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ABSTRACT

Many applications use sensitive or untrusted data, such as data provided by a user. For
this reason, it is useful to be able to discern the flow of such kinds of data inside an
application, as well as the parts of the application whose execution is dependent on them.

We present a dependence analysis which, given some source instructions in a Java pro-
gram, computes an overapproximation of the parts of the program whose execution can
be influenced by these instructions. The central idea is that user-supplied data should not
be able to influence critical parts of the program and that, inversely, sensitive data in the
program should not leak out information to the user.

The analysis was written in the Datalog language and is based on the Doop framework.
Specifically, the analysis logic was implemented in about 200 lines of Datalog code, some-
thing that demonstrates the capabilities of Doop in the creation of compact and expressive
static analyses.

Subject area: Dependence Analysis

Keywords: static analysis, security, Java, Datalog, Doop



ΠΕΡΙΛΗΨΗ

Πολλές εφαρμογές λειτουργούν χρησιμοποιώντας ευαίσθητα ή αναξιόπιστα δεδομένα,
όπως τα δεδομένα που παίρνουν από τον χρήστη. Για αυτόν τον λόγο, είναι χρήσιμο
να μπορεί κάποιος να δει τη ροή τέτοιου είδους δεδομένων μέσα σε μια εφαρμογή, καθώς
και τα μέρη της εφαρμογής των οποίων η εκτέλεση επηρεάζεται από αυτά.

Παρουσιάζουμε μία ανάλυση εξαρτήσεων, η οποία δεδομένων κάποιων εντολών εισόδου
σε ένα πρόγραμμα Java, υπολογίζει μια υπερτίμηση των μερών του προγράμματος η
εκτέλεση των οποίων μπορεί να επηρεαστεί από αυτή την είσοδο. Η κεντρική ιδέα είναι
πως τα δεδομένα που δίνει ο χρήστης δεν θα πρέπει να επηρεάζουν κάποιο ευαίσθητο
σημείο του προγράμματος, αλλά και πως, αντιστρόφως, ο χρήστης δεν θα πρέπει να
λαμβάνει πληροφορίες που αφορούν ευαίσθητα δεδομένα.

Η ανάλυση γράφτηκε στην γλώσσαDatalog και βασίζεται στο Doop framework. Συγκεκριμένα,
η λογική της ανάλυσης υλοποιείται σε περίπου 200 γραμμές Datalog, κάτι που είναι ενδεικτικό
για τις δυνατότητες τουDoop στην δημιουργία συμπαγών και εκφραστικών στατικών ανάλυσεων.

Θεματικη Περιοχη: Ανάλυση Εξαρτήσεων

Λεξεις Κλειδια: στατική ανάλυση, ασφάλεια, Java, Datalog, Doop
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PREFACE
This thesis aims to provide the Doop framework with a dependence analysis. It has been
developed as my undergraduate thesis since July 2015 at the Department of Informatics
and Telecommunications of the University of Athens.



Static Dependence Analysis for Java

1. INTRODUCTION
An instruction can be said to be dependent on any other instruction that can affect its
execution in any way. There are two major categories of such dependences: Data de-
pendences (direct) and control dependences (indirect). For instance, an instruction that
uses a variable defined by another instruction has a data dependence on that instruction,
while an instruction that may or may not be executed depending on another instruction
has a control dependence on that instruction.

Analyzing the way different instructions depend on each other is useful for many fields of
computer science. For one, a compiler may reorder instructions that will not affect each
other, or it may employ copy propagation to remove unnecessary data dependences if
deemed beneficial. Another use would be the parallelization of two pieces of code that
don’t depend on each other.

The specific field our analysis is intended for is security. Given a set of untrusted input or
output instructions, and a set of sensitive instructions, we try to detect any sort of interfer-
ence between instructions in the two sets. There can also be pieces of code that serve as
declassifiers, reducing the security level of some information (for example, an encryption
or a sanitization method). Besides that, any instruction that may carry any information
about some sensitive data will be considered a sensitive instruction.

Our approach leverages the concepts of the PDG [2] and the SDG [4] and builds on the
points-to analysis provided by Doop in order to produce these graphs. The user then
provides the untrusted instructions (sources) and our analysis traverses these graphs in
order to find the parts of the code that are affected (sinks).

