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Περίληψη

΄Ενα αντικείµενο ϑεωρείται ότι ‘διαφεύγει’ όταν η διάρκεια Ϲωής του µπορεί να είναι µεγαλύτερη

από αυτή της µεθόδου που το δηµιούργησε. Παρουσιάζουµε µία δηλωτική ανάλυση πλήρους

προγράµµατος για τη Java, γραµµένη στην γλώσσα Datalog, που υπολογίζει µία υπερεκτίµηση

των αντικειµένων του σωρού που µπορούν να διαφύγουν. Η ανάλυσή µας είναι µέρος του

Doop framework [3], το οποίο περιλαµβάνει µία ανάλυση δεικτών για ένα σύνολο από υπ-

οστηριζόµενους τύπους συµφραζοµένων.

Η ανάλυσή µας µπόρεσε να ανιχνεύσει ότι, κατά µέσο όρο, το 60.66% των εντολών δηµιουργίας

αντικειµένων σε κώδικα εφαρµογής και το 57.43% στο σύνολο του κώδικα (συµπεριλαµβάνοντας

και τις ϐιβλιοθήκες) της DaCapo benchmark suite δεν µπορούν να διαφύγουν, και άρα µπορούν

µε ασφάλεια να δηµιουργηθούν στη στοίβα έναντι του σωρού.

Η κεντρική ιδέα είναι ότι για να διαφύγει ένα αντικείµενο ϑα πρέπει να είναι προσβάσιµο

είτε από κάποιο στατικό πεδίο, είτε από κάποιο exception, ή από µία τοπική µεταβλητή κάποιας

µεθόδου που µπορεί να καλέσει άµεσα την µέθοδο που δηµιούργησε το εν λόγω αντικείµενο.

Η ανάλυση χρειάστηκε περίπου 100 γραµµές κώδικα Datalog, το οποίο είναι ενδεικτικό των

δυνατοτήτων της δηλωτικής προσέγγισης για στατική ανάλυση προγραµµάτων, η οποία µας

επιτρέπει να ορίσουµε µόνο πότε διαφεύγει ένα αντικείµενο και όχι πως να τα υπολογίσουµε.

Αυτό οδήγησε σε µία εκφραστική και µεστή υλοποίηση.

Τρέχοντας την ανάλυση για διαφορετικές επιλογές του τύπου των συµφραζοµένων διαπιστώσαµε

ότι η επιλογή αυτή δεν επηρεάζει ιδιαίτερα την ακρίβεια, αλλά είναι, ωστόσο, άκρως σηµαντική

για τον χρόνο εκτέλεσης.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ανάλυση ∆ιαφυγής Αντικειµένων

ΛΕΞΕΙΣ ΚΛΕΙ∆ΙΑ : Datalog, ανάλυση πλήρους προγράµµατος, Java, ασφαλής δηµοσίευση

αντικειµένων, προσβασιµότητα αντικειµένων, συµφραζόµενα



Abstract

An object escapes when it can outlive the method that allocated it. We present a declarative

whole­program escape analysis for Java, written entirely in Datalog, that over­approximates

the escaped objects in a program. Our analysis is a part of the Doop framework [3] that

provides it with a points­to analysis for a number of possible types of context.

Our analysis was able to identify 60.66% of the application heap allocation sites and 57.43%

of all the allocation sites (i.e., including library code), by average, of the DaCapo benchmark

programs as non­escaping, and thus safe candidates to be allocated on the stack.

The main intuition is that an object escapes if it is reachable through a static field, an

exception, or a local variable of an immediate caller of the method that created it. The

escape analysis required just about 100 lines of Datalog code, which clearly demonstrates

the potency of the declarative approach for static analysis. This allowed us to focus on

the definition of the escaped objects and leave their computation to the underlying Datalog

engine, which resulted in a concise and expressive representation.

By running the escape analysis for a variety of possible contexts, we found that the choice

of context has little effect on precision but is crucial for the execution time overhead. Specifi­

cally, the call­site­sensitive analyses take a long time to complete since they do not adequately

prune the search space of object­to­object pointers when computing object reachability.

SUBJECT AREA: Escape Analysis

KEYWORDS: Datalog, whole­program analysis, Java, safe publication, object reachability,

context­sensitivity
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Chapter 1

Introduction

An object is deemed to escape when it can outlive the method that allocated it. Escape

analysis should not be confused with thread­escape analysis, where a heap object is said

to escape when it can be accessed from more than one threads. In that sense, an object

escapes from its original thread of execution, whereas in the traditional escape analysis an

object escapes from the method where it was created.

Escape analysis can be used as a compiler optimization, where heap allocations for non­

escaping objects can be converted to stack allocations. This is a common optimization in

modern Java compilers [9], but is computed with simple lightweight dataflow analysis instead

of the more heavy whole­program analysis approach. The first reason for this is the dynamic

nature of the Java language itself. For one thing, in Java, classes and interfaces are loaded,

linked, and initialized dynamically [13, Chapter 5]. The use of (method­based) jit­compilation

makes it impossible to determine when will each method be eventually compiled (which

usually happens when a certain per method usage threshold is reached [17]), or to reason

about the corresponding state of the code that has been loaded thus far at each such point.

Therefore, any static analysis based on incomplete knowledge may be rendered useless, and

its results invalidated, at a point later on. Furthermore, the increase in precision when

using whole­program analysis instead of a more simplistic approach (like dataflow analysis)

is not yet considered significant enough to justify the additional complexity. Nevertheless,

the performance gain has not been studied in practice and the actual increase in precision

may change this conviction.

Escape analysis can also be used in the context of bug­detection. The most prominent

case is no other than safe publication [18]. To publish an object safely one has to ensure

that the this reference is not allowed to escape during construction, or else an object that

is not yet fully constructed may become prematurely accessible externally. In such a case,

the constructor would fail to preserve any invariants that would be elsewise enforced by the

time the constructor returned.

