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'Eva avuikeipevo Sewpeitat ot ‘Grapeuyet’ otav n) Sidpketla (g T0U PItopet va eivatl peyaiutepn
and auvty) g pebodou mou 1o dnpovpynoe. Iapouoiddoupe pia dnAdwtikn avaduon mArpoug
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H avdAuor) pag prdpeos va aviyveuoet Ott, Katd péco 6po, 1o 60.66% twv eviodov Snpioupyiag
AVTIKEIPEVQV 08 KOB1Ka epappoyng kat to 57.43% oto ocuvoro tou kodika (cupreptdapBavoviag
Kkat tg BBAoOnkeg) tng DaCapo benchmark suite 6ev propouv va Stapuyouv, kat dpa popouv
pe aopalea va dnploupynbouv ot otoiBa £vavit Tou o®pPou.
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1ebobou mou propel va kaAéoel apeoa v PéBodo mou Snuioupynoes 10 €V AOY® AVIIKEIHEVO.
H avdluon xpeiaoinke niepintou 100 ypappés kodika Datalog, to omoio eival evielKukO TV
duvatottov g dNADTIKNG MPOCEYYIONG Yia OTATIKI avdAuorn mnpoypappdiev, 1 ormoia pag
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Tpéxovtag tnv avaiuon yia S1apopeTIKEG ETIAOYEG TOU TUTIOU TOV OURGPACOPEVOV S1aTTIoTOoA}IE
ou 1 ermdoyr) autrn dev ennpeddet W6laitepa v akpiBela, aAdad eival, ®OTO00, AKPKG OHAVILKI)

yla Tov XpOvo eKTEAEONG.
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Abstract

An object escapes when it can outlive the method that allocated it. We present a declarative
whole-program escape analysis for Java, written entirely in Datalog, that over-approximates
the escaped objects in a program. Our analysis is a part of the Doop framework [3] that
provides it with a points-to analysis for a number of possible types of context.

Our analysis was able to identify 60.66% of the application heap allocation sites and 57.43%
of all the allocation sites (i.e., including library code), by average, of the DaCapo benchmark
programs as non-escaping, and thus safe candidates to be allocated on the stack.

The main intuition is that an object escapes if it is reachable through a static field, an
exception, or a local variable of an immediate caller of the method that created it. The
escape analysis required just about 100 lines of Datalog code, which clearly demonstrates
the potency of the declarative approach for static analysis. This allowed us to focus on
the definition of the escaped objects and leave their computation to the underlying Datalog
engine, which resulted in a concise and expressive representation.

By running the escape analysis for a variety of possible contexts, we found that the choice
of context has little effect on precision but is crucial for the execution time overhead. Specifi-
cally, the call-site-sensitive analyses take a long time to complete since they do not adequately

prune the search space of object-to-object pointers when computing object reachability.

SUBJECT AREA: Escape Analysis
KEYWORDS: Datalog, whole-program analysis, Java, safe publication, object reachability,

context-sensitivity



Acknowledgements

I am grateful to my supervisor, Prof. Yannis Smaragdakis, whose expertise, guidance, and
patience were decisive for this work. His valuable insights and vast knowledge on the field of
static analysis were crucial throughout the research for and writing of this thesis.

I would like to thank my colleagues, Katia Papakonstantinopoulou, Michael Sioutis, Pana-
giotis Liakos, and Yiannis Giannakopoulos for all their help, interest, and advice. Lastly, I

am deeply indebted to my parents for their support.

Athens, March 30, 2012



Contents

1 Introduction

2 Background
2.1 Points-To Analysisin Datalog . . . . . . . .. ... ... ... .........

3 Over-Approximating Escaped Objects

3.1 The Immediate Callers Conjecture . . . . . . . . . .. .. ... ... ......
3.2 Object Reachability . . . . . . . . . .. ... s
3.3 StaticFields . . . . . . . . . .. e
3.4 Handling of Exceptions . . . . . . . . . . . .. o Lo
3.5 Putting Everything Together . . . . . . . . . . .. ... ... ... ... ...

3.5.1 Synthesis . . . . . . . . . e e e

3.5.2 Optimizations . . . . . . . .. .. L Lo e

4 Safe Publication

5 Experimental Results

6 Related Work

7 Conclusions

Acronyms and Abbreviations
Appendices

A Escape Analysis Code

References

12

15
15

19
19
21
21
22
23
25
25

26

28
28
28

32

34

35

36

36

39



2.1

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

5.1
5.2

List of Figures

Javacastchecking . . . . . . . . . . ..o 18
Escape Definition . . . . . . . . . . . .. 19
Cyclein the call-graph . . . . . . . . . . ... ... 0. 20
Object Reachability . . . . . . . . . . . . . ... oo 22
Objects reachable through staticfields . . . . . . .. ... ... ... ..... 23
Objects reachable by an exception . . . . . . . . .. ... ... ... ..... 23
Putting everything together . . . . . . . . . ... ... 000, 24
Safe Construction . . . . . . . . . .. L. e 27
Unsafe Construction . . . . . . . . . . . .. o 0 0 27
Allocations in 1-Object-Sensitive Analyses . . . . . . . . ... ... ... ... 30

Allocations in 2-Type-Sensitive+tHeap Analyses . . . . . . . .. .. ... ... 31



List of Tables

5.1 Escaping Objects and Analysis Time .

5.2 Precision and Execution Time for Antlr



Preface

This report is my master thesis for the conclusion of my postgraduate studies at the De-
partment of Informatics & Telecommunications, University of Athens. It was developed as
a part of the PADECL Project for the University of Athens, while conducting research with
Prof. Yannis Smaragdakis on advanced program analysis using declarative languages.

This work is built on top of the Doop framework for pointer analysis using Datalog, and
aims to demonstrate the capabilities of the Datalog language in expressing a variety of static

analyses for bug-detection and identification of unsafe coding idioms.

Athens, March 30, 2012



Declarative Whole-Program Escape Analysis for Java

Chapter 1

Introduction

An object is deemed to escape when it can outlive the method that allocated it. Escape
analysis should not be confused with thread-escape analysis, where a heap object is said
to escape when it can be accessed from more than one threads. In that sense, an object
escapes from its original thread of execution, whereas in the traditional escape analysis an
object escapes from the method where it was created.

