang.Object java.lang.Object

So, the result of the above query would be:

[[21006, 21007]]

Another example, demonstrating the entity id binding and unification in order to retrieve
an attribute value, would be the following:

[:find ?name : where

[?e :Var/name ?name]

[?e :Var/type “java.lang.Object”]]

returning:

[[java.lang.String.moveToFront/r1],

[java.lang.Object.getClass/@this]]

This second query has two variables ?name and ?e and two clauses [?e :Var/name

?name] [?e :Var/type “java.lang.Object”], and will take one input,

expected to be a set of tuples with at least three components.

3.6.1 Unification

In the case demonstrated above, we have two clauses and both of them use the

variable ?e. When a variable name is used more than once, it must represent the same

value in every clause in order to satisfy the set of clauses. Another perspective is that

the reuse of ?e causes an implicit self-join on the single data source. All of the values of

?e in a single match are said to unify.

3.6.2 Anonymous (Placeholder) Variables

A single placeholder variable '_' can be used to match certain components of the tuples

in a query, for which the user does not care about, in order to get to the positions of

their interest. '_' matches anything, but does not unify with itself.

For instance, the following query retrieves all the variable types:

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 32

[:find ?type :where [_ :Var/type ?type]]

3.6.3 Querying a database

The first thing needed in order to query the database is to get its value from the
connection:

Database db = conn.db();

This is a true value, it is not going to change. If db is used for several queries it is
guaranteed that the answers are based upon exactly the same data from a single point
in time. As already mentioned the database itself acts as a relation of 4-tuples of

[entity attribute value transaction].

;;when given a db source, finds the names of all the attributes

[:find ?name :where

 [_ :db.install/attribute ?a]

 [?a :db/ident ?name]]

While this query is intended to be used against a database, its data clauses contain only
three elements, not four. This is not a problem due to the fact that data clauses always
omit any trailing components we don't care about, in this particular case the transaction
information.

3.6.4 Expression Clauses

Expression clauses allow native Java or Clojure functions to be used inside of Datalog
queries. User-defined or library functions can be used as predicates or as
transformation functions. Functions or methods used in expression clauses must be
pure.

There are two forms of expression clauses:

[(predicate …)]

[(function …) bindings]

The first item in an expression clause is a list designating a function or method call. If no
bindings are provided, the function is presumed to be a predicate returning a boolean
truth value. A predicate can be used to filter out results:

[:find ?e :where [?e :age ?a] [(< ?a 30)]]

Variables can be supplied as arguments to the predicate and the function will be called
on their bound values.

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 33

Functions behave in the same manner, except that their return values can in turn bind
other variables:

[:find ?e ?months :where [?e :age ?a] [(* ?a 12) ?months]]

3.6.5 Bindings

Bindings can vary, from single scalar to a tuple of results, a collection of results or a full
relation (collection of tuples).

Table 6: Binding Patterns

Pattern Binds

?a Scalar

[?a ?b] Tuple

[?a …] Collection

[[?a ?b]] Relation

3.7.6 Multiple Inputs

Queries can take multiple inputs, and as soon as they do, an :in clause must be
specified to describe and name them:

[[:find ?e :in $data ?age :where [$data ?e :age ?age]]

The above query would be called like this:

Peer.q(query, data, 42);

The :in clause above indicates that the query expects two inputs and they will be

referred as $data and ?age. Inputs named with a leading $ are data sources and can

be matched using data clauses.

Inputs involving variables are binding patterns, and directly bind those variables. All of
the binding patterns accepted for function returns listed above are also accepted for
inputs. As a consequence, the user can take scalars, tuples, collections, and relations
as inputs and bind their components to variables for use in the query.

3.7 Rules

Datomic Datalog offers users the ability to merge sets of :where clauses into named

rules. These rules make query logic reusable, and also provide composability, meaning
that portions of a query's logic can be bound at query time.

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 34

A rule is a named group of clauses that can be plugged into the :where section of a

query.

Below we present the Datalog rules of Figure 1.1 in Datomic Datalog, as a set of rules:

[[(VarPointsTo ?heap ?var)

(AssignHeapAllocation ?heap ?var)]

[(VarPointsTo ?heap ?to)

(Assign ?to ?from)

(VarPointsTo ?heap ?from)]

[(AssignHeapAllocation ?heap ?var)

[?e :AssignHeapAllocation/heap ?heap]

[?e :AssignHeapAllocation/var ?var]]

[(Assign ?to ?from)

[?e :Assign/to ?to]

[?e :Assign/from ?from]]]

As with transactions and queries, rules are described using data structures. A rule is a

list of lists. The first list in the rule is the head, naming the rule and specifying its

parameters. The rest of the lists are clauses that make up the body of the rule.

In the first rule, the rule-name is VarPointsTo, the variables ?heap and ?var are

input arguments, and the body is a single rule invocation testing whether another rule,

namely AssignHeapAllocation, is satisfied by ?heap and ?var.

In the second rule the body is composed of two rule invocations, the first being

(Assign ?to ?from) and the second being a reuse of VarPointsTo with different

input arguments–?to and ?from, creating a recursive rule.

The last two rules have bodies consisting of two data clauses each. For instance, in the
case of the third rule, the output is a list of attribute value pairs, each representing an
entity which satisfies the two data clauses. In particular, it returns the ?heap ?var pairs

for which an entity with entity id ?e exists with value ?heap for its

:AssignHeapAllocation/heap attribute and value ?var for its

:AssignHeapAllocation/var attribute. Rule number four follows the same logic.

The example shown above demonstrates Datomic's way of combining individual rule
definitions into sets of rules. A set of rules is simply another list, containing a number of
rule definitions.

In order to use a rule set in a query the following two things are necessary:

 First, the rule set has to be passed as an input source and be referenced in the

:in section of a query using the '%' symbol.

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 35

 Second, one or more rules have to be invoked from the :where section of a

query. This is done by adding a rule invocation clause. Rule invocations have this
structure:

(rule-name rule-arg*)

A rule invocation is a list containing a rule-name and one or more arguments, either
variables or constants, as defined in the rule head. It's idiomatic to use parentheses
instead of square brackets to represent a rule invocation in literal form, because it
makes it easier to differentiate from a data clause. However, it is not a requirement.

For instance in the following rule's body:

[(VarPointsTo ?heap ?var)

(AssignHeapAllocation ?heap ?var)]

(AssignHeapAllocation ?heap ?var) is an invocation of the rule with rule-name

“AssignHeapAllocation” with two rule-args, ?heap and ?var.

As with other where clauses, it is possible to specify a database before the rule-name to
scope the rule to that database. Databases cannot be used as arguments in a rule.

($db rule-name rule-arg*) //not allowed

Furthermore, as shown in our example rules also make it possible to define different

logical paths to the same conclusion (i.e., logical OR). The VarPointsTo rule has two

definitions, the first testing whether a heap allocation assignment of ?heap to ?var

exists and the second testing whether there is an assignment of ?from to ?to, with

?from potentially pointing to ?heap.

In the example above, the body of each rule consists solely of other rule invocations.
However, rules can contain any type of clause: data, expression, or other rule
invocations.

3.8 Storage Services

Datomic offers several options for persistent data storage plus the option to use the
memory as a storage service. For each particular case it is necessary to start the
Transactor with the appropriate properties file and then connect the Peer Library to the
Transactor with a Storage Service specific URI.