While in the context of dynamic compilation, whole­program analysis cannot be easily

employed (e.g., for stack­allocation optimizations), in tools such as IDE debuggers, where

Georgios Balatsouras 12
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it is reasonable to assume that the entire codebase is available, a whole­program escape

analysis would make perfect sense. In bug­detection, precision is of the utmost importance,

and thus whole­program escape analysis is a very good candidate due to its high accuracy

that minimizes false positives of escaped objects.

In summary, this work makes the following contributions:

• We show that we can succinctly express an escape analysis in Datalog. Our analysis is

built on top of the Doop framework [3] that provides a collection of points­to analyses

with varying contexts. Client analyses, like our own, make use of its macro­based

system to decouple the choice of context from analysis code. Therefore, our escape

analysis can run with any possible context supported by Doop and extended with any

future client analysis for this framework.

• We test our analysis with the DaCapo benchmark programs to compare its scalability

and precision to earlier work on this field. Our analysis was able to identify 60.66% of the

application heap allocation sites and 57.43% of all the allocation sites (i.e., including

library code), by average, as non­escaping, and thus safe candidates to be allocated

on the stack. This unusually high precision should be attributed to whole­program

analysis that enables the identification of difficult cases of stack­allocatable objects and

also dispenses with oversimplifications that are mostly found in incremental approaches

having to deal with incomplete program knowledge dynamically.

• We test various choices of context for escape analysis and compare them in terms

of precision and time overhead. We find that there is little effect on precision but

significant correlation between the relative time overhead and the choice of context.

Specifically, the call­site­sensitive analyses do not perform well, timewise, since they

do not adequately prune the search space of object­to­object pointers when computing

object reachability.

• We discuss a technique that builds on the escape analysis to identify cases of unsafe

publication.

The rest of the thesis is organized as follows: in Chapter 2 we give a background of

points­to analysis in Datalog using the Doop framework. In Chapter 3, we present the escape

analysis written in Datalog. Chapter 4 discusses a technique that builds on the escape

analysis and identifies cases of unsafe publication. In Chapter 5, we present the evaluation

Georgios Balatsouras 13
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of our analysis by testing it on the DaCapo benchmark suite, and compare several choices

of context and their effect on performance. We describe related work in Chapter 6 and

conclusions in Chapter 7.

Georgios Balatsouras 14
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Chapter 2

Background

Our escape analysis uses the Doop framework [3], which provides a collection of points­to

analysis (e.g., context insensitive, call­site sensitive, object sensitive, type sensitive). How­

ever, client code that is built upon any such analysis, as in our case, can be entirely oblivious

to the exact choice of context (which is specified at runtime) and expressed using a generic

API.

2.1 Points­To Analysis in Datalog

Doop’s primary defining feature is the use of Datalog for its analyses. Architecturally, how­

ever, an important aspect of Doop’s performance is that it employs an explicit representation

of relations (i.e., all tuples of a relation are represented as an explicit table, as in a database),

instead of using Binary Decision Diagrams (BDDs), which have often been considered neces­

sary for scalable points­to analysis [25, 24, 12, 11].

Doop uses a commercial Datalog engine, developed by LogicBlox Inc. This version of

Datalog allows ‘‘stratified negation’’, that is, negated clauses, as long as the negation is not

part of a recursive cycle. It also allows specifying that some relations are functions, that is,

the variable space is partitioned into domain and range variables, and there is only one range

value for each unique combination of values in domain variables.

Datalog is a great fit for the domain of program analysis and, as a consequence, has

been extensively used both for low­level [19, 10, 25] and for high­level [5, 7] analyses. The

essence of Datalog is its ability to define recursive relations. Mutual recursion is the source

of all complexity in program analysis. For a standard example, the logic for computing a

callgraph depends on having points­to information for pointer expressions, which, in turn,

requires a callgraph. We can easily see such recursive definitions in points­to analysis

alone. Consider, for instance, two relations, AssignHeapAllocation(?heap, ?var) and

Assign(?to, ?from). (We follow the Doop convention of capitalizing the first letter of rela­

tion names, while writing variable names in lower case and prefixing them with a question­

mark.) The former relation represents all occurrences in the Java program of an instruction

Georgios Balatsouras 15
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‘‘a = newA();’’ where a heap object is allocated and assigned to a variable. That is, a pre­

processing step takes a Java program (in Doop this is in intermediate, bytecode, form) as

input and produces the relation contents. A static abstraction of the heap object is captured

in variable ?heap—it can be concretely represented as, for example, a fully qualified class

name and the allocation’s bytecode instruction index. Similarly, relation Assign contains an

entry for each assignment between two Java program (reference) variables.

The mapping between the input Java program and the input relations is straightforward

and purely syntactic. After this step, a simple pointer analysis can be expressed entirely in

Datalog as a transitive closure computation:

1 VarPointsTo(?heap, ?var) <- AssignHeapAllocation(?heap, ?var).

2 VarPointsTo(?heap, ?to) <- Assign(?to, ?from), VarPointsTo(?heap, ?from).

The Datalog program consists of a series of rules that are used to establish facts about

derived relations (such as VarPointsTo, which is the points­to relation, i.e., it links every

program variable, ?var, with every heap object abstraction, ?heap, it can point to) from a

conjunction of previously established facts. In the LB­Datalog syntax, the left arrow symbol

(<-) separates the inferred fact (i.e., the head of the rule) from the previously established

facts (i.e., the body of the rule).

For instance, line 2 above says that if, for some values of ?from, ?to, and ?heap,

Assign(?to,?from) and VarPointsTo(?heap,?from) are both true, then it can be in­

ferred that VarPointsTo(?heap,?to) is true. Note the base case of the computation above

(line 1), as well as the recursion in the definition of VarPointsTo (line 2).