Escape analysis can be used as a compiler optimization, where heap allocations for non-
escaping objects can be converted to stack allocations. This is a common optimization in
modern Java compilers [9], but is computed with simple lightweight dataflow analysis instead
of the more heavy whole-program analysis approach. The first reason for this is the dynamic
nature of the Java language itself. For one thing, in Java, classes and interfaces are loaded,
linked, and initialized dynamically [13, Chapter 5]. The use of (method-based) jit-compilation
makes it impossible to determine when will each method be eventually compiled (which
usually happens when a certain per method usage threshold is reached [17]), or to reason
about the corresponding state of the code that has been loaded thus far at each such point.
Therefore, any static analysis based on incomplete knowledge may be rendered useless, and
its results invalidated, at a point later on. Furthermore, the increase in precision when
using whole-program analysis instead of a more simplistic approach (like dataflow analysis)
is not yet considered significant enough to justify the additional complexity. Nevertheless,
the performance gain has not been studied in practice and the actual increase in precision
may change this conviction.

Escape analysis can also be used in the context of bug-detection. The most prominent
case is no other than safe publication [18]. To publish an object safely one has to ensure
that the t hi s reference is not allowed to escape during construction, or else an object that
is not yet fully constructed may become prematurely accessible externally. In such a case,
the constructor would fail to preserve any invariants that would be elsewise enforced by the
time the constructor returned.

While in the context of dynamic compilation, whole-program analysis cannot be easily

employed (e.g., for stack-allocation optimizations), in tools such as IDE debuggers, where
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it is reasonable to assume that the entire codebase is available, a whole-program escape
analysis would make perfect sense. In bug-detection, precision is of the utmost importance,
and thus whole-program escape analysis is a very good candidate due to its high accuracy
that minimizes false positives of escaped objects.

In summary, this work makes the following contributions:

e We show that we can succinctly express an escape analysis in Datalog. Our analysis is
built on top of the Doop framework [3] that provides a collection of points-to analyses
with varying contexts. Client analyses, like our own, make use of its macro-based
system to decouple the choice of context from analysis code. Therefore, our escape
analysis can run with any possible context supported by Doop and extended with any

future client analysis for this framework.

e We test our analysis with the DaCapo benchmark programs to compare its scalability
and precision to earlier work on this field. Our analysis was able to identify 60.66% of the
application heap allocation sites and 57.43% of all the allocation sites (i.e., including
library code), by average, as non-escaping, and thus safe candidates to be allocated
on the stack. This unusually high precision should be attributed to whole-program
analysis that enables the identification of difficult cases of stack-allocatable objects and
also dispenses with oversimplifications that are mostly found in incremental approaches

having to deal with incomplete program knowledge dynamically.

e We test various choices of context for escape analysis and compare them in terms
of precision and time overhead. We find that there is little effect on precision but
significant correlation between the relative time overhead and the choice of context.
Specifically, the call-site-sensitive analyses do not perform well, timewise, since they
do not adequately prune the search space of object-to-object pointers when computing

object reachability.

e We discuss a technique that builds on the escape analysis to identify cases of unsafe

publication.

The rest of the thesis is organized as follows: in Chapter 2 we give a background of
points-to analysis in Datalog using the Doop framework. In Chapter 3, we present the escape
analysis written in Datalog. Chapter 4 discusses a technique that builds on the escape

analysis and identifies cases of unsafe publication. In Chapter 5, we present the evaluation
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of our analysis by testing it on the DaCapo benchmark suite, and compare several choices
of context and their effect on performance. We describe related work in Chapter 6 and

conclusions in Chapter 7.
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Chapter 2

Background

Our escape analysis uses the Doop framework [3], which provides a collection of points-to
analysis (e.g., context insensitive, call-site sensitive, object sensitive, type sensitive). How-
ever, client code that is built upon any such analysis, as in our case, can be entirely oblivious
to the exact choice of context (which is specified at runtime) and expressed using a generic
APL

2.1 Points-To Analysis in Datalog

Door’s primary defining feature is the use of Datalog for its analyses. Architecturally, how-
ever, an important aspect of Doop’s performance is that it employs an explicit representation
of relations (i.e., all tuples of a relation are represented as an explicit table, as in a database),
instead of using Binary Decision Diagrams (BDDs), which have often been considered neces-
sary for scalable points-to analysis [25, 24, 12, 11].

Door uses a commercial Datalog engine, developed by LogicBlox Inc. This version of
Datalog allows “stratified negation”, that is, negated clauses, as long as the negation is not
part of a recursive cycle. It also allows specifying that some relations are functions, that is,
the variable space is partitioned into domain and range variables, and there is only one range
value for each unique combination of values in domain variables.

Datalog is a great fit for the domain of program analysis and, as a consequence, has
been extensively used both for low-level [19, 10, 25] and for high-level [5, 7] analyses. The
essence of Datalog is its ability to define recursive relations. Mutual recursion is the source
of all complexity in program analysis. For a standard example, the logic for computing a
callgraph depends on having points-to information for pointer expressions, which, in turn,
requires a callgraph. We can easily see such recursive definitions in points-to analysis
alone. Consider, for instance, two relations, Assi gnHeapAl | ocat i on( ?heap, ?var) and
Assign(?to, ?from. (We follow the Doopr convention of capitalizing the first letter of rela-
tion names, while writing variable names in lower case and prefixing them with a question-

mark.) The former relation represents all occurrences in the Java program of an instruction
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“a = newA();” where a heap object is allocated and assigned to a variable. That is, a pre-
processing step takes a Java program (in Doop this is in intermediate, bytecode, form) as
input and produces the relation contents. A static abstraction of the heap object is captured
in variable ?heap—it can be concretely represented as, for example, a fully qualified class
name and the allocation’s bytecode instruction index. Similarly, relation Assi gn contains an
entry for each assignment between two Java program (reference) variables.