Among the Storage Service options are:

 SQL database

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 36

 DynamoDB

 Riak

 Couchbase

 Infinispan memory cluster

 Cassandra

 Dev (free local storage)

 Memory

An application can be moved from one Storage Service to another simply by switching
the connection string used by peers and the properties file used to start the Transactor.
All are fully API-compatible.

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 37

4. Context-Insensitive Points-To Analysis in Datomic

The first part of the analysis was implemented in DatalogLB. After running an analysis in
DatalogLB, we use a shell script, executing queries to retrieve each input fact in the
workspace and to redirect the output to corresponding files, in order to obtain the input
fact files for Datomic from the produced workspace of our context-insensitive analysis in
DatalogLB.

function generate_facts() {

 dest=/home/destination/path
 rm -rf $dest/*.facts

 $bloxbatch -db $database -query InstructionRef > $dest/InstructionRef.facts

 ...

 $bloxbatch -db $database -query MethodLookup > $dest/MethodLookup.facts
 $bloxbatch -db $database -query AssignCompatible > $dest/AssignCompatible.facts

}

Figure 4.1: The shell script used to obtain the input facts from the DatalogLB workspace

The resulting input fact files for Datomic are taken as input by our Java application
which performs the context-insensitive analysis. This application has three tasks. First,
to read the generated input facts from the input files and convert them to Datomic seed
data. Second, to create the Datomic database on the selected Storage Service (in our
case the memory), parse the Schema which provides the characteristics of the
attributes used for our analysis and import the converted seed data to files the Datomic
database. The final task is the actual execution of the context-insensitive points-to
analysis in Datomic.

4.1 Analysis Schema

The schema specifies all the necessary attributes for our analysis. Figure 4.2 shows an
excerpt of our schema of attributes:

{:db/id #db/id[:db.part/db]
 :db/ident :MethodSignatureRef/value
 :db/valueType :db.type/string
 :db/cardinality :db.cardinality/one
 :db.install/_attribute :db.part/db }

{:db/id #db/id[:db.part/db]
 :db/ident :HeapAllocation-Type/heap
 :db/valueType :db.type/ref
 :db/unique :db.unique/value
 :db/cardinality :db.cardinality/one
 :db.install/_attribute :db.part/db }

{ :db/id #db/id[:db.part/db]
 :db/ident :HeapAllocation-Type/type
 :db/valueType :db.type/ref

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 38

 :db/cardinality :db.cardinality/one
 :db.install/_attribute :db.part/db
}

Figure 4.2: Excerpt of the Datomic analysis Schema

This part of the schema declares three attributes. :db/ident specifies the unique

names of these attributes MethodSignatureRef/value, HeapAllocation-

Type/heap and HeapAllocation-Type/type. All three attributes have cardinality

value :db.cardinality/one meaning they associate a single value of the attribute

with an entity. HeapAllocation-Type/heap has the :db/unique attribute set as

:db.unique/value meaning that the attribute value is unique to each entity.

MethodSignatureRef/value has its value type set as :db.type/string while the

other two have their value types set as :db.type/ref which is the value type for

references to other entities.

4.2 Input Facts Conversion

As shown in Figure 4.1 some of the input attributes have primitive value types such as

:db.type/string. For such cases the conversion to Datomic entities is very simple.

For MethodSignatureRef entities we declare the corresponding class having the

same name (MethodSignatureRef). We decided to model entities this way as it is

the exact interpretation of the object-oriented form Datomic uses to model them in
transactions.

For each Datomic entity type we have declared a corresponding class and each entity is
modeled as an object of its corresponding class. In total we have 58 Java classes
representing Datomic entity types. For entities with dashes in their names such as

HeapAllocation-Type the corresponding class name is the entity name without the

dash (e.g., HeapAllocationType).

Figure 4.3 shows the MethodSignatureRef class:

public class MethodSignatureRef {
 private int id;
 private String value = null;

 public MethodSignatureRef(int id, String value) {
 this.id = id;
 this.value = value;
 }

 public String getValue() {

 return value;

 }

 public int getID() {

 return this.id;

 }
}

Figure 4.3: The MethodSignatureRef class

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 39

Figure 4.4 shows how we read the input facts from a file and then create and store the
created class objects in memory. For each line of the input file

MethodSignatureRef.facts we create a MethodSignatureRef object and add it

to a data structure (an ArrayList in particular). The MethodSignatureRef class

has two private members, the id (an int representing its temporary_id) and the value

(a String representing the value of its MethodSignatureRef/value attribute).

This is the simple scenario where an entity has no attributes referring to other entities:

try(BufferedReader br = new BufferedReader(new FileReader("input-
facts/MethodSignatureRef.facts"))) {

String line;
 while ((line = br.readLine()) != null) {
 line = line.trim();
 MethodSignatureRef m = new MethodSignatureRef(id.getID(), line);
 methodSignatureRefFactsList.add(m);

 }
 br.close();

}

Figure 4.4: Excerpt of the code reading from the MethodSignatureRef.facts input file, creating
MethodSignatureRef class objects and adding them to an ArrayList.

We also have declared a class named FactsID and we create only one object of it,

which produces unique temporary ids (one per entity), by decrementing a negative

number, using a synchronized method named getID(). getID() has to be

synchronized because we use multithreading to speed up the facts conversion
procedure.

public class FactsID {
 private int id;

 public FactsID(int id) {

 this.id = id;

 }

 public synchronized int getID() {
 int temp_id = id--;
 return temp_id;

 }

 public int printID() {

 return id;

 }
}

Figure 4.5: The FactsID class which generates temporary ids

The most crucial part of the conversion is the conversion of relationships like

HeapAllocation-Type because both attributes for such an entity have value type

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 40

:db.type/ref, which means that they are references to other entities. As a result, an

object of the class HeapAllocationType (which represents a HeapAllocation-

Type entity) needs to have two more members other than id. One of them is a

reference to a Type object and the other is a reference to a HeapAllocationRef

object.

The HeapAllocationType class is shown in Figure 4.6:

class HeapAllocationType {

 HeapAllocationRef heapAllocationRef = null;
 Type type = null;
 int id = 0;

 public HeapAllocationType(int id, HeapAllocationRef har, Type t) {

 this.id = id;
 heapAllocationRef = har;
 type = t;

 }

 public int getID() {

 return this.id;

 }

 public Type getType() {

 return type;

 }

 public HeapAllocationRef getHeapAllocationRef() {
 return heapAllocationRef;
 }
}

Figure 4.6: The HeapAllocationType class representing HeapAllocation-Type entities

In general, all the references to other entities from the attribute(s) of an entity are
modeled in this way during the fact conversion phase (class members referring to other
classes' objects). To make things more complicated some entity attributes are
references to other entities which in turn have attributes which are references to other
entities and need to be modeled accordingly.