The declarativeness of Datalog makes it attractive for specifying complex program analysis

algorithms. Particularly important is the ability to specify recursive definitions—program

analysis is fundamentally an amalgam of mutually recursive tasks. For instance, Doop uses

mutually recursive definitions of points­to analysis and call­graph construction.

The key for a precise points­to analysis is context­sensitivity, which consists of qualify­

ing program variables (and possibly object abstractions—in which case the context­sensitive

analysis is said to also have a context­sensitive heap) with context information: the analysis

collapses information (e.g., ‘‘what objects this method argument can point to’’) over all possi­

ble executions that result in the same context, while separating all information for different

contexts. Object­sensitivity and call­site­sensitivity are the main flavors of context sensitivity

Georgios Balatsouras 16
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in modern points­to analyses. They differ in the contexts of a context, as well as in when

contexts are created and updated. To gain insight into the aforementioned variations of con­

text sensitivity, the interested reader is referred to [21, 14]. Here we will not yet concern

ourselves with such differences—at this point, it suffices to know that a context­sensitive

analysis qualifies its computed facts with extra information.

Context­sensitive analysis in Doop is, to a large extent, similar to the above context­

insensitive logic. The main changes are due to the introduction of Datalog variables repre­

senting contexts for variables (and, in the case of a context­sensitive heap, also objects), in

the analyzed program. For an illustrative example, the following two rules handle method

calls as implicit assignments from the actual parameters of a method to the formal parame­

ters, in a 1­context­sensitive analysis with a context­insensitive heap.

(This code is the same for both object­sensitivity and call­site­sensitivity.)

1 Assign(?calleeCtx, ?formal, ?callerCtx, ?actual) <-

2 CallGraphEdge(?callerCtx, ?invocation, ?calleeCtx, ?method),

3 FormalParam[?index, ?method] = ?formal,

4 ActualParam[?index, ?invocation] = ?actual.

5

6 VarPointsTo(?heap, ?toCtx, ?to) <-

7 Assign(?toCtx, ?to, ?fromCtx, ?from),

8 VarPointsTo(?heap, ?fromCtx, ?from).

(Note that some of the above relations are functions, in which case the functional nota­

tion ‘‘Relation[?domainvar] = ?val’’ is used instead of the traditional relational notation,

‘‘Relation(?domainvar, ?val)’’. Semantically the two are equivalent, only the execution

engine enforces the functional constraint and produces an error if a computation causes a

function to have multiple range values for the same domain value.)

The example shows how a derived Assign relation (unlike the input relation Assign in

the earlier basic example) is computed, based on the call­graph information, and then used

in deriving a context­sensitive VarPointsTo relation.

For deeper contexts, one needs to add extra variables, since pure Datalog does not allow

constructors and therefore cannot support value combination. Doop employs a macro system

to hide the number of context elements so that such variations do not pollute the main

analysis, as well as any client (like in our case, the escape analysis), logic.

Georgios Balatsouras 17
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1 // If S is an ordinary (nonarray) class, then:
2 // o If T is a class type, then S must be the
3 // same class as T, or a subclass of T.
4 CheckCast(?s, ?s) <- ClassType(?s).
5 CheckCast(?s, ?t) <- Subclass(?t, ?s).
6 ...
7 // o If T is an array type TC[], that is, an array of components
8 // of type TC, then one of the following must be true:
9 // + TC and SC are the same primitive type

10 CheckCast(?s, ?t) <-
11 ArrayType(?s), ArrayType(?t),
12 ComponentType(?s, ?sc), ComponentType(?t, ?sc), PrimitiveType(?sc).
13

14 // + TC and SC are reference types (2.4.6), and type SC can be
15 // cast to TC by recursive application of these rules.
16 CheckCast(?s, ?t) <-
17 ComponentType(?s, ?sc), ComponentType(?t, ?tc),
18 ReferenceType(?sc), ReferenceType(?tc), CheckCast(?sc, ?tc).

Figure 2.1: Excerpt of Datalog code for Java cast checking, together with Java Language

Specification text in comments. The rules are quite faithful to the specification.

Generally, the declarative nature of Doop often allows for very concise specifications of

analyses. In [3], Martin Bravenboer and Yannis Smaragdakis demonstrate a striking example

of the logic for the Java cast checking—i.e., the answer to the question ‘‘can type A be cast

to type B?’’. The Datalog rules are almost an exact transcription of the Java Language Spec­

ification. A small excerpt, with the Java Language Specification text included in comments,

can be seen in Figure 2.1.
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Chapter 3

Over­Approximating Escaped Objects

In this chapter we formalize the concept of escaped objects and describe the static analysis

that computes them (or rather, over­approximates them).

3.1 The Immediate Callers Conjecture

Informally, an object escapes when it can ‘‘outlive’’ the method that allocated it (Figure 3.1).

It is easier to formalize the notion of non­escaping (i.e., stack­allocatable) objects.

Definition 3.1.1. An object o allocated in method m does not escape if there is no possible

execution of the program in which o may be contained in the set of live objects after the

instance of m that allocated o has returned.

The set of live objects (at time t) is a common term in garbage collection, where it is used

to denote the objects that are (transitively) reachable by pointer relationships from the root

set (at time t). The root set in Java consists of the static variables, and the local variables in

the activation stack. After garbage collection, the objects not contained in this set may safely

be discarded.