The mapping between the input Java program and the input relations is straightforward
and purely syntactic. After this step, a simple pointer analysis can be expressed entirely in

Datalog as a transitive closure computation:

Var Poi nt sTo( ?heap, ?var) <- AssignHeapAl |l ocati on(?heap, <?var).
Var Poi nt sTo( ?heap, ?to) <- Assign(?to, ?from), VarPointsTo(?heap, ?fron.

The Datalog program consists of a series of rules that are used to establish facts about
derived relations (such as Var Poi nt sTo, which is the points-to relation, i.e., it links every
program variable, ?var, with every heap object abstraction, ?heap, it can point to) from a
conjunction of previously established facts. In the LB-Datalog syntax, the left arrow symbol
(<-) separates the inferred fact (i.e., the head of the rule) from the previously established
facts (i.e., the body of the rule).

For instance, line 2 above says that if, for some values of ?from ?to, and ?heap,
Assign(?to, ?fron) and Var Poi nt sTo( ?heap, ?from) are both true, then it can be in-
ferred that Var Poi nt sTo( ?heap, ?t 0) is true. Note the base case of the computation above
(line 1), as well as the recursion in the definition of Var Poi nt sTo (line 2).

The declarativeness of Datalog makes it attractive for specifying complex program analysis
algorithms. Particularly important is the ability to specify recursive definitions—program
analysis is fundamentally an amalgam of mutually recursive tasks. For instance, Doop uses
mutually recursive definitions of points-to analysis and call-graph construction.

The key for a precise points-to analysis is context-sensitivity, which consists of qualify-
ing program variables (and possibly object abstractions—in which case the context-sensitive
analysis is said to also have a context-sensitive heap) with context information: the analysis
collapses information (e.g., “what objects this method argument can point to”) over all possi-
ble executions that result in the same context, while separating all information for different

contexts. Object-sensitivity and call-site-sensitivity are the main flavors of context sensitivity
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in modern points-to analyses. They differ in the contexts of a context, as well as in when
contexts are created and updated. To gain insight into the aforementioned variations of con-
text sensitivity, the interested reader is referred to [21, 14]. Here we will not yet concern
ourselves with such differences—at this point, it suffices to know that a context-sensitive
analysis qualifies its computed facts with extra information.

Context-sensitive analysis in Doop is, to a large extent, similar to the above context-
insensitive logic. The main changes are due to the introduction of Datalog variables repre-
senting contexts for variables (and, in the case of a context-sensitive heap, also objects), in
the analyzed program. For an illustrative example, the following two rules handle method
calls as implicit assignments from the actual parameters of a method to the formal parame-
ters, in a 1-context-sensitive analysis with a context-insensitive heap.

(This code is the same for both object-sensitivity and call-site-sensitivity.)

Assign(?call eeCtx, ?formal, ?callerCx, ?actual) <-
Cal | G aphEdge(?cal | erCtx, ?invocation, ?calleeCtx, ?nethod),
For mal Par ani ?i ndex, ?nmethod] = ?formal,
Act ual Paranf ?i ndex, ?invocation] = ?actual.

Var Poi nt sTo( ?heap, ?toCtx, ?to) <-
Assign(?toCtx, ?to, ?fromCtx, ?fron),
Var Poi nt sTo( ?heap, ?fronCtx, ?fron).

(Note that some of the above relations are functions, in which case the functional nota-
tion “Rel ati on[ ?domai nvar] = ?val ”is used instead of the traditional relational notation,
“Rel ati on(?domai nvar, ?val)”. Semantically the two are equivalent, only the execution
engine enforces the functional constraint and produces an error if a computation causes a
function to have multiple range values for the same domain value.)

The example shows how a derived Assi gn relation (unlike the input relation Assi gn in
the earlier basic example) is computed, based on the call-graph information, and then used
in deriving a context-sensitive Var Poi nt sTo relation.

For deeper contexts, one needs to add extra variables, since pure Datalog does not allow
constructors and therefore cannot support value combination. Doop employs a macro system
to hide the number of context elements so that such variations do not pollute the main

analysis, as well as any client (like in our case, the escape analysis), logic.
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/1 If Sis an ordinary (nonarray) class, then:
/1 olf Tis a class type, then S nust be the
11l same class as T, or a subclass of T.
CheckCast (?s, ?s) <- O assType(?s).

CheckCast (?s, ?t) <- Subclass(?t, ?s).

/1 olf Tis an array type TC[], that is, an array of conponents
/1 of type TC, then one of the follow ng nmust be true:
I + TC and SC are the sanme prinitive type

CheckCast (?s, ?t) <-
ArrayType(?s), ArrayType(~?t),

Conponent Type(?s, 7?sc), ConponentType(?t, ?sc), PrimtiveType(?sc).

/1 + TC and SC are reference types (2.4.6), and type SC can be

I cast to TC by recursive application of these rules.

s CheckCast (?s, ?t) <-

Conponent Type(?s, ?sc), Conponent Type(?t, ?tc),
Ref erenceType(?sc), ReferenceType(?tc), CheckCast(?sc, ?tc).

Figure 2.1: Excerpt of Datalog code for Java cast checking, together with Java Language

Specification text in comments. The rules are quite faithful to the specification.

Generally, the declarative nature of Doop often allows for very concise specifications of

analyses. In [3], Martin Bravenboer and Yannis Smaragdakis demonstrate a striking example

of the logic for the Java cast checking—i.e., the answer to the question “can type A be cast

to type B?”. The Datalog rules are almost an exact transcription of the Java Language Spec-

ification. A small excerpt, with the Java Language Specification text included in comments,

can be seen in Figure 2.1.

Georgios Balatsouras
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Chapter 3

Over-Approximating Escaped Objects

In this chapter we formalize the concept of escaped objects and describe the static analysis

that computes them (or rather, over-approximates them).

3.1 The Immediate Callers Conjecture

Informally, an object escapes when it can “outlive” the method that allocated it (Figure 3.1).

It is easier to formalize the notion of non-escaping (i.e., stack-allocatable) objects.

Definition 3.1.1. An object o allocated in method m does not escape if there is no possible
execution of the program in which o may be contained in the set of live objects after the

instance of m that allocated o has returned.