The Java code in Figure 4.7 demonstrates how such a scenario is handled in the input

facts conversion part of our analysis (for HeapAllocation-Type entities):

Type type = null;

CallGraphEdgeSourceRef c = null;

for(Type type1 : typeFactsList) {

 if(type1.getValue().equals(m.group(3))) {

 type = type1;

 break;

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 41

 }

}

if (type == null)

//Exit with error if reference not found

for(CallGraphEdgeSourceRef c1 : cList) {

 if (c.getInstructionRef().getInstruction().equals(m.group(1))) {

 c = callGraphEdgeSourceRef1;

 break;

 }

}

if (c == null)

//Exit with error if reference not found

HeapAllocationRef h = new HeapAllocationRef(id.getID(), c);

heapFactsList.add(h);

HeapAllocationType hAllocType = new HeapAllocationType(id.getID(), h, type);

heapTypeFactsList.add(hAllocType);

Figure 4.7 Conversion of HeapAllocation-Type facts

public class Type {
 private String value = null;
 private int id;

 public Type(int id, String value) {
 this.id = id;
 this.value = value;
 }

 public String getValue() {
 return this.value;
 }

 public int getID() {
 return this.id;
 }
}

Figure 4.8 The Type class

public class HeapAllocationRef {
 private CallGraphEdgeSourceRef x = null;
 private int id;

 public HeapAllocationRef(int id, CallGraphEdgeSourceRef x) {
 this.x = x;
 this.id = id;
 }

 public int getID() {
 return this.id;
 }

 public CallGraphEdgeSourceRef getCallGraphEdgeSourceRef() {
 return this.x;

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 42

 }
}

Figure 4.9 The HeapAllocationRef class

The best way to explain what the code in Figure 4.7 does is through an example.
Consider the following line in the file HeapAllocation-Type.facts:

America/Adak, java.lang.String

When this line is read and matched to our regular expression, m.group(1) has the

value “America/Adak” and m.group(3) has the value “java.lang.String”.

First, we need to search for the Type object whose value (see Figure 4.8) member is

equal to “java.lang.String” in the typeFactsList and make the type Java

variable refer to it, but for HeapAllocationRef the situation is more complicated,

because each HeapAllocationRef/x attribute refers to a

CallGraphEdgeSourceRef object whose CallGraphEdgeSourceRef/x atrribute

in turn refers to an InstructionRef which has only one attribute,

InstructionRef/x with value type :db.type/string. So we search cFactsList

(containing all the CallGraphEdgeSourceRef objects) for the correct

CallGraphEdgeSourceRef object which has a reference to an InstructionRef

object which has a member of type String and value equal to “America/Adak”. After

the correct CallGraphEdgeSourceRef object (referred to by c) is found, we create a

HeapAllocationRef object (referred to by h), which has a member named x (see

Figure 4.9) which is a reference of type CallGraphEdgeSourceRef, referring to c

and add it to heapFactsList. Finally, we create a HeapAllocationType object with

references to the objects referred to by the type and h Java references and add it to

heapTypeFactsList.

The final step of the conversion, is the generation of files containing a map for each

entity mapping its :db/id attribute to its temporary id, and its other attributes to their

corresponding values (in the case of :db.type/ref value types the values of

attributes are again temporary ids).

Figure 4.10 shows how the files containing the seed data are generated. The first

writer.println statement of each try block writes the line containing the mapping

of :db/id to the temporary id of the entity and the other writer.println()

statement in the first try block and two writer.println() statements in the second

try block write the mapping of the entities' attributes to their values. In this example all

attribute values are references, thus the attribute values are the temporary ids of the
referenced entities:

try(PrintWriter writer = new PrintWriter(new BufferedWriter(new FileWriter(
"HeapAllocationRef.dtm", false)));) {

 for(HeapAllocationRef key : heapFactsList) {
 writer.println("{:db/id #db/id[:db.part/user " + key.getID() + "]");
 writer.println(" :HeapAllocationRef/x #db/id[:db.part/user " +

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 43

 key.getCallGraphEdgeSourceRef().getID() + "]}");
 }
 writer.close();

}
try(PrintWriter writer = new PrintWriter(new BufferedWriter(new FileWriter(
"HeapAllocation-Type.dtm", false)));) {

 for(HeapAllocationType key: heapTypeFactsList) {
 writer.println("{:db/id #db/id[:db.part/user "+key.getID() + "]");
 writer.println(" :HeapAllocation-Type/heap #db/id[:db.part/user " +

 key.getHeapAllocationRef().getID() +]");

 writer.println(" :HeapAllocation-Type/type #db/id[:db.part/user " +

 key.getType().getID()+"]}");
 }
 writer.close();

}

Figure 4.10: Excerpt of the Java code responsible for the generation of Datomic seed data files

As shown in Figure 4.10 the ArrayLists containing the class objects representing

each entity are traversed and their attributes are written in the file using a map structure.

Figure 4.11 shows how a generated Datomic seed data file looks:

{:db/id #db/id[:db.part/user -95700]
 :HeapAllocation-Type/heap #db/id[:db.part/user -95540]
 :HeapAllocation-Type/type #db/id[:db.part/user -93294]}

{:db/id #db/id[:db.part/user -96247]
 :HeapAllocation-Type/heap #db/id[:db.part/user -96244]
 :HeapAllocation-Type/type #db/id[:db.part/user -93294]}

{:db/id #db/id[:db.part/user -96755]
 :HeapAllocation-Type/heap #db/id[:db.part/user -96752]
 :HeapAllocation-Type/type #db/id[:db.part/user -93294]}

Figure 4.11: Datomic seed data file HeapAllocationType.dtm

This is how the mapping is performed in the above example: -95700 is the temporary

id of the HeapAllocation-Type entity which will be added to the database and its

HeapAllocation-Type/heap attribute has the :db/id of the entity found in the user

partition (:db.part/user) with temporary id -95540 as its value (reference to entity).

In the same manner its HeapAllocation-Type/type attribute has the :db/id of the

entity found in the user partion (:db.part/user) with temporary id -93294 as its

value (again, reference to entity). All the temporary ids will be resolved to actual ids in
the database when the transaction occurs.

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 44

4.3 Read Schema Data and Import Seed Data

After creating all the seed data files, we need to create a database in memory and then
connect to it. This is done using:

String uri = "datomic:mem://analysis";

Peer.createDatabase(uri);

Connection conn = Peer.connect(uri);

Next, we need to parse the schema and add it to the database using a transaction:

Reader schema_rdr = new FileReader("../schema_and_seed_data/schema.dtm");

List schema_tx = (List) Util.readAll(schema_rdr).get(0);

Object txResult = conn.transact(schema_tx).get();

Finally, we merge all the files containing the Datomic seed data to one big file (this is
done because it is necessary to add all the entities with one transaction in order to
correctly resolve the temporary ids of all references in the seed data to actual ids in the
database) and we read that file and insert the data with a transaction:

data_rdr = new FileReader("../schema_and_seed_data/seed-data.dtm");

data_tx = (List) Util.readAll(data_rdr).get(0);

txResult = conn.transact(data_tx).get();

After this step we are ready to perform our analysis on the seed data.

4.4 Analysis Implementation

In order to properly evaluate Datomic our analysis was implemented both iteratively and
recursively.

4.4.1 Iterative Context-Insensitive Points-To Analysis

For the iterative context-insensitive analysis we first execute the queries which will
output the entity ids of the main method declaration, the implicitly reachable methods
and the reachable class initializer methods which are the initially reachable methods.