Also notice that by m, we refer to the specific instance that allocated this particular

object. There may be other instances of m higher up the call stack, that may have, in turn,

allocated different objects with the same allocation instruction. However, in the context of

1 /* Object may escape, if it can outlive the method that allocated it */
2

3 MayEscape(?obj) -> HeapAllocationRef(?obj).
4

5 MayEscape(?obj) <-
6 MayOutlive(?obj, ?inmethod), AssignHeapAllocation(?obj, _, ?inmethod).

Figure 3.1: Escape Definition
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Figure 3.2: Cycle in which m2 is both a caller and a callee of m1, and thus may reach the

object o even though it does not escape.

static analysis, we abstract heap objects via their allocation sites (and possibly some analysis­

specific heap context) and compute escape information accordingly. Thus, we produce an

over­approximation of escaping heap allocation sites. Our analysis is sound in the sense that

any object allocated at a non­escaping allocation site will definitely not be in the set of live

objects since the method call that performed its allocation has returned.

Conjecture 3.1.1. In the absence of exceptions and static variables, an object o allocated in

method m1 escapes only if there exists a method m2 that may directly call m1 and (transitively)

reach o through its local variables.

That is, if an object is not reachable by any of the direct callers of the method that

allocated it, it will not be reachable by any other indirect callers (i.e., all the methods that

may constitute the call stack up to m1) and therefore will not escape. 1 (Notice that other

methods, such as those that can be called by m1, may normally reach o even if it does not

escape.)

1There is one exception to the reachability of indirect callers. If the call­graph contains cycles, it is possible

that an object will be reachable by some of the indirect callers that may also be called by m1 (and thus form a

cycle) and unreachable by all of its direct callers. Even so, the instances that may indeed reach o will be lower

on the call stack than the m1 that allocated o, and thus, o will not escape. Such an example is depicted in

Figure 3.2.
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3.2 Object Reachability

In order to compute the escaped objects, we must first compute object reachability. Figure 3.3

corresponds to this part of the analysis. An object ?fromObj points directly to another object

?toObj, either through some field (lines 9­11), or through some array index (lines 6­7) in

case ?fromObj is of an array type. The ArrayIndexPointsTo and InstanceFieldPointsTo

relations are precomputed by Doop during the points­to analysis.

For example, an instruction ‘‘a.f = b;’’ will cause Doop to produce the fact ‘‘Instance

FieldPointsTo(HeapAbstraction(?toObj), ?field, HeapAbstraction(?fromObj))’’,

if variables ‘‘a’’ and ‘‘b’’ may point to heap objects ?fromObj and ?toObj respectively, and

?field represents the field ‘‘f ’’. The HeapAbstraction macro augments a heap object

with context. The ‘‘ArrayIndexPointsTo(HeapAbstraction(?toObj), HeapAbstraction

(?fromObj))’’ fact will be produced respectively for the instruction ‘‘a[i] = b;’’. Notice that,

in the latter case, the produced fact will not contain any information about i (unlike the field

case where f was recorded) since the analysis is array­insensitive.

Computing the transitive closure of object reachability is quite straightforward (lines 15­

19). The compound term ObjectMayReach(?fromObj, ?toObj) denotes that there is a

finite sequence of fields and array indices by which ?fromObj may reach ?toObj.

The AnyHeapAbstraction macro (lines 7, 11) states that we dispose of any heap context

available at this point when computing the ObjecPointsTo relation. The transitive closure

is then computed context­insensitively. Even so, the context sensitivity has played its part,

since it reduces the size of the ArrayIndexPointsTo and InstanceFieldPointsTo relations

with respect to the context­insensitive case. As it will later be evident in chapter 5, the size

of InstanceFieldPointsTo is the bottleneck of the escape analysis, and therefore context­

sensitivity, even in this limited form, is essential for the efficiency of the escape analysis.

On the other hand, the full context­sensitive computation of object­reachability (that is,

the retaining of heap context for the ObjectMayReach relation in a manner similar to the

ArrayIndexPointsTo relation) would be prohibitive for any heap­sensitive analyses. We

believe that this design choice achieves a good tradeoff between precision and performance.

3.3 Static Fields

Apart from local variables in the activation stack (i.e., the per­thread Java virtual machine

stack that adds and removes frames each time a method is invoked and completes respec­
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1 /* Object points-to another object */
2

3 ObjectPointsTo(?fromObj, ?toObj) ->
4 HeapAllocationRef(?fromObj), HeapAllocationRef(?toObj).
5

6 ObjectPointsTo(?fromObj, ?toObj) <-
7 ArrayIndexPointsTo(AnyHeapAbstraction(?toObj), AnyHeapAbstraction(?fromObj)).
8

9 ObjectPointsTo(?fromObj, ?toObj) <-
10 InstanceFieldPointsTo(
11 AnyHeapAbstraction(?toObj), _, AnyHeapAbstraction(?fromObj)).
12

13 /* Transitive Closure for object reachability */
14

15 ObjectMayReach(?fromObj, ?toObj) <-
16 ObjectPointsTo(?fromObj, ?toObj).
17

18 ObjectMayReach(?fromObj, ?toObj) <-
19 ObjectPointsTo(?fromObj, ?interm), ObjectMayReach(?interm, ?toObj).

Figure 3.3: Object Reachability

tively), the root set also contains the static variables. Therefore, any heap object reachable

from such a variable at a given time must be included in the set of live objects. Since we

lack flow­sensitivity, we choose to simply mark any object that can be reached by any static

variable at any given time as escaping.

In Java, static variables can only be defined inside class/interface declarations. The

Doop framework represents static variables as field signatures and defines that ‘‘Static

FieldPointsTo(HeapAbstraction(?obj), ?field)’’ holds if the static field represented

by ?field can point to the heap­sensitive object ?obj. From that point, the manner of com­

puting the objects reachable through static fields is a simple transitive closure computation

on the aforementioned ObjectPointsTo relation (Figure 3.4).