The set of live objects (at time ?) is a common term in garbage collection, where it is used
to denote the objects that are (transitively) reachable by pointer relationships from the root
set (at time ?). The root set in Java consists of the static variables, and the local variables in
the activation stack. After garbage collection, the objects not contained in this set may safely
be discarded.

Also notice that by m, we refer to the specific instance that allocated this particular
object. There may be other instances of m higher up the call stack, that may have, in turn,

allocated different objects with the same allocation instruction. However, in the context of

/+ nject may escape, if it can outlive the nmethod that allocated it =/
MayEscape(?0bj) -> HeapAl |l ocati onRef (?0bj).

MayEscape( ?0bj) <-
MayQut | i ve( ?0bj, ?inmethod), AssignHeapAl | ocation(?obj, _, ?innethod).

Figure 3.1: Escape Definition

Georgios Balatsouras 19
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Figure 3.2: Cycle in which my is both a caller and a callee of m;, and thus may reach the
object o even though it does not escape.

static analysis, we abstract heap objects via their allocation sites (and possibly some analysis-
specific heap context) and compute escape information accordingly. Thus, we produce an
over-approximation of escaping heap allocation sites. Our analysis is sound in the sense that
any object allocated at a non-escaping allocation site will definitely not be in the set of live

objects since the method call that performed its allocation has returned.

Conjecture 3.1.1. In the absence of exceptions and static variables, an object o allocated in
method m; escapes only if there exists a method m, that may directly call m; and (transitively)

reach o through its local variables.

That is, if an object is not reachable by any of the direct callers of the method that
allocated it, it will not be reachable by any other indirect callers (i.e., all the methods that
may constitute the call stack up to m;) and therefore will not escape. ' (Notice that other
methods, such as those that can be called by m;, may normally reach o even if it does not

escape.)

IThere is one exception to the reachability of indirect callers. If the call-graph contains cycles, it is possible
that an object will be reachable by some of the indirect callers that may also be called by m; (and thus form a
cycle) and unreachable by all of its direct callers. Even so, the instances that may indeed reach o will be lower
on the call stack than the m; that allocated o, and thus, o will not escape. Such an example is depicted in
Figure 3.2.
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3.2 Object Reachability

In order to compute the escaped objects, we must first compute object reachability. Figure 3.3
corresponds to this part of the analysis. An object ?f r onObj points directly to another object
?t oQbj , either through some field (lines 9-11), or through some array index (lines 6-7) in
case ?f rombj is of an array type. The Arr ayl ndexPoi nt sTo and | nst anceFi el dPoi nt sTo
relations are precomputed by Doop during the points-to analysis.

For example, an instruction “a.f = b;” will cause Doop to produce the fact “l nst ance
Fi el dPoi nt sTo(HeapAbstraction(?toCbj), ?field, HeapAbstraction(?fronmbbj))”,
if variables “a” and “b” may point to heap objects ?fronbj and ?t oObj respectively, and
?fi el d represents the field “f”. The HeapAbstracti on macro augments a heap object
with context. The “Arr ayl ndexPoi nt sTo( HeapAbstracti on(?toQbj), HeapAbstraction
(?fronmDbj )) ” fact will be produced respectively for the instruction “a[i| = b;”. Notice that,
in the latter case, the produced fact will not contain any information about ¢ (unlike the field
case where f was recorded) since the analysis is array-insensitive.

Computing the transitive closure of object reachability is quite straightforward (lines 15-
19). The compound term Obj ect MayReach(?fronthj, ?toCbj) denotes that there is a
finite sequence of fields and array indices by which ?f r onCbj may reach ?t oQbj .

The AnyHeapAbst racti on macro (lines 7, 11) states that we dispose of any heap context
available at this point when computing the Obj ecPoi nt sTo relation. The transitive closure
is then computed context-insensitively. Even so, the context sensitivity has played its part,
since it reduces the size of the Ar r ayl ndexPoi nt sTo and | nst anceFi el dPoi nt sTo relations
with respect to the context-insensitive case. As it will later be evident in chapter 5, the size
of I nst anceFi el dPoi nt sTo is the bottleneck of the escape analysis, and therefore context-
sensitivity, even in this limited form, is essential for the efficiency of the escape analysis.
On the other hand, the full context-sensitive computation of object-reachability (that is,
the retaining of heap context for the Obj ect MayReach relation in a manner similar to the
Arrayl ndexPoi nt sTo relation) would be prohibitive for any heap-sensitive analyses. We

believe that this design choice achieves a good tradeoff between precision and performance.

3.3 Static Fields

Apart from local variables in the activation stack (i.e., the per-thread Java virtual machine

stack that adds and removes frames each time a method is invoked and completes respec-
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[+ bject points-to another object =/

bj ect Poi nt sTo(?fronbj, ?tothj) ->
HeapAl | ocati onRef (?fronCbj ), HeapAl |l ocationRef (?toChj).

bj ect Poi nt sTo(?frombj, ?toChj) <-
Arrayl ndexPoi nt sTo( AnyHeapAbstracti on(?toCbj), AnyHeapAbstraction(?fronChj)).

oj ect Poi ntsTo(?fronbj, ?toChj) <-
I nst anceFi el dPoi nt sTo(
AnyHeapAbstracti on(?toObj), _, AnyHeapAbstraction(?frombj)).

[+ Transitive Cosure for object reachability */

oj ect MayReach(?fronmbj, ?toChj) <-
bj ect Poi nt sTo( ?fronChj, ?toChj).

Obj ect MayReach(?fronthj, ?toChj) <-
oj ect Poi ntsTo(?fronbj, ?interm, ObjectMayReach(?interm ?toChj).

Figure 3.3: Object Reachability

tively), the root set also contains the static variables. Therefore, any heap object reachable
from such a variable at a given time must be included in the set of live objects. Since we
lack flow-sensitivity, we choose to simply mark any object that can be reached by any static
variable at any given time as escaping.