Figure 4.12 shows this part of the code:

Collection results = Peer.q("[:find ?method :where" +

"[?m :MainMethodDeclaration/method ?method]]", conn.db());

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 45

results = Peer.q("[:find ?method :where" +

"[?i :ImplicitReachable/sig ?Method]]", conn.db());

results = Peer.q("[:find ?clinit :where" +

"[?ic :InitializedClass/classOrInterface ?class]" +
"[?ci :ClassInitializer/type ?class]" +
"[?ci :ClassInitializer/method ?clinit]]",
conn.db());

Figure 4.12 Initial queries of the iterative analysis

The above queries use data clauses as explained in chapter 2. The first query retrieves

the entity id of the MethodSignatureRef entity referred to by the

MainMethodDeclaration/method attribute of the sole MainMethodDeclaration

entity in the database. The entity id retrieved will be inserted into the database as value

to the attribute Reachable/method of a Reachable entity (Reachable/method has

value type :db.type/ref). In the same way the second query retrieves the entity ids

of the MethodSignatureRefs of all the implicitly reachable methods and then

Reachable entities are inserted into the database using them as attribute values. The

third query behaves similarly, retrieving the entity ids of the class initializer methods'

MethodSignatureRefs for each initialized class.

For instance Figure 4.13 shows how we insert each new Reachable entity to the

database:

for (Object result : results) {
 List tx = Util.list(Util.map(":db/id", Peer.tempid(":db.part/user"),
 ":Reachable/method", ((List) result).get(0)));
 try {

 Object txResult = conn.transact(tx).get();

 }
 catch (InterruptedException | ExecutionException ex) {
 ex.toString();
 System.exit(-1);
 }

}

Figure 4.13: Insertion of query results to the database

For each result in the results Collection we create a Util.list tx containing a single

Util.map which maps the attribute :db/id to a newly generated temporary id in the

user partition (:db.part/user) and we map the attribute :Reachable/method to

the result's value which is the first and only element of the List result. Then we call

conn.transact() with tx as argument to add the new entity to the database.

After this step a loop starts where we call queries to the database returning lists of entity
ids which will be used as attribute values for new entities and then we add those new
entities to the database. The loop terminates when fix point is reached (no further new
entities to insert to the database are found).

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 46

Figure 4.14 shows some of the queries used:

results = Peer.q("[:find ?heap ?var :where"+
 "[?r :Reachable/method ?inmethod]" +
 "[?a :AssignNormalHeapAllocation/inmethod ?inmethod]"+
 "[?a :AssignNormalHeapAllocation/heap ?heap]" +
 "[?a :AssignNormalHeapAllocation/var ?var]]",
 conn.db());

results = Peer.q("[:find ?type ?actual ?formal :where"+
 "[?c :CallGraphEdge/tomethod ?method]" +
 "[?c :CallGraphEdge/invocation ?invocation]"+
 "[?f :FormalParam/method ?method]" +
 "[?f :FormalParam/index ?index]" +
 "[?f :FormalParam/var ?formal]" +
 "[?a :ActualParam/invocation ?invocation]" +
 "[?a :ActualParam/index ?index]" +
 "[?a :ActualParam/var ?actual]" +
 "[?formal :Var/type ?type]]",
 conn.db());

results = Peer.q("[:find ?invocation ?tomethod :where" +
 "[?r :Reachable/method ?inmethod]" +
 "[?s :StaticMethodInvocation/inmethod ?inmethod]" +
 "[?s :StaticMethodInvocation/invocation ?invocation]" +
 "[?s :StaticMethodInvocation/signature ?signature]" +
 "[?m :Method/signature ?signature]" +
 "[?m :Method/declaration ?tomethod]]",
 conn.db());

Figure 4.14: Excerpt of analysis queries

The first query returns a list of 2-element lists containing entity ids of

HeapAllocationRef and Var entity pairs which form VarPointsTo relations. For a

reachable ?inmethod and an assignment from ?var to ?heap in ?inmethod we have

to insert a VarPointsTo entity with ?heap and ?var as attribute values. The

VarPointsTo entity represents the VarPointsTo relation between ?var and ?heap.

The transaction performed afterwards will insert one VarPointsTo entity for each 2-

element list where the value of the VarPointsTo/heap attribute of the entity is equal

to the first element of the 2-element list and the value of the VarPointsTo/var

attribute of the entity is equal to the second element of the list.

The second query returns a list of 3-element lists of assignments from ?actual to

?formal where ?type is the value of the :Var/Type attribute of ?formal. Given an

?invocation to ?method there is an assignment from the ?actual parameter at

?index of the ?invocation to the ?formal parameter at ?index of the ?method..

?actual and ?formal are Var entity ids and the value of the :Assign/type

attribute of the Assign entity is the same as the value of the :Var/type attribute of

?formal. The transaction which follows this query will insert one Assign entity for

each 3-element list where the value of its Assign/type attribute is equal to the first

element of the 3-element list, the value of its Assign/from attribute is equal to the

second element of the 3-element list and the value of its Assign/to attribute is equal

to the third element of the 3-element list.

The third query returns a list of 2-elements lists containing entity ids of

MethodInvocationRef and MethodSignatureRef entity pairs, forming a

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 47

CallGraphEdge relations (there is a call graph edge from ?invocation to

?method). Given a reachable method ?inmethod and an ?invocation of the

method with signature ?signature inside ?inmethod, where the method with

signature ?signature is declared as ?tomethod, a 2-element list of ?invocation

and ?tomethod values is returned. The value of ?invocation is the entity id of a

MethodInvocationRef entity and the value of ?tomethod is the entity id of a

MethodSignatureRef entity. Then we have to insert a CallGraphEdge entity with

the ?invocation and ?tomethod values as attribute values.

In order to correctly reach fix point we have to keep track of the already inserted entities
and subtract them from the new found ones before adding the new found ones to the
database. The analysis terminates when we find zero new entities to be added in the
outputs of all queries.

4.4.2 Recursive Points-To Analysis

For the recursive part of the analysis, things are much simpler. We only need to provide

the query with a set of rules (using the :in argument as mentioned in section 3.8) and

use one of the rules in the :where part of the query. For instance:

results = q("[:find ?varValue ?z " +
 ":in $ % " +
 ":where (VarPointsTo ?heap ?var)" +
 "[?var :VarRef/name ?varValue]" +
 "[?heap :HeapAllocationRef/x ?x]" +
 "[?x :CallGraphEdgeSourceRef/x ?y]" +
 "[?y :InstructionRef/x ?z]]",
 conn.db(),
 rules);

Figure 4.15 Query the database using the VarPointsTo rule

In order to evaluate VarPointsTo all the rules will be evaluated recursively till fix point

is reached. This query returns a list of 2-element lists of variable name and instruction

pairs (both of :db.type/string).