3.4 Handling of Exceptions

Exceptions are the only way to transfer control from a method m1 to a method m2 that has not

called m1 directly, but instead has reached it through a non­empty sequence of intermediate

method calls. In that case, the only part of m1’s state that is accessible at the point when the
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1 /* Objects reachable through static field */
2

3 ReachableThroughStaticField(?obj) -> HeapAllocationRef(?obj).
4

5 ReachableThroughStaticField(?obj) <-
6 StaticFieldPointsTo(AnyHeapAbstraction(?obj), _).
7

8 ReachableThroughStaticField(?toObj) <-
9 ReachableThroughStaticField(?fromObj), ObjectPointsTo(?fromObj, ?toObj).

Figure 3.4: Objects reachable through static fields

1 /* Objects reachable by thrown exception */
2

3 ReachableByException(?obj) -> HeapAllocationRef(?obj).
4

5 ReachableByException(?obj) <-
6 ThrowPointsTo(AnyHeapAbstraction(?obj), AnyContext(_)).
7

8 ReachableByException(?toObj) <-
9 ReachableByException(?fromObj), ObjectPointsTo(?fromObj, ?toObj).

Figure 3.5: Objects reachable by an exception

exception is caught in m2 is the thrown exception and anything reachable from it.

The handling of this case is analogous to that of Section 3.3, where the basis of the recur­

sion is now the relation ThrowPointsTo (Figure 3.5). That is, we treat everything that can be

reached by any exception as escaping. In Doop, ‘‘ThrowPointsTo(HeapAbstraction(?exc),

Context(?ctx, ?meth))’’ holds if method ?meth (with context ?ctx) can throw an excep­

tion ?exc (which is in fact an ordinary heap­sensitive object of the appropriate exception

type).

3.5 Putting Everything Together

Figure 3.6 presents the main body of the code that constitutes the escape analysis.
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1 /* Context-insensitive direct function calls */
2

3 Calls(?m1, ?m2) -> MethodSignatureRef(?m1), MethodSignatureRef(?m2).
4 Calls(_, ?m) -> Reachable(?m).
5

6 Calls(?fromMethod, ?toMethod) <-
7 CallGraphEdge(AnyContext(?invocation), AnyContext(?toMethod)),
8 Instruction:Method[?invocation] = ?fromMethod,
9 Reachable(?fromMethod).

10

11 /* Method may reference object */
12

13 MethodsThatMayReference(?obj, ?meth) ->
14 MethodSignatureRef(?meth), HeapAllocationRef(?obj).
15

16 MethodsThatMayReference(?obj, ?meth) <-
17 VarPointsTo(AnyHeapAbstraction(?obj), AnyContext(?var)),
18 Var:DeclaringMethod(?var, ?meth),
19 Reachable(?meth).
20

21 /* Object may outlive a method */
22

23 MayOutlive(?obj, ?method) ->
24 HeapAllocationRef(?obj), MethodSignatureRef(?method).
25

26 lang:derivationType[‘MayOutlive] = "Derived".
27

28 MayOutlive(?obj, ?method) <-
29 ReachableThroughStaticField(?obj), Reachable(?method).
30

31 MayOutlive(?obj, ?method) <-
32 ReachableByException(?obj), Reachable(?method).
33

34 MayOutlive(?obj, ?callee) <-
35 Calls(?caller, ?callee), MethodsThatMayReference(?obj, ?caller).
36

37 MayOutlive(?toObj, ?callee) <-
38 Calls(?caller, ?callee),
39 MethodsThatMayReference(?fromObj, ?caller),
40 ObjectMayReach(?fromObj, ?toObj).

Figure 3.6: Putting everything together
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3.5.1 Synthesis

The MethodsThatMayReference relation contains an (?obj, ?method) pair if method ?meth

defines a variable ?var which may point to object ?obj (Figure 3.6, lines 13­19). The Calls

relation (lines 3­9) represents a context­insensitive method­to­method call graph edge.

We are now able to define the MayOutlive relation (lines 23­40) to bring it all together.

The MayOutlive relation is never computed exhaustively (as stated in line 26), but is instead

inlined in MayEscape (Figure 3.1). Therefore, its arguments (e.g., ?toObj, ?callee) will be

bound to a heap object and to the method that allocated it.

Lines 28­29 and 31­32 relate to Section 3.3 and Section 3.4 respectively. Lines 34­40

correspond to Conjecture 3.1.1, by stating that an object escapes if it is directly (lines 34­35)

or indirectly (37­40) reachable by an immediate caller of the method that allocated it.

3.5.2 Optimizations

The use of the Reachable relation (lines 9, 19, 29, 32) is an optimization that limits the escape

analysis to the reachable methods. Therefore, the objects that may escape are a subset of

the reachable objects (i.e., the objects allocated in reachable methods). The constraint in line

4 acts as a simple sanity check.

Appendix A contains the entire code of the escape analysis presented in this chapter,

including some additional optimizations specific to the LogicBlox engine [3] that are out of

the scope of this thesis.

The fact that, in about 100 lines of code, we were able to express a powerful escape analysis

shows how expressive Datalog is, and how appropriate an environment for developing static

analyses. Furthermore, the design of Doop, with its variety of supporting contexts and

its macro­based API, facilitates the generilization of any such client analysis. The escape

analysis may be added on top of any points­to analysis, with no need for code changes.
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Chapter 4

Safe Publication

A caveat for using escape analysis to identify pathological cases of unsafe construction is

that we cannot use references to the original object that is being created (and to which the

constructor’s this reference points to), since that object will probably ‘‘leak’’ to a left­value

of an assignment (with a new command as its right­value that implicitly calls a constructor).

This problem can be circumvented by introducing an artificial per­constructor object and an

additional VarPointsTo edge to it from the constructor’s this reference. In this way we can

insulate the via­constructor escaping from ordinary external instance creation commands

by simply examining the lifetime of this auxiliary object. If the analysis reports that such

an object escapes, then the corresponding constructor is unsafe, since the only way for the

object to outlive it is by escaping while under construction.

In Figure 4.1 for instance, the class SafelyConstructed does not let the this refer­

ence escape during construction. This can be detected by creating an auxiliary heap object

HeapObject:Guard and a VarPointsTo edge from the constructor’s this variable to it.