In Java, static variables can only be defined inside class/interface declarations. The
Doorp framework represents static variables as field signatures and defines that “Static
Fi el dPoi nt sTo( HeapAbstracti on(?0bj), ?field)” holds if the static field represented
by ?fi el d can point to the heap-sensitive object ?0bj . From that point, the manner of com-
puting the objects reachable through static fields is a simple transitive closure computation

on the aforementioned Obj ect Poi nt sTo relation (Figure 3.4).

3.4 Handling of Exceptions

Exceptions are the only way to transfer control from a method m; to a method m, that has not
called m, directly, but instead has reached it through a non-empty sequence of intermediate

method calls. In that case, the only part of m;’s state that is accessible at the point when the
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/* hjects reachable through static field */
Reachabl eThroughSt ati cFi el d(?0bj) -> HeapAl |l ocati onRef (?0bj).

Reachabl eThroughSt ati cFi el d( ?0bj ) <-
St ati cFi el dPoi nt sTo( AnyHeapAbst racti on(?obj), _).

Reachabl eThroughStati cFiel d(?toOhj) <-
Reachabl eThr oughSt ati cFi el d(?frontbj), Object PointsTo(?frombbj, ?toCbj).

Figure 3.4: Objects reachable through static fields

[+ hjects reachable by thrown exception */
Reachabl eByExcepti on(?0bj) -> HeapAll ocati onRef (?0bj).

Reachabl eByExcepti on(?0bj) <-
Thr owPoi nt sTo( AnyHeapAbstracti on(?obj), AnyContext(_)).

Reachabl eByExcepti on(?toChj) <-
Reachabl eByExcepti on(?fronChj), ObjectPointsTo(?fronbj, ?tolhj).

Figure 3.5: Objects reachable by an exception

exception is caught in my is the thrown exception and anything reachable from it.

The handling of this case is analogous to that of Section 3.3, where the basis of the recur-
sion is now the relation Thr owPoi nt sTo (Figure 3.5). That is, we treat everything that can be
reached by any exception as escaping. In Doop, “Thr owPoi nt sTo( HeapAbstracti on( ?exc),
Cont ext (?ct x, ?met h)) ” holds if method ?net h (with context ?ct x) can throw an excep-

tion ?exc (which is in fact an ordinary heap-sensitive object of the appropriate exception

type).

3.5 Putting Everything Together

Figure 3.6 presents the main body of the code that constitutes the escape analysis.
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[/ Context-insensitive direct function calls */

Cal |l s(?nl, ?nR2) -> MethodSi gnat ureRef (?ml), MethodSi gnat ureRef (?nR).
Calls(_, ?m -> Reachabl e(?m.

Cal | s(?fronmVet hod, ?toMethod) <-
Cal | G aphEdge( AnyCont ext ( ?i nvocati on), AnyContext (?toMethod)),
I nstruction: Met hod[ ?i nvocati on] = ?fromvet hod,
Reachabl e( ?f r omvet hod) .

/+ Method may reference object =/

Met hodsThat MayRef er ence(?0bj, ?neth) ->
Met hodSi gnat ur eRef (?met h), HeapAl | ocati onRef (?0bj ).

Met hodsThat MayRef er ence( ?0bj, ?nmeth) <-
Var Poi nt sTo( AnyHeapAbstracti on(?obj), AnyContext(?var)),
Var : Decl ari ngMet hod( ?var, ?neth),
Reachabl e( ?net h) .

[+ oject may outlive a nethod */

MayCQutlive(?obj, ?method) ->
HeapAl | ocat i onRef (?0bj ), Met hodSi gnat ur eRef ( ?nmet hod) .

| ang: deri vati onType[‘ MayQutlive] = "Derived".

MayCQut |l i ve(?obj, 7?nethod) <-
Reachabl eThr oughSt ati cFi el d(?obj ), Reachabl e(?rmet hod) .

MayCQut | i ve(?0bj, ?nethod) <-
Reachabl eByException(?obj ), Reachabl e(?rmet hod).

MayQut | i ve(?0obj, ?callee) <-
Call s(?caller, ?callee), MthodsThat MayReference(?obj, ?caller).

MayQutlive(?toCbj, 7?callee) <-
Cal |l s(?caller, ?callee),
Met hodsThat MayRef er ence( ?frontChj, <?caller),
nj ect MayReach( ?fronthj, ?tohj).

Figure 3.6: Putting everything together
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3.5.1 Synthesis

The Met hodsThat MayRef er ence relation contains an ( ?0bj , ?net hod) pair if method ?net h
defines a variable ?var which may point to object ?0bj (Figure 3.6, lines 13-19). The Cal | s
relation (lines 3-9) represents a context-insensitive method-to-method call graph edge.

We are now able to define the MayQut | i ve relation (lines 23-40) to bring it all together.
The MayQut | i ve relation is never computed exhaustively (as stated in line 26), but is instead
inlined in MayEscape (Figure 3.1). Therefore, its arguments (e.g., ?t oQbj , ?cal | ee) will be
bound to a heap object and to the method that allocated it.

Lines 28-29 and 31-32 relate to Section 3.3 and Section 3.4 respectively. Lines 34-40
correspond to Conjecture 3.1.1, by stating that an object escapes if it is directly (lines 34-35)
or indirectly (37-40) reachable by an immediate caller of the method that allocated it.

3.5.2 Optimizations

The use of the Reachabl e relation (lines 9, 19, 29, 32) is an optimization that limits the escape
analysis to the reachable methods. Therefore, the objects that may escape are a subset of
the reachable objects (i.e., the objects allocated in reachable methods). The constraint in line
4 acts as a simple sanity check.

Appendix A contains the entire code of the escape analysis presented in this chapter,
including some additional optimizations specific to the LogicBlox engine [3] that are out of
the scope of this thesis.