Nikolaos Filippakis 11
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2. BACKGROUND
Datalog is a declarative logic-based programming language which is often used as a query
language for deductive databases. Our analysis uses the Doop framework for Datalog [6],
which provides a collection of points-to analyses (e.g. context insensitive, call-site sensi-
tive, object sensitive). However, code built upon any such analysis, as in our case, can
be oblivious to the exact choice of context (which is specified at runtime) and expressed
using a generic API.

2.1 Points-To Analysis in Datalog

Doop’s primary defining feature is its use of Datalog for its analyses and its explicit repre-
sentation of relations as tables instead of Binary Decision Diagrams (BDDs) which have
been considered necessary for scalable points-to analysis [24, 25].

Datalog is a great fit for the domain of program analysis and, as a consequence, has
been extensively used both for low-level [26, 27] and for high-level [28, 29] analyses. The
essence of Datalog is its ability to define recursive relations. Mutual recursion is the source
of all complexity in program analysis. For a standard example, the logic for computing a
call-graph depends on having points-to information for pointer expressions, which, in turn,
requires a call-graph. Such recursive definitions are common in points-to analysis.

Doop currently uses a commercial Datalog engine, developed by LogicBlox Inc. A Dat-
alog program consists of a series of rules, also known in Datalog semantics as the IDB
(Intensional Database) rules, that are used to establish facts about derived relations from a
conjunction of previously established facts. In the LB-Datalog syntax, the left arrow symbol
(<-) separates the inferred fact (i.e. the head of the rule) from the previously established
facts (i.e., the body of the rule).

Doop also uses the Soot framework [10] as a pre-processing step that takes the bytecode
of a Java program and generates the input facts for an analysis, in the form of relations.
Thanks to this, the original source is not needed, only the compiled classes. This is es-
pecially important, as libraries whose code is not public are used extensively. That kind
of relations that directly derive from the input Java program, are also known in Datalog
semantics as the EDB (Extensional Database) predicates. Our analysis also stores the
information provided by the user, such as the sources of tainting and the declassifiers, as
relations in the EDB.

Following the pre-processing step a simple pointer analysis can be expressed entirely in
Datalog as a transitive closure computation:

VarPointsTo(?heap, ?var) <- AssignHeapAllocation(?heap, ?var).
VarPointsTo(?heap, ?to) <- Assign(?to, ?from), VarPointsTo(?heap, ?from).

This simple Datalog program consists of two rules. The first one states that, upon the
allocation of a heap object, the variable that the heap object is assigned to may point to
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that heap object. The second one states that, upon assigning the value of a variable to
another variable, the second variable may also point to any heap object that the first one
may point to. Particularly, the second rule states that if for some values of ?heap, ?from
and ?to, both Assign(?to, ?from) and VarPointsTo(?heap, ?from) are true, then it can
be inferred that VarPointsTo(?heap, ?to) is also true.

2.2 Context Sensitivity in Doop

A very useful tool in improving the precision of an analysis is context sensitivity. That
is the usage of context information for qualifying the program variables and possibly the
heap objects, thereby collapsing the information produced by the analysis over all possible
executions that result in the same context and separating that information for different
contexts. The main flavors of context sensitivity are call-site-sensitivity, object-sensitivity
and type-sensitivity. Context sensitivity may also be used with a certain depth, for example
discerning between the last n call-sites [12].

Call-site sensitivity uses method call-sites as context elements, providing the analysis with
a different context for every call-site in the program. This way, if for instance a method is
called from several locations that result in different points-to sets for a variable inside that
method, these points-to sets will be separated using the call-site as a qualifier, instead
of considering the variable to be able to point to any of them during an invocation of the
method, as would happen in a context-insensitive analysis.

Object-sensitivity qualifies contexts using the object allocation site the current method was
invoked on (essentially the this object). Thus, the context of two invocations may differ
even if their call-site is the same, if the object the method was called on was allocated in
different places.