We then have to check only that this particular object, or any other auxiliary object for this

class’s constructors, does not escape (and indeed it doesn’t) in order to characterize the class

as safely constructed.

In Figure 4.2 the this reference gets written to a static field during construction. Thus,

the auxiliary object escapes (Section 3.3) and unsafe construction is detected. If the con­

structor was supposed to enforce the invariant that the msg field is always uppercase, it now

fails to do so by prematurely publishing the object under construction in a static field (that

may be read too soon by another thread for example).
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1 public class SafelyConstructed {
2 private final String msg;
3

4 /** Constructor */
5 public SafelyConstructed(String message) {
6 //! this -> {HeapObject:1, HeapObject:Guard}
7 init(message);
8 }
9

10 /** Helper method that performs some basic initialization */
11 private final void init(msg) {
12 //! this -> {HeapObject:1, HeapObject:Guard}
13 this.msg = msg.toUpperCase();
14 }
15

16 public void main(String[] args) {
17 Object obj = new SafelyConstructed("I’m safe"); //! obj -> HeapObject:1
18 }
19 }

Figure 4.1: Safe Construction with VarPointsTo information in comments

1 public class EscapingUnderConstruction {
2 private String msg;
3 public static EscapingUnderConstruction instance;
4

5 /** Constructor */
6 public EscapingUnderConstruction(String message) {
7 this.msg = message;
8 init();
9 }

10

11 /** Helper method that performs some basic initialization */
12 private final void init() {
13 instance = this; //! auxiliary object escapes
14 this.msg = msg.toUpperCase();
15 }
16 }

Figure 4.2: Unsafe Construction
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Chapter 5

Experimental Results

This chapter presents the evaluation of the escape analysis on a well­known benchmark

suite, and the experimental results.

5.1 Setup

We use a 64­bit machine with a quad­core Xeon E5530 2.4GHz CPU (only one thread was

active at a time). The machine has 24GB of RAM.

We analyzed the DaCapo benchmark programs, v.2006­10­MR2, with JDK 1.4. These

benchmarks are the largest in the literature on context­sensitive points­to analysis. We

concentrated on a subset of the DaCapo benchmarks, namely the antlr, chart, eclipse, luindex,

and pmd, all of which can be successfully analyzed by the Doop framework with reflection­

analysis enabled.

5.2 Evaluation

Table 5.1 presents the time overhead and the number of escaped objects reported by our

analysis for each benchmark. The ‘‘time overhead’’ is the additional time required by the

escape analysis, whereas the ‘‘total time’’ is the sum of the escape analysis time plus the time

of the basic analysis as performed by Doop.

The rest is the total heap allocations (‘‘allocations’’), the heap allocations in reachable

code (‘‘reachable’’), and the escaping heap allocations (‘‘escaping’’). The ‘‘stack­allocatable’’

percentage is computed as the fraction of the reachable allocations that do not escape (Sec­

tion 3.5.2). Moreover, we also measure the escaped/reachable objects in application code

(i.e., not including library code).

The execution time overhead is significant (8­24%) but anticipated since it involves the

semi­expensive computation of the transitive closure of object reachability (which may be

useful in other contexts as well in the future).
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1­object­sensitive

benchmark antlr chart eclipse luindex pmd

total time 179.45s 427.39s 269.03s 86.87s 165.14s
time overhead 28.61s 50.41s 62.19s 13.27s 30.33s

time overhead (%) 15.94% 11.79% 23.12% 15.28% 18.37%

a
p
p

+
li
b allocations 41155 48694 24414 24481 45551

reachable 10880 14695 10046 7707 8945
escaping 4118 6544 4193 3218 3607

stack­allocatable 62.15% 55.47% 58.26% 58.25% 59.68%

a
p
p

o
n

ly allocations 4990 6106 4166 3052 3856
reachable 3815 1613 2377 623 1851
escaping 1108 835 842 213 609

stack­allocatable 70.96% 48.23% 64.58% 65.81% 67.10%
2­type­sensitive+heap

benchmark antlr chart eclipse luindex pmd

total time 170.46s 278.66s 449.60s 104.22s 166.36s
time overhead 39.44s 42.87s 39.36s 18.91s 33.61s

time overhead (%) 23.14% 15.38% 8.75% 18.14% 20.20%

a
p
p

+
li
b allocations 41155 48694 24414 24481 45551

reachable 10791 14538 9740 7591 8753
escaping 4676 6691 4279 3321 3721

stack­allocatable 56.67% 53.98% 56.07% 56.25% 57.49%

a
p
p

o
n

ly allocations 4990 6106 4166 3052 3856
reachable 3813 1610 2355 593 1744
escaping 1576 862 956 228 631

stack­allocatable 58.67% 46.46% 59.41% 61.55% 63.82%

Table 5.1: Escaping Objects and Analysis Time
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(a) Application + Library Code (b) Application Code Only

Figure 5.1: Allocations in 1­Object­Sensitive Analyses

total time time overhead escaping escaping (app)

1obj 179.45s 28.61s (15.94%) 4118 (37.85%) 1108 (29.04%)
1obj+H 521.35s 45.82s (8.79%) 4115 (37.88%) 1108 (29.04%)
1call+H 1161.55s 740.07s (63.71%) 4108 (37.88%) 1133 (29.70%)

2obj 1142.00s 67.36s (5.90%) 4116 (37.83%) 1108 (29.04%)
2type+1H 170.46s 39.44s (23.14%) 4676 (43.33%) 1576 (41.33%)
2full+1H 231.71s 24.90s (10.75%) 4102 (38.03%) 1108 (29.06%)
2obj+H 370.65s 46.36s (12.51%) 4103 (38.02%) 1108 (29.04%)

1type1obj+1H 198.50s 24.55s (12.37%) 4102 (38.02%) 1108 (29.06%)

Table 5.2: Precision and Execution Time for Antlr

Figure 5.1, and Figure 5.2 depict the 1­object­sensitive and 2­type­sensitive+heap alloca­

tion results respectively, in percent stack charts. The percentage of the reachable objects that

can be safely allocated in the stack ranges from 46% to 70%. The fraction of non­escaping

objects is almost always higher in application code, with an average of 60.66% as opposed to

the 57.43% average when including library code.