The rules are provided by a file:

Reader rulesReader = new FileReader("resources/analysis.edn");

Object rules = Util.readAll(rulesReader).get(0);

Then the object rules can be used in the as input to the “%” argument in the :in part

of a query. The form of a rules file is that shown in Figure 4.15:

[(VarPointsTo ?heap ?var)
 (Reachable ?inmethod)
 [?a :AssignNormalHeapAllocation/inmethod ?inmethod]
 [?a :AssignNormalHeapAllocation/heap ?heap]
 [?a :AssignNormalHeapAllocation/var ?var]]

[(Assign ?type ?actual ?formal)
 (CallGraphEdge ?invocation ?method)

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 48

 [?f :FormalParam/method ?method]
 [?f :FormalParam/index ?index]
 [?f :FormalParam/var ?formal]
 [?a :ActualParam/invocation ?invocation]
 [?a :ActualParam/index ?index]
 [?a :ActualParam/var ?actual]
 (VarType ?formal ?type)]

[(Reachable ?method)
 [?m :MainMethodDeclaration/method ?method]]

[(Reachable ?method)
 [?i :ImplicitReachable/sig ?method]]

[(Reachable ?clinit)
 [?ic :InitializedClass/classOrInterface ?class]
 [?ci :ClassInitializer/type ?class]
 [?ci :ClassInitializer/method ?clinit]]

[(Reachable ?tomethod)
 (Reachable ?inmethod)
 [?s :StaticMethodInvocation/inmethod ?inmethod]
 [?s :StaticMethodInvocation/invocation _]
 [?s :StaticMethodInvocation/signature ?signature]
 (MethodDeclaration ?signature ?tomethod)]

Figure 4.16: Excerpt of the recursive analysis rule set

As seen, each rule has its own head and the bodies of all the rules can consist either of
data clauses or other rules or a combination of both (we don't use any expression
clauses in our analysis). The rules in Figure 4.16 work in the same way the
corresponding queries work in the iterative analysis. The main difference is that the
rules will be computed recursively till fix point is reached. For instance in order to

compute the (VarPointsTo ?heap ?var) rule, the Rechable rule must be

computed which requires the computation of all the Rechable rules. In the case of the

last rule, in order to compute (Reachable ?tomethod) we need to compute

(Reachable ?inmethod) and this gives us an example of recursive computation.

Basically, what the rule says is that if we have computed a reachable method

?inmethod and there is a static method invocation in ?inmethod to a method with

signature ?signature, then the method ?tomethod declared with signature

?signature is reachable.

In Datomic no data is added to the database during the computation of the rules, so

despite having evaluated all the output relations (VarPointsTo, Reachable,

CallGraphEdge etc.) after the execution of a query, we need to execute one query per

rule to get each rule's output.

As an example after the first query we have to execute another one in order to retrieve
the reachable methods:

results = q("[:find ?method " +
 ":in $ % " +
 ":where (Reachable ?method)]" ,

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 49

 conn.db(),
 rules);

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 50

5. Evaluation

The evaluation was performed on a system running Linux Debian 7.2 64-bit. Below we
present the system specifications:

 6-core processor clocked at 3.9GHz

 16GB of DDR3 RAM clock at 2133MHz

Additionally a 30GB swapfile was created in the File System (running on an SSD) in
order to satisfy the memory requirements of Datomic. We use small benchmark
programs so our analysis is mostly performed on the Java library, using the JRE 1.3.

5.1 Evaluation Method

The evaluation method was rather simple. The first step required running the DatalogLB
our context-insensitive analysis on a jar file and measuring the analysis time. After that,
we ran the iterative analysis implemented in Datomic on the input facts obtained from
DatalogLB analysis workspace and measured its execution time. Finally, we ran the
recursive analysis implemented in Datomic with the same input facts. The Datomic
analysis is a direct translation of the DatalogLB analysis rules with the same input facts
so, as expected, it achieves the same precision. The two concerns of our evaluation
were the execution time of the analysis part and its memory consumption.

5.2 Evaluation Results

Table 7: Execution times

Java program DatalogLB
analysis
runtime

Datomic iterative
analysis runtime

Datomic recursive analysis
runtime

Empty.jar 6.31s 1653.63s Stopped at the 2-hour mark

Arrays.jar 6.14s 1665.34s Stopped at the 2-hour mark

InstanceField.jar 6.17s 1662.38s Stopped at the 2-hour mark

New.jar 6.24s 1658.83s Stopped at the 2-hour mark

VirtualMethod.jar 6.22s 1669.31s Stopped at the 2-hour mark

VirtualMethodParam.jar 6.17s 1668.47s Stopped at the 2-hour mark

As Table 7 suggests our Datomic analysis implementation was orders of magnitude
slower than the DatalogLB analysis in all cases. The iterative Datomic analysis turned
out to be more than 100 times slower than the DatalogLB analysis in all cases while for
the recursive Datomic analysis even for a trivial scenario such as the Empty.jar no
output was received even from the first query after 18 hours. The memory consumption
proved equally worrying as for instance the DatalogLB analysis would peak at 1GB while
the Datomic iterative analysis peaked at 13.8GB after inserting all the computed output
facts to the database. The recursive analysis in Datomic, expectedly, was even more
memory-consuming as it reached 30GB memory usage before the 2-hour mark. Even

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 51

before query execution the size of the Datomic database would consume between 2
and 2.5GB of memory, even for Empty.jar.

5.3 Discussion

As indicated in section 5.2, our recursive analysis in Datomic has displayed two major
weaknesses, the first one being its execution times and the second being its heavy
memory consumption. Our efforts to identify the problems within the implementation of
our Java application performing the analysis and make improvements to it did not yield
any significant results.

Potential flaws of our analysis implementation could be found in the attribute schema
used by our application or the use of poor query optimization strategies in our rule set
and queries. Even in our iterative analysis implementation some of the more
complicated queries have demonstrated very weak performance.

Leaving the reasonable possibility of flaws in our implementation aside, we will try to
address some potential weaknesses of Datomic, which we consider relative to the
performance we witnessed.

5.3.1 Execution Times

As explained in section 4.4.2 Datomic does not store the results of rule evaluations to
the database this possibly indicates the potential lack of semi-naive evaluation. The
semi-naive evaluation strategy guarantees that no rule firing as a whole will be
duplicated in subsequent iterations, meaning that already computed facts in the
evaluation of a rule won't be recomputed.

Furthermore, another assumption is that Datomic probably does not implement
materialized views. A materialized view is a database object that contains the results of
a query. For example, it may be a local copy of data located remotely, or may be a
subset of the rows and/or columns of a table or join result, or may be a summary based
on aggregations of a table's data. Materialized views provide more efficient access and
can drastically improve query times.

It is also worth mentioning that Datomic does not allow rules with multiple headers for
cases of rules with the same body, meaning that they have to be defined and evaluated

separately. For instance, the computation of the rules (VarPointsTo ?heap

?this), (CallGraphEdge ?invocation ?tomethod), Reachable(?tomethod)

from a reachable virtual method invocation must be done separately, leading to
inefficient computation in spite of these particular rules having the same body.

Moreover, the flexibility of the Datomic schema where the entities are mapped to
attributes at the application-level may be costly, as the usage of multiple data clauses to
match the attribute values of an entity may hinder the performance of queries.

Finally, in our implementation we have a lot of references to other entities in order to
correctly represent our relations. It is possible that entity references increase the
complexity of queries significantly.

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 52

5.3.2 Memory Consumption

First of all, Datomic runs on the JVM which is not very efficient in terms of memory,
especially for such memory-intensive applications.

Datomic does not do string interning. String interning is a method of storing only one
copy of each distinct string value, which must be immutable. Interning strings makes
some string processing tasks more time- or space-efficient at the cost of requiring more
time when the string is created or interned. The distinct values are stored in a string
intern pool.