Type-sensitivity is similar to object-sensitivity but results in the merging of all allocation
sites in methods declared in the same class. This yields a more scalable analysis at the
cost of some precision.

void foo() {
Object a = new Object();
a = id(a);
Object b = new Object();
b = id(b);

}

Object id(Object o) {
Object ret = o;
return ret;

}

In the example above, the result of a context-insensitive analysis would contain a single
points-to set for the variable ret in the method id, containing both the objects that a and
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b point to. On the other hand, with a call-site-sensitive analysis, we would get a different
points-to set for each invocation of id, one containing only the object pointed to by a and
the other containing the object pointed to by b.

2.3 Slicing

Program slicing [13] is a well-known approach for detecting the impact of pieces of code
to the rest of the program. A slice of a program with respect to a specific variable, called
the slicing criterion, is the subset of instructions of the program that can affect the value
of that variable at a specific point of the program. The calculation of an inter-procedural
slice is based on the notion of the System Dependence Graph (SDG), which is described
in the next chapter). This analysis essentially performs a forward slice, beginning from a
set of instructions specified by the user and finding an overapproximation of the subset of
the original program that may be affected either directly or indirectly by those instructions.

Nikolaos Filippakis 14
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3. DEPENDENCE ANALYSIS
In this chapter, we describe the analysis that computes an over-approximation of the in-
structions affected by a set of starting instructions.

3.1 Program Dependence Graphs

We begin by describing the Program Dependence Graph (PDG), which is instrumental to
our computing of intra-procedural dependences.

A Program Dependence Graph, first proposed by Ferrante et al. [2], is a representation
of a single method in a computer program that makes explicit the data and control de-
pendences between instructions in that method, while abstracting away details such as
the ordering of the instructions in the method. The PDG is expressed as a graph, where
the nodes are statements and the edges represent both the values each statement de-
pends on and the control conditions on which the statement’s execution depends. It is,
effectively, a combination of a Data Dependence Graph and a Control Flow Graph. As
the paths in a PDG express the information flows within a program, they are a great fit for
our purposes.

Dependences are the results of two separate effects [3]. A data dependence formally
exists between two statements if a variable appearing in one statement may have an
incorrect value if the two statements are reversed. For example, in

a = 1
b = a+1

the second statement depends on the first one, as it defines the variable ’a’ which is then
used by the second statement. Reversing the two would lead into a different result. This
is also called a direct dependence.

The other type of dependence is control dependence, and it arises when a statement
controls another statement’s execution. For example, in

if (a == 0)
b = 1

while the second instruction is not directly dependent on the first instruction, as if it is
executed the result will always be the same, it may or may not be executed depending on
the first instruction. This type of dependence is called control or indirect dependence.

An example PDG is shown in figure 3.1.
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if (a > 0)
{

b = 1
}
else
{

b = 2
}
c = b*2

if (a > 0)

b = 1 b = 2

c = b*2

Control dependences

Data dependences

Figure 3.1: A simple piece of code and its PDG representation

3.2 Control Dependence

In order to formally define control dependence, we need the terms of Control Flow Graphs
(CFG) and Post-Domination [5].

A Control Flow Graph is a directed graph augmented with a unique entry node START and
a unique exit node STOP. Each node has at most 2 successors, and for each node N there
is at least one path from START to N and from N to STOP. The nodes represent executable
statements, while the edges represent potential control flow (figure 3.2).

while (i > 0) // S1
{

if (cond(i)) // S2
{

x = x * 2 // S3
}
i-- // S4

}
y = 10 // S5

START

while (i > 0)

if (cond(i))

x = x * 2 i–

y = 10

STOP

T

T F

F

Figure 3.2: A simple CFG

We say that a node V is post-dominated by a node W if every directed path from V to STOP
contains W. In the above example, the set of all pairs of statements (A, B) such that A is
post-dominated by B, is S = {(S1, S5), (S2, S1), (S2, S4), (S2, S5), (S3, S1),
(S3, S4), (S3, S5), (S4, S1), (S4, S5)}.
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In our analysis, we compute post-domination in terms of basic blocks instead of state-
ments for efficiency. This is possible because as control dependence concerns control
statements and each basic block has at most one control statement by definition, we can
think of each basic block as one big statement. We also use a CFG that doesn’t contain
the START and STOP nodes. We express post-domination in just 3 rules (figure 3.3), 2 of
which compute non-post-domination:

1. Nothing post-dominates a block that is a leaf on the CFG, as the only node that could
come after a leaf is the STOP node.