Generally speaking, the results are quite encouraging when contrasted to earlier escape

analysis literature [4, 26, 1]. The gain in precision comes from the use of whole­program

analysis that enables the identification of more difficult non­escaping object cases.

Table 5.2 presents the precision and execution time overhead on the anltr benchmark,

for several types of analyses (with different types of contexts) supported by Doop.

There was an upper bound for the execution time of the escape analysis equal to two times
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(a) Application + Library Code (b) Application Code Only

Figure 5.2: Allocations in 2­Type­Sensitive+Heap Analyses

that of the basic analysis, after which the escape analysis was terminated before completion.

That happened only on the context­insensitive and 1­call­site­sensitive analyses.

The reason for these timeouts is that the execution time of the escape analysis is domi­

nated by the computation of object reachability, which in turn depends heavily on the size of

the InstanceFieldPointsTo relation (since the size of ArrayIndexPointsTo is relatively

small in most cases). Therefore, call­site­sensitive and context­insensitive analyses are bad

candidates for escape analysis since they produce a large InstanceFieldPointsTo relation

(which also explains the large overhead of the 1call+H analysis).

That is why context­sensitivity is critical (as noted in Section 3.2), even if contexts are

discarded on a later stage when computing the transitive closure of object reachability. It

prunes the size of InstanceFieldPointsTo early on, as to allow a fast transitive closure

computation.

As for precision, the choice of context does not seem that important. With the exception

of the 2type+1H analysis, there is small variation on the percentage of escaped objects on the

range of 37.83­38.03% for application plus library code, and 29.04­29.70% for just application

code.
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Chapter 6

Related Work

Escape analysis for Java has been well studied in the past [4, 26, 1, 2, 6, 23, 8], often in

conjunction with thread­escape analysis and synchronization elimination [25, 20, 22, 16, 15].

However, none of the analyses listed above are expressed in Datalog (with the exception

of static race and deadlock detection that contain only a thread­escape analysis [16, 15]) but

are instead formalized using dataflow algorithms (e.g., [4]) or similar means, and are often

summary­based.

By using Datalog for static whole­program escape analysis we are able to obtain an ex­

pressive, concise, and scalable algorithm, while our analysis can be easily employed by any

other part of the Doop framework and extended in any possible way with little or no effort.

On the other hand, more ad hoc solutions like earlier work on this field lack this generality

and extensibility.

The analysis in [4] is based on connection graphs that represent the points­to information

but can be easier summarized to avoid recomputing the escape information when a method

is called in different escape contexts. John Whaley and Martin Rinard present a combined

pointer and escape analysis algorithm for object­oriented programs, designed to analyze ar­

bitrary parts of complete or incomplete programs, obtaining complete information for objects

that do not escape the analyzed parts [26]. Blanchet uses integers to represent type heights

that encode how an object of one type can have references to other objects or is a subtype

of another object [1]. The escaping part of an object is represented by the height of its type.

He proposes a two­phase (a backward phase and a forward phase) flow­insensitive analysis

for computing escape information. He uses escape analysis for both stack allocation and

synchronization elimination. In contrast, our work achieves better results, by average, with

much smaller variation for different benchmark programs than any of the aforementioned

techniques [4, 26, 1]. The great divergence in the reported results of earlier work may imply

that the benchmarks used for evaluation were either small or not clearly representative of

the Java language.

The constraint­based, flow­insensitive, context­sensitive analysis of Bogda and Hölzle is

essentially a whole­program analysis, but is applied to synchronization elimination rather
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than stack allocation [2].

Gay et al. provide an algorithm that is linear in the size of the program plus the size of

the static call graph [6]. They focus on speed rather than precision and thereby assume that

any reference assigned to a field escapes (and thus fail to identify cases of stack allocation of

objects referenced in fields of other stack allocated objects).

Frédéric Vivien and Martin Rinard have followed an incremental approach instead of

whole­program analysis, which concentrates only on the parts of the program that may

deliver useful results [23]. Another scalar approach that combines an intraprocedural and

an interprocedural analysis, well­suited to the needs of a dynamic compiler which lacks a

concrete view of the complete program, is presented by Thomas Kotzmann and Hanspeter

Mössenböck [8].

While incremental approaches may indeed be more appropriate in the context of dynamic

compilation, they suffer from imprecision due to their incomplete knowledge that leads to

several oversimplifications (e.g., anything assigned to a field or passed to a method escapes).

This may be unavoidable for a JVM that has to perform the loading and linking of classes

dynamically. In other cases, however, such as in debugging tools where the accuracy of the

reported results is of the utmost importance and the entire code is almost always available,

whole­program analysis is much more promising.
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Chapter 7

Conclusions

By using Datalog we were able to succinctly express a declarative whole­program escape

analysis for Java, that was able to identify 60.66% of the application heap allocation sites

and 57.43% of all the allocation sites (i.e., including library code), by average, of the DaCapo

benchmark programs as non­escaping, and thus safe candidates to be allocated on the stack.

The escape analysis, in its final optimized version, required just about 100 lines of Datalog

code, which clearly demonstrates the potency of the declarative approach for static analysis.

This allowed us to focus on the definition of the escaped objects and leave their computation

to the underlying Datalog engine, which resulted in a concise and expressive representation.