In our implementation we have avoided the repetition of the same string by using
references to attribute values, but in most likelihood a workaround like this is not as
sufficient as using string interning. As explained in section 5.3.1, our implementation
uses a lot of references in order to convert the relations of DatalogLB to Datomic entities
which is an indication that Datomic's data model is not optimal for declaration of points-
to analysis specifications, leading to heavy memory consumption.

As expected, a large initial database size increases the query memory usage, however
we could not address any other reasons leading to the 30GB memory usage in our
recursive analysis.

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 53

6. Conclusions

This thesis presented an evaluation of the Datomic database system for the
purpose of conducting context-insensitive points-to analysis. In order to perform the
evaluation we implemented a prototype context-insensitive points-to analysis both in
Datomic and DatalogLB and we compared the execution times and memory
consumption for each engine.

Based on our measurements which showed slower execution times in Datomic by
orders of magnitude and heavy memory consumption, we conclude that for the time
being Datomic is not competitive enough as a tool to perform pointer analysis, at least
for the schema and rule definitions tested in this work.

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 54

ABBREVIATIONS

JVM Java Virtual Machine

ACID Atomicity, Consistency, Isolation, Durability

JRE Java Runtime Environment

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 55

Appendices

The appendices are structured as follows. In Appendix A the rule set of our Datomic
recursive analysis can be found. In Appendix B we provide the rules for the DatalogLB
analysis.

A. Datomic Recursive Analysis

A.1 Recursive Analysis Rule Set

[
[(VarType ?var ?type)
 [?var :Var/type ?type]]

[(ThisVar ?method ?this)
 [?thisVar :ThisVar/method ?method]
 [?thisVar :ThisVar/var ?this]]

[(HeapAllocationType ?heap ?type)
 [?heapAllocationType :HeapAllocation-Type/heap ?heap]
 [?heapAllocationType :HeapAllocation-Type/type ?type]]

[(MethodDeclaration ?signature ?method)
 [?methodDeclaration :Method/signature ?signature]
 [?methodDeclaration :Method/declaration ?method]]

[(AssignCompatible ?target ?source)
 [?assignCompatible :AssignCompatible/target ?target]
 [?assignCompatible :AssignCompatible/source ?source]]

[(ComponentType ?arrayType ?componentType)
 [?componentType :ComponentType/arrayType ?arrayType]
 [?componentType :ComponentType/componentType ?componentType]]

[(Reachable ?method)
 [?mainMethodDeclaration :MainMethodDeclaration/method ?method]]

[(Reachable ?method)
 [?implicitReachable :ImplicitReachable/sig ?method]]

[(Reachable ?clinit)
 [?initializedClass :InitializedClass/classOrInterface ?class]
 [?classInitializer :ClassInitializer/type ?class]
 [?classInitializer :ClassInitializer/method ?clinit]]

[(Reachable ?tomethod)
 (Reachable ?inmethod)
 [?virtualMethodInvocation :VirtualMethodInvocation/inmethod ?inmethod]
 [?virtualMethodInvocation :VirtualMethodInvocation/invocation ?invocation]
 [?virtualMethodInvocation :VirtualMethodInvocation/signature ?signature]
 [?virtualMethodInvocation :VirtualMethodInvocation/base ?base]
 [?method :Method/signature ?signature]
 [?method :Method/simplename ?simplename]
 [?method :Method/descriptor ?descriptor]
 (VarPointsTo ?heap ?base)
 (HeapAllocationType ?heap ?type)
 [?methodLookup :MethodLookup/simplename ?simplename]
 [?methodLookup :MethodLookup/descriptor ?descriptor]

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 56

 [?methodLookup :MethodLookup/type ?type]
 [?methodLookup :MethodLookup/method ?tomethod]
 (ThisVar ?tomethod _)]

[(Reachable ?tomethod)
 (Reachable ?inmethod)
 [?specialMethodInvocation :SpecialMethodInvocation/inmethod ?inmethod]
 [?specialMethodInvocation :SpecialMethodInvocation/invocation ?invocation]
 [?specialMethodInvocation :SpecialMethodInvocation/base ?base]
 (VarPointsTo _ ?base)
 [?specialMethodInvocation :SpecialMethodInvocation/signature ?signature]
 (MethodDeclaration ?signature ?tomethod)
 (ThisVar ?tomethod _)]

[(Reachable ?tomethod)
 (Reachable ?inmethod)
 [?staticMethodInvocation :StaticMethodInvocation/inmethod ?inmethod]
 [?staticMethodInvocation :StaticMethodInvocation/invocation _]
 [?staticMethodInvocation :StaticMethodInvocation/signature ?signature]
 (MethodDeclaration ?signature ?tomethod)]

[(CallGraphEdge ?invocation ?tomethod)
 (Reachable ?inmethod)
 [?virtualMethodInvocation :VirtualMethodInvocation/inmethod ?inmethod]
 [?virtualMethodInvocation :VirtualMethodInvocation/invocation ?invocation]
 [?virtualMethodInvocation :VirtualMethodInvocation/signature ?signature]
 [?virtualMethodInvocation :VirtualMethodInvocation/base ?base]
 (VarPointsTo ?heap ?base)
 [?method :Method/signature ?signature]
 [?method :Method/simplename ?simplename]
 [?method :Method/descriptor ?descriptor]
 (HeapAllocationType ?heap ?type)
 [?methodLookup :MethodLookup/simplename ?simplename]
 [?methodLookup :MethodLookup/descriptor ?descriptor]
 [?methodLookup :MethodLookup/type ?type]
 [?methodLookup :MethodLookup/method ?tomethod]
 (ThisVar ?tomethod _)]

[(CallGraphEdge ?invocation ?tomethod)
 (Reachable ?inmethod)
 [?specialMethodInvocation :SpecialMethodInvocation/inmethod ?inmethod]
 [?specialMethodInvocation :SpecialMethodInvocation/invocation ?invocation]
 [?specialMethodInvocation :SpecialMethodInvocation/base ?base]
 (VarPointsTo _ ?base)
 [?specialMethodInvocation :SpecialMethodInvocation/signature ?signature]
 (MethodDeclaration ?signature ?tomethod)
 (ThisVar ?tomethod _)]

[(CallGraphEdge ?invocation ?tomethod)
 (Reachable ?inmethod)
 [?staticMethodInvocation :StaticMethodInvocation/inmethod ?inmethod]
 [?staticMethodInvocation :StaticMethodInvocation/invocation ?invocation]
 [?staticMethodInvocation :StaticMethodInvocation/signature ?signature]
 (MethodDeclaration ?signature ?tomethod)]

[(VarPointsTo ?heap ?var)
 (Reachable ?inmethod)
 [?a :AssignNormalHeapAllocation/inmethod ?inmethod]
 [?a :AssignNormalHeapAllocation/heap ?heap]
 [?a :AssignNormalHeapAllocation/var ?var]]

[(VarPointsTo ?heap ?var)

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 57

 (Reachable ?inmethod)
 [?a :AssignAuxiliaryHeapAllocation/inmethod ?inmethod]
 [?a :AssignAuxiliaryHeapAllocation/heap ?heap]
 [?a :AssignAuxiliaryHeapAllocation/var ?var]]