2. If a block A has an edge in the CFG to a block B, and block B is not post-dominated
by a block C, then block A is also not post-dominated by block C, as there is a path
from A through B to STOP that does not pass through C.

3. The third rule simply uses negation to finally calculate post-domination.

Intuitively, if a block A is not post-dominated by B, there is a path from A to STOP that doesn’t
contain B. We calculate for each block the set of other blocks that don’t post-dominate it.
For each CFG leaf, that set is all the other blocks, by definition of the CFG.

Inductively, we propagate this set to each block’s ancestors. Whenever we propagate it
to an ancestor, we remove than ancestor from the set and propagate the resulting set
further. Finally, if we cannot reach a block A with another block B in our set by any path,
this means that A is, in fact, post-dominated by B, as we didn’t find a path from STOP to A
that didn’t contain B.

DoesNotPostDominate(?postDomCandidate , ?insn) <-
BBHeadInMethod(?postDomCandidate , ?method),
CFGLeaf(?insn, ?method),
?postDomCandidate != ?insn.

DoesNotPostDominate(?postDomCandidate , ?insn) <-
DoesNotPostDominate(?postDomCandidate , ?otherInsn),
MayPredecessorBBModuloThrow(?insn, ?otherInsn),
?insn != ?postDomCandidate.

PostDominates(?dominator , ?insn) <-
SameMethodBBHeads(?dominator , ?insn),
!DoesNotPostDominate(?dominator , ?insn).

Figure 3.3: The Datalog code for determining post-domination

The formal definition of control dependence [2] is that, given the nodes X and Y in a CFG,
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Y is control dependent on X iff

• there exists a directed path from X to Y with any Z in P post-dominated by Y and

• X is not post-dominated by Y

For control dependences, we use both basic blocks and statements. Specifically, any
control statement will be the last statement in its basic block and it will have 2 successors:
The first statement of the next basic block and the control statement target, which will also
be the first statement of a basic block. Since basic blocks are represented internally by
their first statement, this is enough to express that a basic block has a control dependence
on a statement.

Control dependence is expressed in 2 Datalog rules (figure 3.4). The first one forms the
basis, finding all pairs of blocks and statements (A, B) where block B is a successor of
statement A in the CFG but does not post-dominate it and is, therefore, control dependent
on A.

The second rule expresses that if a block A post-dominates a block B which is control de-
pendent on statement C, but A does not post-dominate C, then A is also control dependent
on C. This inductive step follows from the formal definition, since B will only be control de-
pendent on C if there is a path from C to B with B post-dominating all nodes in that path
but not C. As post-domination is transitive, there will also be a path from C to A with A
post-dominating all nodes in that path but not C.

IntraProceduralBlockControlDep(?nextBlock , ?prev) <-
BasicBlockBegin(?nextBlock),
MaySuccessorModuloThrow(?nextBlock , ?prev),
BasicBlockHead[?prev] = ?prevBlockStart ,
!PostDominates(?nextBlock , ?prevBlockStart).

IntraProceduralBlockControlDep(?nextBlock , ?prev) <-
PostDominates(?nextBlock , ?interm),
BasicBlockHead[?prev] = ?prevBlockStart ,
!PostDominates(?nextBlock , ?prevBlockStart),
IntraProceduralBlockControlDep(?interm, ?prev).

Figure 3.4: The Datalog code for determining intra-procedural control dependence

3.3 Intra-procedural Data Dependence

Data dependences can be further divided into true (read-after-write), anti (write-after-read)
and output (write-after-write) dependences [1]. The latter two mostly concern the way the
compiler can optimize the code: If two instructions write to the same variable, or if an
instruction reads from a variable and then another instruction writes to the same variable,
then the compiler should not attempt to reorder these instructions as the program will then
behave differently. However, we do not care about these kind of dependences as much,
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as we are simply trying to determine the places where information may flow.