The fact that, in about 100 lines of code, we were able to express a powerful escape analysis
shows how expressive Datalog is, and how appropriate an environment for developing static
analyses. Furthermore, the design of Doop, with its variety of supporting contexts and
its macro-based API, facilitates the generilization of any such client analysis. The escape

analysis may be added on top of any points-to analysis, with no need for code changes.
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Chapter 4

Safe Publication

A caveat for using escape analysis to identify pathological cases of unsafe construction is
that we cannot use references to the original object that is being created (and to which the
constructor’s t hi s reference points to), since that object will probably “leak” to a left-value
of an assignment (with a new command as its right-value that implicitly calls a constructor).
This problem can be circumvented by introducing an artificial per-constructor object and an
additional Var Poi nt sTo edge to it from the constructor’s t hi s reference. In this way we can
insulate the via-constructor escaping from ordinary external instance creation commands
by simply examining the lifetime of this auxiliary object. If the analysis reports that such
an object escapes, then the corresponding constructor is unsafe, since the only way for the
object to outlive it is by escaping while under construction.

In Figure 4.1 for instance, the class Saf el yConst r uct ed does not let the t hi s refer-
ence escape during construction. This can be detected by creating an auxiliary heap object
HeapObj ect : Guar d and a Var Poi nt sTo edge from the constructor’s t hi s variable to it.
We then have to check only that this particular object, or any other auxiliary object for this
class’s constructors, does not escape (and indeed it doesn’t) in order to characterize the class
as safely constructed.

In Figure 4.2 the t hi S reference gets written to a static field during construction. Thus,
the auxiliary object escapes (Section 3.3) and unsafe construction is detected. If the con-
structor was supposed to enforce the invariant that the ms g field is always uppercase, it now
fails to do so by prematurely publishing the object under construction in a static field (that

may be read too soon by another thread for example).
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public class Safel yConstructed {

}

private final String msg;

[ *x Constructor =*/

public SafelyConstructed(String nessage) {
/[1' this -> {HeapObj ect: 1, HeapObject: Guard}
i nit(nessage);

}

/ =+ Hel per method that perforns sonme basic initialization */
private final void init(nsg) {

/1" this -> {HeapObj ect: 1, HeapObject: Guard}

this.msg = nsg.toUpper Case();
}

public void main(String[] args) {
oj ect obj = new SafelyConstructed("l'msafe"); //! obj] -> HeapObject:1
}

Figure 4.1: Safe Construction with Var Poi nt sTo information in comments

public class Escapi ngUnder Construction {

}

private String nsg;
public static Escapi ngUnder Construction instance;

[ =+ Constructor =*/

publ i c Escapi ngUnder Construction(String nessage) {
this. meg = nmessage
init();

}

/ =+ Hel per nmethod that perforns sone basic initialization */
private final void init() {

i nstance this; //! auxiliary object escapes

this. nsg nsg. t oUpper Case() ;

}

Figure 4.2: Unsafe Construction
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Chapter 5

Experimental Results

This chapter presents the evaluation of the escape analysis on a well-known benchmark

suite, and the experimental results.

5.1 Setup

We use a 64-bit machine with a quad-core Xeon E5530 2.4GHz CPU (only one thread was
active at a time). The machine has 24GB of RAM.

We analyzed the DaCapo benchmark programs, v.2006-10-MR2, with JDK 1.4. These
benchmarks are the largest in the literature on context-sensitive points-to analysis. We
concentrated on a subset of the DaCapo benchmarks, namely the antlr, chart, eclipse, luindex,
and pmd, all of which can be successfully analyzed by the Doop framework with reflection-

analysis enabled.

5.2 Evaluation

Table 5.1 presents the time overhead and the number of escaped objects reported by our
analysis for each benchmark. The “time overhead” is the additional time required by the
escape analysis, whereas the “total time” is the sum of the escape analysis time plus the time
of the basic analysis as performed by Doop.

The rest is the total heap allocations (“allocations”), the heap allocations in reachable
code (“reachable”), and the escaping heap allocations (“escaping”). The “stack-allocatable”
percentage is computed as the fraction of the reachable allocations that do not escape (Sec-
tion 3.5.2). Moreover, we also measure the escaped/reachable objects in application code
(i.e., not including library code).

The execution time overhead is significant (8-24%) but anticipated since it involves the
semi-expensive computation of the transitive closure of object reachability (which may be

useful in other contexts as well in the future).

Georgios Balatsouras 28



Declarative Whole-Program Escape Analysis for Java

1-object-sensitive

benchmark antlr chart | eclipse | luindex | pmd
total time 179.45s | 427.39s | 269.03s | 86.87s | 165.14s
time overhead 28.61s | 50.41s | 62.19s 13.27s | 30.33s
time overhead (%) | 15.94% | 11.79% | 23.12% | 15.28% | 18.37%
2 allocations 41155 48694 24414 24481 45551
" reachable 10880 14695 10046 7707 8945
o escaping 4118 6544 4193 3218 3607
© | stack-allocatable | 62.15% | 55.47% | 58.26% | 58.25% | 59.68%
> allocations 4990 6106 4166 3052 3856
5 reachable 3815 | 1613 | 2377 623 | 1851
& escaping 1108 835 842 213 609
® | stack-allocatable | 70.96% | 48.23% | 64.58% | 65.81% | 67.10%

2-type-sensitive+heap

benchmark antlr chart | eclipse | luindex | pmd
total time 170.46s | 278.66s | 449.60s | 104.22s | 166.36s
time overhead 39.44s | 42.87s | 39.36s 18.91s | 33.61s
time overhead (%) | 23.14% | 15.38% | 8.75% | 18.14% | 20.20%
Q allocations 41155 48694 24414 24481 45551
T reachable 10791 14538 9740 7591 8753
e escaping 4676 6691 4279 3321 3721
© | stack-allocatable | 56.67% | 53.98% | 56.07% | 56.25% | 57.49%
> allocations 4990 6106 4166 3052 3856
§ reachable 3813 | 1610 | 2355 593 | 1744
& escaping 1576 862 956 228 631
® | stack-allocatable | 58.67% | 46.46% | 59.41% | 61.55% | 63.82%

Table 5.1: Escaping Objects and Analysis Time
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Figure 5.1: Allocations in 1-Object-Sensitive Analyses

total time time overhead escaping escaping (app)