[(VarPointsTo ?heap ?var)
 (Reachable ?inmethod)
 [?a :AssignContextInsensitiveHeapAllocation/inmethod ?inmethod]
 [?a :AssignContextInsensitiveHeapAllocation/heap ?heap]
 [?a :AssignContextInsensitiveHeapAllocation/var ?var]]

[(VarPointsTo ?heap ?this)
 (Reachable ?inmethod)
 [?virtualMethodInvocation :VirtualMethodInvocation/inmethod ?inmethod]
 [?virtualMethodInvocation :VirtualMethodInvocation/invocation ?invocation]
 [?virtualMethodInvocation :VirtualMethodInvocation/signature ?signature]
 [?virtualMethodInvocation :VirtualMethodInvocation/base ?base]
 (VarPointsTo ?heap ?base)
 [?method :Method/signature ?signature]
 [?method :Method/simplename ?simplename]
 [?method :Method/descriptor ?descriptor]
 (HeapAllocationType ?heap ?type)
 [?methodLookup :MethodLookup/simplename ?simplename]
 [?methodLookup :MethodLookup/descriptor ?descriptor]
 [?methodLookup :MethodLookup/type ?type]
 [?methodLookup :MethodLookup/method ?tomethod]
 (ThisVar ?tomethod ?this)]

[(VarPointsTo ?heap ?this)
 (Reachable ?inmethod)
 [?specialMethodInvocation :SpecialMethodInvocation/inmethod ?inmethod]
 [?specialMethodInvocation :SpecialMethodInvocation/invocation ?invocation]
 [?specialMethodInvocation :SpecialMethodInvocation/base ?base]
 (VarPointsTo ?heap ?base)
 [?specialMethodInvocation :SpecialMethodInvocation/signature ?signature]
 (MethodDeclaration ?signature ?tomethod)
 (ThisVar ?tomethod ?this)]

[(VarPointsTo ?heap ?to)
 (Reachable ?inmethod)
 [?assignLocal :AssignLocal/inmethod ?inmethod]
 [?assignLocal :AssignLocal/to ?to]
 [?assignLocal :AssignLocal/from ?from]
 (VarPointsTo ?heap ?from)]

[(VarPointsTo ?heap ?to)
 (Reachable ?inmethod)
 [?loadInstanceField :LoadInstanceField/inmethod ?inmethod]
 [?loadInstanceField :LoadInstanceField/sig ?fieldsig]
 [?loadInstanceField :LoadInstanceField/base ?base]
 [?loadInstanceField :LoadInstanceField/to ?to]
 (VarPointsTo ?heapbase ?base)
 (InstanceFieldPointsTo ?heapbase ?fieldsig ?heap)]

[(VarPointsTo ?heap ?to)
 (Reachable ?inmethod)
 [?loadStaticField :LoadStaticField/inmethod ?inmethod]
 [?loadStaticField :LoadStaticField/sig ?fieldsig]
 [?loadStaticField :LoadStaticField/to ?to]
 (StaticFieldPointsTo ?fieldsig ?heap)]

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 58

[(VarPointsTo ?heap ?to)
 (Assign ?type ?from ?to)
 (VarPointsTo ?heap ?from)
 (HeapAllocationType ?heap ?heaptype)
 (AssignCompatible ?type ?heaptype)]

[(VarPointsTo ?heap ?to)
 (Reachable ?inmethod)
 [?loadArrayIndex :LoadArrayIndex/inmethod ?inmethod]
 [?loadArrayIndex :LoadArrayIndex/to ?to]
 [?loadArrayIndex :LoadArrayIndex/base ?base]
 (VarPointsTo ?heapbase ?base)
 (ArrayIndexPointsTo ?heapbase ?heap)
 (VarType ?to ?type)
 (HeapAllocationType ?heapbase ?heapbasetype)
 [?componentType :ComponentType/arrayType ?heapbasetype]
 [?componentType :ComponentType/componentType ?basecomponenttype]
 (AssignCompatible ?type ?basecomponenttype)]

[(Assign ?type ?from ?to)
 (Reachable ?inmethod)
 [?assignCast :AssignCast/inmethod ?inmethod]
 [?assignCast :AssignCast/type ?type]
 [?assignCast :AssignCast/from ?from]
 [?assignCast :AssignCast/to ?to]]

[(Assign ?type ?actual ?formal)
 (CallGraphEdge ?invocation ?method)
 [?formalParam :FormalParam/method ?method]
 [?formalParam :FormalParam/index ?index]
 [?formalParam :FormalParam/var ?formal]
 [?actualParam :ActualParam/invocation ?invocation]
 [?actualParam :ActualParam/index ?index]
 [?actualParam :ActualParam/var ?actual]
 (VarType ?formal ?type)]

[(Assign ?type ?return ?local)
 (CallGraphEdge ?invocation ?method)
 [?assignReturnValue :AssignReturnValue/invocation ?invocation]
 [?assignReturnValue :AssignReturnValue/to ?local]
 [?returnVar :ReturnVar/method ?method]
 [?returnVar :ReturnVar/var ?return]
 (VarType ?local ?type)]

[(StaticFieldPointsTo ?fieldsig ?heap)
 (Reachable ?inmethod)
 [?storeStaticField :StoreStaticField/inmethod ?inmethod]
 [?storeStaticField :StoreStaticField/signature ?fieldsig]
 [?storeStaticField :StoreStaticField/from ?from]
 (VarPointsTo ?heap ?from)]

[(InstanceFieldPointsTo ?heapbase ?fieldsig ?heap)
 (Reachable ?inmethod)
 [?storeInstanceField :StoreInstanceField/inmethod ?inmethod]
 [?storeInstanceField :StoreInstanceField/base ?base]
 [?storeInstanceField :StoreInstanceField/from ?from]
 [?storeInstanceField :StoreInstanceField/signature ?fieldsig]
 (VarPointsTo ?heapbase ?base)
 (VarPointsTo ?heap ?from)]

[(ArrayIndexPointsTo ?heapbase ?heap)

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 59

 (Reachable ?inmethod)
 [?storeArrayIndex :StoreArrayIndex/inmethod ?inmethod]
 [?storeArrayIndex :StoreArrayIndex/from ?from]
 [?storeArrayIndex :StoreArrayIndex/base ?base]
 (VarPointsTo ?heapbase ?base)
 (VarPointsTo ?heap ?from)
 (HeapAllocationType ?heap ?heaptype)
 (HeapAllocationType ?heapbase ?heapbasetype)
 [?componentType :ComponentType/arrayType ?heapbasetype]
 [?componentType :ComponentType/componentType ?componenttype]
 (AssignCompatible ?componenttype ?heaptype)]

]

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 60

B. DatalogLB Analysis

B1. Analysis Rules

VarPointsTo(?heap, ?var) <-
 AssignNormalHeapAllocation(?heap, ?var, ?inmethod),
 Reachable(?inmethod).

VarPointsTo(?heap, ?var) <-
 AssignAuxiliaryHeapAllocation(?heap, ?var, ?inmethod),
 Reachable(?inmethod).

VarPointsTo(?heap, ?var) <-
 AssignContextInsensitiveHeapAllocation(?heap, ?var, ?inmethod),
 Reachable(?inmethod).