Since we only care about data flow dependences, we define intra-procedural data depen-
dences in terms of def-use chains [8].

A def-use chain identifies all possible uses of a variable, for each definition of that variable.
This way, any information about the variables upon definition is directly propagated to all
of their uses.

In Soot’s representations for Java, each instruction may define up to one variable and use
up to two. A definition of a variable is the statement that assigns a value to the variable,
while a use is any statement that accesses the variable’s value. Therefore, in the Data
Dependence Graph, statements are nodes and def-use chains are the edges (figure 3.5).

a = 1
b = a + 1
if (b < 10)
{

c = a + b
}

a = 1

b = a + 1

if (b < 10)

c = a + b

Figure 3.5: A simple DDG

A definition of a variable X is said to reach a use of that variable X if there exists a control
flow path from the definition to the use without an intermediate definition of X.

Using Soot’s Shimple representation [11], which uses an SSA form, this becomes easy
to calculate. SSA introduces ϕ-nodes that combine def-use chains that have the same
destination [7]. Using SSA, each variable is only defined once and may be used multiple
times, so creating a DDG edge is simply a matter of finding the uses for each definition of
a variable. The Datalog code for expressing this is simple as well (figure 3.6).
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IntraProceduralDataDep(?prev, ?next) <-
InstructionDefinesVar(?prev, ?var),
InstructionUsesVar(?next, ?var).

/* Var is in instruction 's use set */
InstructionUsesVar(?instruction , ?var) <-

AssignLocal:From[?instruction] = ?var ;
AssignOper:From(?instruction , ?var) ;
AssignCast:From[?instruction] = ?var ;
AssignInstanceOf:From[?instruction] = ?var ;
If:Var(?instruction , ?var) ;
VirtualMethodInvocation:Base[?instruction] = ?var ;
Switch:Key[?instruction] = ?var ;
ActualParam[_, ?instruction] = ?var ;
ReturnNonvoid:Var[?instruction] = ?var ;
Throw:Var[?instruction] = ?var ;
LoadArrayIndex:Base[?instruction] = ?var ;
StoreStaticField:From[?instruction] = ?var ;
StoreInstanceField:From[?instruction] = ?var ;
StoreArrayIndex:From[?instruction] = ?var ;
ArrayInsnIndex[?instruction] = ?var.

/* Var is in instruction 's def set */
InstructionDefinesVar(?instruction , ?var) <-

AssignInstruction:To[?instruction] = ?var ;
LoadArrayIndex:To(?instruction , ?var) ;
StoreArrayIndex:Base(?instruction , ?var) ;
LoadInstanceField:To[?instruction] = ?var ;
LoadStaticField:To[?instruction] = ?var ;
AssignReturnValue[?instruction] = ?var ;
ReflectiveAssignReturnValue[?instruction] = ?var.

Figure 3.6: The Datalog code for determining intra-procedural data dependence

3.4 The System Dependence Graph

Having defined the CFG and DDG, the PDG is simply the union of the two (figure 3.7). By
creating the PDG, we can traverse it beginning from any statement to perform a forward
slice starting on that statement.

However, the PDG representation still only represents a single method. In order to repre-
sent an entire program, we may link the PDGs of each method into a central dependence
graph, called the System Dependence Graph [4] (figure 3.8).

In the literature, to facilitate data dependence due to the passing of parameters to a
method, actual-in and out and formal-in and out vertices are used. The formal-in ver-
tices represent the values passed to the method invocation, while the actual-in vertices
represent the parameters as used by the method. Similarly for return values. These in
and out vertices are then connected as appropriate by edges on the SDG.

We skip this step and instead simply connect the definition of a variable passed as an ar-
gument to amethod invocation and each use of that variable inside themethod, essentially
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IntraProceduralControlDep(?next, ?prev) <-
IntraProceduralBlockControlDep(?nextBlock , ?prev),
BasicBlockHead[?next] = ?nextBlock.

IntraProceduralDependencyBase(?next, ?prev) <-
IntraProceduralDataDep(?prev, ?next) ;
IntraProceduralControlDep(?next, ?prev).

/* Intra procedural dependency - base case */
IntraProceduralDependency(?prev, ?next) <-

IntraProceduralDependencyBase(?next, ?prev).