The escape analysis was built on top of the Doop framework [3] which allowed the conve­

nient decoupling of the choice of context from the escape analysis code. By analyzing antlr for

a variety of possible contexts, we found that there is little effect on precision but significant

correlation between the relative time overhead and the choice of context. Specifically, the

call­site­sensitive analyses do not perform well, timewise, since they do not adequately prune

the search space of object­to­object pointers when computing object reachability.

Our resulting algorithm is scalable and extensible in such a way that it can, almost

effortlessly, become a part of future client analyses for the Doop framework. Previous work

on the field has focused on ad hoc solutions that were not able to provide the same levels of

precision. We believe that in any context where it is reasonable to assume that the largest

part of the codebase is available, our whole­program escape analysis is an efficient and

highly­accurate candidate.
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Acronyms and Abbreviations

Abbreviation Full Name

1obj 1­object­sensitive analysis

1obj+H 1­object­sensitive+heap analysis

1call+H 1­call­site­sensitive+heap analysis

2obj 2­object­sensitive analysis

2type+1H 2­type­sensitive+heap analysis

2full+1H 2­full­object­sensitive+heap analysis

2obj+H 2­object­sensitive+heap analysis

1type1obj+1H 2­full­type­object­sensitive+heap analysis

JVM Java Virtual Machine

JLS Java Language Specification

LB LogicBlox Inc.
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Appendix A

Escape Analysis Code

1 #include "macros.logic"

2

3 /* Context-insensitive direct function calls */

4

5 Calls(?m1, ?m2) -> MethodSignatureRef(?m1), MethodSignatureRef(?m2).

6 Calls(_, ?m) -> Reachable(?m).

7

8 Calls(?fromMethod, ?toMethod) <-

9 CallGraphEdge(AnyContext(?invocation), AnyContext(?toMethod)),

10 Instruction:Method[?invocation] = ?fromMethod,

11 Reachable(?fromMethod).

12

13 /* Method may reference object */

14

15 MethodsThatMayReference(?obj, ?method) ->

16 MethodSignatureRef(?method), HeapAllocationRef(?obj).

17

18 MethodsThatMayReference(?obj, ?method) <-

19 VarPointsTo(AnyHeapAbstraction(?obj), AnyContext(?var)),

20 Var:DeclaringMethod(?var, ?method),

21 Reachable(?method).

22

23 /* Object points-to another object */

24

25 ObjectPointsTo(?fromObj, ?toObj) ->

26 HeapAllocationRef(?fromObj), HeapAllocationRef(?toObj).

27

28 ObjectPointsTo(?fromObj, ?toObj) <-

29 ArrayIndexPointsTo(AnyHeapAbstraction(?toObj), AnyHeapAbstraction(?fromObj)).

30

31 ObjectPointsTo(?fromObj, ?toObj) <-

32 InstanceFieldPointsTo(
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33 AnyHeapAbstraction(?toObj), _, AnyHeapAbstraction(?fromObj)).

34

35 /* Transitive Closure for object reachability */

36

37 ObjectMayReach(?fromObj, ?toObj) <-

38 ObjectPointsTo(?fromObj, ?toObj).

39

40 ObjectMayReach(?fromObj, ?toObj) <-

41 ObjectPointsTo(?fromObj, ?interm), ObjectMayReach(?interm, ?toObj).

42

43 /* Optimization */

44

45 ObjectIsPointedBy(?toObj, ?fromObj) <-

46 ObjectPointsTo(?fromObj, ?toObj).

47

48 /* Objects reachable through static field */

49

50 ReachableThroughStaticField(?obj) -> HeapAllocationRef(?obj).

51

52 ReachableThroughStaticField(?obj) <-

53 StaticFieldPointsTo(AnyHeapAbstraction(?obj), _).

54

55 ReachableThroughStaticField(?toObj) <-

56 ReachableThroughStaticField(?fromObj), ObjectIsPointedBy(?toObj, ?fromObj).

57

58 /* Objects reachable by thrown exception */

59

60 ReachableByException(?obj) -> HeapAllocationRef(?obj).

61

62 ReachableByException(?obj) <-

63 ThrowPointsTo(AnyHeapAbstraction(?obj), AnyContext(_)).

64

65 ReachableByException(?toObj) <-

66 ReachableByException(?fromObj), ObjectIsPointedBy(?toObj, ?fromObj).

67

68 /* Object may outlive a method */

69

70 MayOutlive(?obj, ?method) ->

71 HeapAllocationRef(?obj), MethodSignatureRef(?method).

72

73 lang:derivationType[‘MayOutlive] = "Derived".
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74

75 MayOutlive(?obj, ?method) <-

76 ReachableThroughStaticField(?obj), Reachable(?method).

77

78 MayOutlive(?obj, ?method) <-

79 ReachableByException(?obj), Reachable(?method).

80

81 MayOutlive(?obj, ?callee) <-

82 Calls(?caller, ?callee), MethodsThatMayReference(?obj, ?caller).

83

84 MayOutlive(?toObj, ?callee) <-

85 Calls(?caller, ?callee),

86 MethodsThatMayReference(?fromObj, ?caller),

87 ObjectMayReach(?fromObj, ?toObj).

88

89 /* Object may escape, if it can outlive the method that allocated it */

90

91 MayEscape(?obj) -> HeapAllocationRef(?obj).

92

93 MayEscape(?obj) <-

94 MayOutlive(?obj, ?inmethod), AssignHeapAllocation(?obj, _, ?inmethod).
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[8] Thomas Kotzmann and Hanspeter Mössenböck. Escape analysis in the context of dy­

namic compilation and deoptimization. In Proceedings of the 1st ACM/USENIX interna­

tional conference on Virtual execution environments, VEE ’05, pages 111–120, New York,

NY, USA, 2005. ACM.

Georgios Balatsouras 39



Declarative Whole­Program Escape Analysis for Java

[9] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck, Thomas Rodriguez,
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