1obj 179.45s | 28.61s (15.94%) | 4118 (37.85%) | 1108 (29.04%)
lobj+H 521.35s | 45.82s  (8.79%) | 4115 (37.88%) | 1108 (29.04%)
1call+H 1161.55s | 740.07s  (63.71%) | 4108 (37.88%) | 1133 (29.70%)
20bj 1142.00s | 67.36s  (5.90%) | 4116 (37.83%) | 1108 (29.04%)
2type+1H 170.46s | 39.44s (23.14%) | 4676 (43.33%) | 1576 (41.33%)
2full+1H 231.71s | 24.90s (10.75%) | 4102 (38.03%) | 1108 (29.06%)
20bj+H 370.65s | 46.36s (12.51%) | 4103 (38.02%) | 1108 (29.04%)
1typelobj+1H 198.50s | 24.55s (12.37%) | 4102 (38.02%) | 1108 (29.06%)

Table 5.2: Precision and Execution Time for Antlr

Figure 5.1, and Figure 5.2 depict the 1-object-sensitive and 2-type-sensitive+heap alloca-
tion results respectively, in percent stack charts. The percentage of the reachable objects that
can be safely allocated in the stack ranges from 46% to 70%. The fraction of non-escaping
objects is almost always higher in application code, with an average of 60.66% as opposed to
the 57.43% average when including library code.

Generally speaking, the results are quite encouraging when contrasted to earlier escape
analysis literature [4, 26, 1]. The gain in precision comes from the use of whole-program
analysis that enables the identification of more difficult non-escaping object cases.

Table 5.2 presents the precision and execution time overhead on the anltr benchmark,
for several types of analyses (with different types of contexts) supported by Doop.

There was an upper bound for the execution time of the escape analysis equal to two times
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Figure 5.2: Allocations in 2-Type-Sensitive+tHeap Analyses

that of the basic analysis, after which the escape analysis was terminated before completion.
That happened only on the context-insensitive and 1-call-site-sensitive analyses.

The reason for these timeouts is that the execution time of the escape analysis is domi-
nated by the computation of object reachability, which in turn depends heavily on the size of
the | nst anceFi el dPoi nt sTo relation (since the size of Arrayl ndexPoi nt sTo is relatively
small in most cases). Therefore, call-site-sensitive and context-insensitive analyses are bad
candidates for escape analysis since they produce a large | nst anceFi el dPoi nt sTo relation
(which also explains the large overhead of the 1call+H analysis).

That is why context-sensitivity is critical (as noted in Section 3.2), even if contexts are
discarded on a later stage when computing the transitive closure of object reachability. It
prunes the size of | nst anceFi el dPoi nt sTo early on, as to allow a fast transitive closure
computation.

As for precision, the choice of context does not seem that important. With the exception
of the 2type+1H analysis, there is small variation on the percentage of escaped objects on the
range of 37.83-38.03% for application plus library code, and 29.04-29.70% for just application

code.
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Chapter 6

Related Work

Escape analysis for Java has been well studied in the past [4, 26, 1, 2, 6, 23, 8], often in
conjunction with thread-escape analysis and synchronization elimination [25, 20, 22, 16, 15].

However, none of the analyses listed above are expressed in Datalog (with the exception
of static race and deadlock detection that contain only a thread-escape analysis [16, 15]) but
are instead formalized using dataflow algorithms (e.g., [4]) or similar means, and are often
summary-based.

By using Datalog for static whole-program escape analysis we are able to obtain an ex-
pressive, concise, and scalable algorithm, while our analysis can be easily employed by any
other part of the Doop framework and extended in any possible way with little or no effort.
On the other hand, more ad hoc solutions like earlier work on this field lack this generality
and extensibility.

The analysis in [4] is based on connection graphs that represent the points-to information
but can be easier summarized to avoid recomputing the escape information when a method
is called in different escape contexts. John Whaley and Martin Rinard present a combined
pointer and escape analysis algorithm for object-oriented programs, designed to analyze ar-
bitrary parts of complete or incomplete programs, obtaining complete information for objects
that do not escape the analyzed parts [26]. Blanchet uses integers to represent type heights
that encode how an object of one type can have references to other objects or is a subtype
of another object [1]. The escaping part of an object is represented by the height of its type.
He proposes a two-phase (a backward phase and a forward phase) flow-insensitive analysis
for computing escape information. He uses escape analysis for both stack allocation and
synchronization elimination. In contrast, our work achieves better results, by average, with
much smaller variation for different benchmark programs than any of the aforementioned
techniques [4, 26, 1]. The great divergence in the reported results of earlier work may imply
that the benchmarks used for evaluation were either small or not clearly representative of
the Java language.

The constraint-based, flow-insensitive, context-sensitive analysis of Bogda and Hélzle is

essentially a whole-program analysis, but is applied to synchronization elimination rather
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than stack allocation [2].

Gay et al. provide an algorithm that is linear in the size of the program plus the size of
the static call graph [6]. They focus on speed rather than precision and thereby assume that
any reference assigned to a field escapes (and thus fail to identify cases of stack allocation of
objects referenced in fields of other stack allocated objects).

Frédéric Vivien and Martin Rinard have followed an incremental approach instead of
whole-program analysis, which concentrates only on the parts of the program that may
deliver useful results [23]. Another scalar approach that combines an intraprocedural and
an interprocedural analysis, well-suited to the needs of a dynamic compiler which lacks a
concrete view of the complete program, is presented by Thomas Kotzmann and Hanspeter
Mossenbock [8].

While incremental approaches may indeed be more appropriate in the context of dynamic
compilation, they suffer from imprecision due to their incomplete knowledge that leads to
several oversimplifications (e.g., anything assigned to a field or passed to a method escapes).
This may be unavoidable for a JVM that has to perform the loading and linking of classes
dynamically. In other cases, however, such as in debugging tools where the accuracy of the
reported results is of the utmost importance and the entire code is almost always available,

whole-program analysis is much more promising.
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Chapter 7

Conclusions

By using Datalog we were able to succinctly express a declarative whole-program escape
analysis for Java, that was able to identify 60.66% of the application heap allocation sites
and 57.43% of all the allocation sites (i.e., including library code), by average, of the DaCapo
benchmark programs as non-escaping, and thus safe candidates to be allocated on the stack.