/* Intra procedural dependency step */
IntraProceduralDependency(?prev, ?next) <-

IntraProceduralDependency(?prev, ?inter),
IntraProceduralDependencyBase(?next, ?inter).

Figure 3.7: The Datalog code for creating the PDG edges

forming an inter-procedural def-use chain for each argument.

As Java is an object-oriented language, we have to take into account polymorphism and
inheritance whenever we encounter a method invocation. We have to be conservative for
our analysis, so whenever we encounter a method invocation we have to consider that
all of the methods that it might resolve to will be executed. This means that, if due to
control flow a variable may point to different object types and a method is invoked upon
that variable, we have to consider that all of the different possible implementations of that
method will be executed. Thankfully, Doop takes care of this matter for us with its points-to
analysis, which can tell us the possible allocation sites for each variable. Using Doop’s
CallGraphEdge predicate we can find, for each call site, all possible methods that can be
called. In this way, we also leverage Doop’s use of contexts for its points-to analysis.

3.5 Heap object dependences

In order to detect heap-carried dependences, we again use Doop’s points-to analysis
in order to determine which objects a statement may access. This part of the analysis
is field-sensitive and context-sensitive, however it is not flow-sensitive across different
methods. This means that, while a load may never come after a store during execution,
that load may still be considered to depend on the store. While this introduces some loss
of precision, many programs that would be considered for dependence analysis, such
as web applications, are constantly looping and therefore this precision would make little
difference. The downside is that we cannot consider any method to declassify an object
field as we cannot be sure about the order of loads and stores.

Points-to analysis is also used for arrays, however array indices are not considered, so
once a tainted variable is stored in an array, the entire array is considered tainted. This is
because constant array indices are rarely used in Java, and we cannot reliably infer the
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value of a variable index during runtime using static analysis.

Static object fields may also become tainted. Points-to analysis is not used here, as each
static field has exactly one instance.

When any of the above heap-carried dependences is detected, an edge is added to the
SDG from the statement that stores the possible tainted value to each statement that may
load that value, similarly to how we added edges for def-use chains for intra-procedural
data dependences. The difference, however, is that a def-use chain connects all the
uses to the last definition, while heap-carried dependences are flow insensitive, and there-
fore all uses (loads) are connected to all definitions (stores). Besides the reasons stated
above, another reason is that two methods that access the same parts of the heap may
be executed in parallel, while a method invocation’s statements will always be executed
sequentially. Therefore, in order to be conservative, we don’t attempt to use any kind of
flow sensitivity on the inter-procedural level.

3.6 Reflection

The Doop framework also supports reflection to a certain degree. It fully supports reflec-
tive entities created using constant strings. Also, it tries to reason about the type of a
reflective entity for reflective calls that use non-constant strings by trying to match con-
stant substrings with potential class names, as well as using the type casts of reflective
entities at their use sites as hints about their type. [9] Reflective calls and field operations
are integrated into the appropriate relations, such as VarPointsTo, CallGraphEdge and
LoadHeapInstanceField.

Because of this, our reflection benefits simply by enabling reflection handling, our analysis
benefits by it. However, in order to handle e.g. static stores/loads and reflective call
parameters, we have to introduce new rules. Therefore, our analysis should be able to
soundly detect a large subset of reflection-introduced dependencies, such as those used
in major Java frameworks.

3.7 Declassification

Often, a system needs some way to leak (i.e., declassify) some classified information,
or process some untrusted data in a sensitive manner. For example, some user-supplied
datamay be considered sensitive up to the point that they reach some sanitizationmethod,
after which the data may be inserted into a database. This sanitization method may be
considered a declassifier [14]. In our analysis, a user may supply the methods or state-
ments that will be considered declassifiers. By doing that, the appropriate edges through
which information flows to these methods or statements will be removed from the SDG,
preventing the propagation of the tainting via these edges when the SDG is traversed.
Note, however, that the issue with heap-carried dependences still applies: Since we can’t
determine the order in which heap loads and stores happen, a declassifier method won’t
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be able to un-taint a tainted field or array. Instead, a declassifier method may take some
tainted arguments and return an untained value.