VarPointsTo(?heap, ?to) <-
 VarPointsTo(?heap, ?from),
 Assign(?type, ?from, ?to),
 HeapAllocation:Type[?heap] = ?heaptype,
 AssignCompatible(?type, ?heaptype).

VarPointsTo(?heap, ?to) <-
 Reachable(?inmethod),
 AssignLocal(?from, ?to, ?inmethod),
 VarPointsTo(?heap, ?from).

Assign(?type, ?from, ?to) <-
 Reachable(?inmethod),
 AssignCast(?type, ?from, ?to, ?inmethod).

Assign(?type, ?actual, ?formal) <-
 FormalParam[?index, ?method] = ?formal,
 ActualParam[?index, ?invocation] = ?actual,
 Var:Type[?formal] = ?type,
 CallGraphEdge(?invocation, ?method).

Assign(?type, ?return, ?local) <-
 ReturnVar(?return, ?method),
 CallGraphEdge(?invocation, ?method),
 Var:Type[?local] = ?type,
 AssignReturnValue[?invocation] = ?local.

ArrayIndexPointsTo(?baseheap, ?heap) <-
 Reachable(?inmethod),
 StoreArrayIndex(?from, ?base, ?inmethod),
 VarPointsTo(?baseheap, ?base),
 VarPointsTo(?heap, ?from),
 HeapAllocation:Type[?heap] = ?heaptype,
 HeapAllocation:Type[?baseheap] = ?baseheaptype,
 ComponentType[?baseheaptype] = ?componenttype,
 AssignCompatible(?componenttype, ?heaptype).

VarPointsTo(?heap, ?to) <-
 Reachable(?inmethod),
 LoadArrayIndex(?base, ?to, ?inmethod),
 VarPointsTo(?baseheap, ?base),
 ArrayIndexPointsTo(?baseheap, ?heap),
 Var:Type[?to] = ?type,
 HeapAllocation:Type[?baseheap] = ?baseheaptype,

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 61

 ComponentType[?baseheaptype] = ?basecomponenttype,
 AssignCompatible(?type, ?basecomponenttype).

VarPointsTo(?heap, ?to) <-
 Reachable(?inmethod),
 LoadInstanceField(?base, ?signature, ?to, ?inmethod),
 VarPointsTo(?baseheap, ?base),
 InstanceFieldPointsTo(?heap, ?signature, ?baseheap).

InstanceFieldPointsTo(?heap, ?signature, ?baseheap) <-
 Reachable(?inmethod),
 StoreInstanceField(?from, ?base, ?signature, ?inmethod),
 VarPointsTo(?heap, ?from),
 VarPointsTo(?baseheap, ?base).

VarPointsTo(?heap, ?to) <-
 Reachable(?inmethod),
 LoadStaticField(?signature, ?to, ?inmethod),
 StaticFieldPointsTo(?heap, ?signature).

StaticFieldPointsTo(?heap, ?signature) <-
 Reachable(?inmethod),
 StoreStaticField(?from, ?signature, ?inmethod),
 VarPointsTo(?heap, ?from).

Reachable(?tomethod),
CallGraphEdge(?invocation, ?tomethod) <-
 Reachable(?inmethod),
 StaticMethodInvocation(?invocation, ?signature, ?inmethod),
 MethodDeclaration[?signature] = ?tomethod.

Reachable(?tomethod),
CallGraphEdge(?invocation, ?tomethod),
VarPointsTo(?heap, ?this) <-
 Reachable(?inmethod),
 VirtualMethodInvocation(?invocation, ?signature, ?inmethod),
 VirtualMethodInvocation:Base[?invocation] = ?base,
 VarPointsTo(?heap, ?base),
 HeapAllocation:Type[?heap] = ?type,
 MethodSignature:SimpleName[?signature] = ?simplename,
 MethodSignature:Descriptor[?signature] = ?descriptor,
 ThisVar[?tomethod] = ?this,
 MethodLookup[?simplename, ?descriptor, ?type] = ?tomethod.

Reachable(?tomethod),
CallGraphEdge(?invocation, ?tomethod),
VarPointsTo(?heap, ?this) <-
 Reachable(?inmethod),
 SpecialMethodInvocation:In(?invocation, ?inmethod),
 SpecialMethodInvocation:Base[?invocation] = ?base,
 VarPointsTo(?heap, ?base),
 SpecialMethodInvocation:Signature[?invocation] = ?signature,
 ThisVar[?tomethod] = ?this,
 MethodDeclaration[?signature] = ?tomethod.

Reachable(?method) <-
 MainMethodDeclaration(?method).

Reachable(?method) <-
 ImplicitReachable(?method).

Reachable(?clinit) <-

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 62

 InitializedClass(?class),
 ClassInitializer[?class] = ?clinit.

Stats:Runtime(?value, ?attr) ->
 decimal[64](?value),
 string(?attr).

Declarative Points-To Analysis on Different Datalog Engines

A.Antoniadis 63

References

[1] M. Bravenboer and Y. Smaragdakis. Strictly declarative specification of sophisticated points-to
analyses. In OOPSLA ’09: 24th annual ACM SIGPLAN conference on Object Oriented
Programming, Systems, Languages, and Applications, New York, NY, USA, 2009. ACM.

[2] M. Bravenboer and Y. Smaragdakis. Exception analysis and points-to analysis: Better together.
In L. Dillon, editor, ISSTA ’09: Proceedings of the 2009 International Symposium on Software
Testing and Analysis, New York, NY, USA, July 2009.

[3] S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical program analysis using general
purpose logic programming systems -a case study. In PLDI ’96: Proceedings of the ACM
SIGPLAN 1996 conference on Programming Language Design and Implementation, 1996.

[4] J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using Datalog with binary decision diagrams for
program analysis. In Proc. of the 3rd Asian Symposium on Programming Languages and
Systems, 2005.

[5] E. Hajiyev, M. Verbaere, and O. de Moor. Codequest: Scalable source code queries with
Datalog. In Proc. European Conf. on Object-Oriented Programming (ECOOP), pages 2–27.
Spinger, 2006.

[6] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots, M. Carbin, and C. Unkel. Context-
sensitive program analysis as database queries. In PODS ’05: Proc. of the twenty-fourth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 1–12, New
York, NY, USA, 2005. ACM.

[7] T. Reps. Demand interprocedural program analysis using logic databases. In R. Ramakrishnan,
editor, Applications of Logic Databases, pages 163–196. Kluwer Academic Publishers, 1994.

[8] M.Bravenboer and Y.Smaragdakis. Using Datalog for fast and easy program analysis. In Datalog
2.0.

[9] W. C. Benton and C. N. Fischer. Interactive, scalable, declarative program analysis: from
prototype to implementation. In PPDP ’07: Proc. of the 9th ACM SIGPLAN int. conf. on Principles
and practice of declarative programming, 2007.

[10] Datomic Development Resources – http://docs.datomic.com/

[11] DatalogLB Programmers Guide

[12] Datomic Google group – https://groups.google.com/forum/#!forum/datomic

[13] Datomic/mbrainz-sample github repository – https://github.com/Datomic/mbrainz-
sample/blob/master/

http://docs.datomic.com/
https://groups.google.com/forum/#!forum/datomic
https://github.com/Datomic/mbrainz-sample/blob/master/
https://github.com/Datomic/mbrainz-sample/blob/master/