The escape analysis, in its final optimized version, required just about 100 lines of Datalog
code, which clearly demonstrates the potency of the declarative approach for static analysis.
This allowed us to focus on the definition of the escaped objects and leave their computation
to the underlying Datalog engine, which resulted in a concise and expressive representation.

The escape analysis was built on top of the Doop framework [3] which allowed the conve-
nient decoupling of the choice of context from the escape analysis code. By analyzing antlr for
a variety of possible contexts, we found that there is little effect on precision but significant
correlation between the relative time overhead and the choice of context. Specifically, the
call-site-sensitive analyses do not perform well, timewise, since they do not adequately prune
the search space of object-to-object pointers when computing object reachability.

Our resulting algorithm is scalable and extensible in such a way that it can, almost
effortlessly, become a part of future client analyses for the Doopr framework. Previous work
on the field has focused on ad hoc solutions that were not able to provide the same levels of
precision. We believe that in any context where it is reasonable to assume that the largest
part of the codebase is available, our whole-program escape analysis is an eflicient and

highly-accurate candidate.
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Acronyms and Abbreviations

Abbreviation Full Name
lobj 1-object-sensitive analysis
lobj+H 1-object-sensitive+heap analysis
lcall+H 1-call-site-sensitive+heap analysis
20bj 2-object-sensitive analysis
2type+1H 2-type-sensitive+theap analysis
2full+1H 2-full-object-sensitive+heap analysis
20bj+H 2-object-sensitive+heap analysis
1typelobj+1H 2-full-type-object-sensitive+heap analysis
JVM Java Virtual Machine
JLS Java Language Specification
LB LogicBlox Inc.
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Appendix A

Escape Analysis Code

#i ncl ude "macros. | ogic"

; [* Context-insensitive direct function calls */

Cal I s(?nl, ?nR) -> MethodSi gnat ureRef (?nl), MethodSi gnat ur eRef (?nR).
Calls(_, ?m -> Reachabl e(?n).

Cal | s(?fronmvet hod, ?toMethod) <-
Cal | G aphEdge( AnyCont ext ( ?i nvocati on), AnyContext (?toMet hod)),
I nstruction: Met hod[ ?i nvocation] = ?fromMvet hod,
Reachabl e( ?f r omvet hod) .

» [+ Method may reference object */

Met hodsThat MayRef er ence( ?0bj , ?nmet hod) ->
Met hodSi gnat ur eRef ( ?rmet hod) , HeapAl | ocati onRef ( ?0bj ).

Met hodsThat MayRef er ence( ?0bj, ?met hod) <-
Var Poi nt sTo( AnyHeapAbstraction(?obj), AnyContext(?var)),
Var : Decl ari ngMet hod( ?var, ?nethod),
Reachabl e( ?met hod) .

[+ bject points-to another object =/

oj ect Poi nt sTo(?fronbj, ?tolhj) ->
HeapAl | ocati onRef (?fronCbj ), HeapAl | ocationRef (?toChj).

bj ect Poi nt sTo(?frombj, ?toChj) <-

Arrayl ndexPoi nt sTo( AnyHeapAbstracti on(?toCbj), AnyHeapAbstraction(?fronthj)).

oj ect Poi ntsTo(?fronbj, ?toChj) <-
I nst anceFi el dPoi nt sTo(
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AnyHeapAbstraction(?toObj), _, AnyHeapAbstraction(?fromj)).

/+* Transitive C osure for object reachability =*/

hj ect MayReach(?fronmCbj, ?toChj) <-
bj ect Poi ntsTo(?frontChj, ?toChj).

oj ect MayReach(?fronbj, ?toChj) <-
oj ect Poi ntsTo(?frombj, ?interm, ObjectMayReach(?interm ?toCbj).

s [+ Optimzation */

hj ect | sPoi nt edBy(?toObj, ?fronmbj) <-
bj ect Poi nt sTo( ?fronmCbj, ?toChj).

[+ bjects reachable through static field */

Reachabl eThroughSt ati cFi el d(?0bj) -> HeapAl |l ocati onRef (?0bj).

Reachabl eThroughSt ati cFi el d( ?0bj) <-
St ati cFi el dPoi nt sTo( AnyHeapAbst racti on(?obj), _).

Reachabl eThr oughSt ati cFi el d(?toChj) <-
Reachabl eThroughSt ati cFi el d(?fronObj ), Cbject! sPointedBy(?toChj, ?fronChj).

/+ Objects reachable by thrown exception */

Reachabl eByExcepti on(?0bj) -> HeapAl | ocati onRef (?0bj).

Reachabl eByExcepti on(?0bj) <-
Thr owPoi nt sTo( AnyHeapAbst racti on(?obj), AnyContext(_)).

Reachabl eByExcepti on(?toChj) <-
Reachabl eByException(?fronObj), OojectlsPointedBy(?toCbj, ?fronlbj).

/+ Object may outlive a nmethod */

MayQut | i ve(?0bj, ?method) ->
HeapAl | ocat i onRef (?0bj ), Met hodSi gnat ur eRef ( ?nmet hod) .

s lang: derivationType[‘ MayCQutlive] = "Derived".

Georgios Balatsouras 37



Declarative Whole-Program Escape Analysis for Java

MayQut | i ve(?0bj, ?nethod) <-
Reachabl eThr oughSt ati cFi el d(?obj ), Reachabl e(?met hod) .

MayQut | i ve(?0bj, ?method) <-
Reachabl eByExcepti on(?obj ), Reachabl e(?rmet hod).

MayQut | i ve(?0bj, ?callee) <-
Cal I s(?caller, 7?callee), MethodsThat MayReference(?obj, ?caller).

MayQut | ive(?toChj, ?callee) <-
Cal | s(?cal ler, ?callee),
Met hodsThat MayRef er ence( ?f rontbj, ?caller),
Ohj ect MayReach( ?fronmCbj, ?to(hj).
[+ bject may escape, if it can outlive the nmethod that allocated it =/

MayEscape(?0bj) -> HeapAl | ocati onRef (?0bj).

MayEscape( ?0bj) <-

MayQut | i ve(?0bj, ?inmethod), AssignHeapAllocation(?obj, _, ?innethod).
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