For an illustration, below is an example of how declassification affects one of our analysis
rules. An instruction that loads a tainted heap location, represented by the TaintedLoad
predicate, will only be considered dependent on one of the taint sources if it is not in a
declassification method, or explicitly declared to be a secure instruction.

/* Mark dependent loads as dependent instructions across all contexts */
DependentInstruction(?ctx, ?insn) <-

TaintedLoad(?ctx, ?insn),
!SecureMethod(Instruction:Method[?insn]),
!SecureInstructionInner(?insn).

Figure 3.8: An example of declassification
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4. RESULTS
In order to evaluate our analysis, we ran it on the Securibench Micro 1.08 benchmark suite
[15]. It contains test cases for different kinds of taint propagation, such as through the heap
or through sessions, as well as a test group concerning declassifiers (Sanitizers group). In
each test case, there are specific taint sources (usually a call to HttpServletRequest.getParameter())
as well as several sinks (usually calls to System.out.println()), for which it should be
determined if the input from the source affects the output. The results are shown below.

Test Group Detected False Positives
Aliasing 12/12 0
Arrays 9/9 5
Basic 61/63 2
Collections 14/14 5
Data Structures 5/5 0
Factories 3/3 0
Inter 16/16 2
Pred 5/5 3
Reflection 4/4 0
Sanitizers 3/4 0
Session 3/3 1
Strong Update 1/1 2
Total 136/139 20

We detected a total of 136 out of 139 vulnerabilities ( 98%). The same Datalog rules were
mostly used for the test cases. The biggest exceptions were the “Sanitizers” test cases,
which each introduced a different declassification method and therefore needed additional
rules.

Many of the false positives are due to the fact that we don’t tell apart different array indices,
and heap-carried dependences are flow-insensitive.

We have also used the analysis on several of the larger programs in the Securibench
benchmark suite [16] and we were able to track the parts of the code where user-supplied
information, either through parameters, headers or cookies, were accessed during sensi-
tive operations, such as writes to databases or files. This demonstrates the scalability of
our analysis as the entire generation and traversal of the SDG, along with the underlying
points-to analysis, took at most about 10 minutes. However, due to a lack of additional
information on those programs and their vulnerabilities, we were uncertain of how many
of these sinks were, in fact, security issues.
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class Obj {
int x;
int y;

}

int add(int x, int y) {
int r = x + y;
return r;

}

void main() {
Obj o = new Obj();
input(o);
int x = o.x;
int y = o.y;
int r = add(x, y);
print(r);

}

void input(Obj o) {
int x = readInt();
int y = readInt();
o.x = x;
o.y = y;

}

r=x+y

return r

o = new Obj()

input(o)

x = o.x

y = o.y

r = add(x,y)

print(r)

x = readInt()

y = readInt()

o.x = x

o.y = y

add main input

intra-procedural dependence

inter-procedural dependence

heap-carried dependence

Figure 3.9: A simple program and its SDG representation
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5. RELATED WORK
A similar tool that also uses the PDG is JOANA [17, 18], which comes as an add-on for the
Eclipse IDE. It is object, flow and context-sensitive as well and is used for analyzing Java
bytecode for noninterference and information flow control. It can also detect leaks that
result from the interleaving of different threads. However, JOANA requires annotations to
be present in the code during development. Like the other tools mentioned here, it does
not handle reflection.

bddbddb [19] is a similar framework that uses Datalog for expressing context-sensitive
analyses, however it uses BDDs instead of explicitly representing its relations as Doop
does. While BDDs are a more advanced data structure than the b-trees used in Doop,
thanks to Doop’s declarative nature and explicit representation, with some simple en-
hancements a lot of redundancy is avoided, resulting in better performance and scalability
[20].

Pidgin [21] uses PDGs for representing the flows of information found in Java bytecode
and uses a custom PDG query language to allow users to express their own application-
specific security policies, without interfering with the development of the program. Its PDG
construction is based on the WALA framework.

FlowDroid [22] analyzes and detects tainted data flows within an Android apk file by using
its knowledge about the Android application lifecycle. Its analysis is context, flow, field
and object-sensitive and it can detect data flows from a set of sources to a set of sinks.
Similarly to Doop, it uses the Soot framework and its Jimple IR [23].
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6. CONCLUSIONS
Using Datalog and the Doop framework, we were able to express a compact and succinct
dependence analysis, by using PDGs and SDGs to represent information and control
flow within a program. In this way, we were able to combine the power of the PDG with
the expressiveness of the Datalog language, as well as leverage the scalable points-to
analysis offered by the Doop framework. By using the Doop framework, we were also able
to decouple the implementation of the analysis from the context chosen for the points-to
analysis. Also, as a result, our analysis is scalable to larger applications, thanks to Doop’s
explicit representation of relations instead of the traditionally used BDDs.

Users can easily define taint sources and declassifiers for the analysis and disable parts
of the analysis such as the Control Flow Graph construction or change the context used.
They can then query the results using the Datalog language in order to only show relevant
information.

We used the Securibench Micro [15] framework to evaluate the analysis and compare it
to similar methods in the field, and we were able to detect about 98% of the vulnerabilities
it introduced with only a few false positives. The same set of rules was used for the
benchmarks, except for the Sanitizer classes which also introduced some declassification
methods.
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ABBREVIATIONS

PDG Program Dependence Graph
SDG System Dependence Graph
CFG Control Flow Graph
DDG Data Dependence Graph
IR Intermediate Representation
SSA Static Single Assignment
BDD Binary Decision Diagram
EDB Extensional Database
IDB Intentional Database
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APPENDIX A: DEPENDENCE ANALYSIS CODE

#include "../2-object-sensitive+heap/analysis.logic"
#include "../../addons/cfg-analysis/rules.logic"

/* Made for optimizing TaintedLoad */
AllCtxDependentStoreHeapFld(?fld, ?hctx, ?heap) <-

DependentInstruction(?ctx, ?dependent),
StoreFldTo(?var, ?fld, ?dependent),
VarPointsTo(?hctx, ?heap, ?ctx, ?var).

/* An instruction that loads a field that a dependent instruction wrote to
*/

TaintedLoad(?ctx, ?insn) <-
AllCtxDependentStoreHeapFld(?fld, ?hctx, ?heap),
LoadFldFrom(?insn, ?var2, ?fld),
VarPointsTo(?hctx, ?heap, ?ctx, ?var2).

/* Similarly , find tainted static loads */
TaintedLoad(?ctx, ?insn) <-

DependentInstruction(_, ?prev),
FieldInstruction:Signature[?prev] = ?fld,
StoreStaticField:Insn(?prev),
LoadStaticField:Insn(?insn),
FieldInstruction:Signature[?insn] = ?fld,
ReachableContext(?ctx, Instruction:Method[?insn]).

/* Made for optimizing TaintedLoad */
LoadArrayHeapInsn(?ctx, ?insn, ?hctx, ?heap) <-

LoadArrayIndex:Base[?insn] = ?var,
VarPointsTo(?hctx, ?heap, ?ctx, ?var).

/* An instruction that loads data from an array that a dependent
instruction wrote to */

TaintedLoad(?loadCtx, ?insn) <-
DependentInstruction(?storeCtx, ?dependent),
StoreArrayIndex:Base[?dependent] = ?var1,
LoadArrayHeapInsn(?loadCtx, ?insn, ?hctx, ?heap),
VarPointsTo(?hctx, ?heap, ?storeCtx, ?var1).

/* Find tainted reflective static loads */
TaintedLoad(?ctx, ?insn) <-

DependentInstruction(?prevCtx, ?prevInsn),
InstructionDefinesVar(?prevInsn, ?prevVar),
ReflectiveStoreStaticField(?fld, ?prevCtx, ?prevVar),
ReflectiveLoadStaticField(?ctx, ?nextVar, ?fld),
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InstructionUsesVar(?insn, ?nextVar).

/* Data dependency between the formal and actual param */
CallReturnDependency(?nextCtx, ?nextInsn, ?prevCtx, ?prevInsn) <-

FormalParam[?paramIndex , ?meth] = ?formalParam ,
ActualParam[?paramIndex , ?callsite] = ?actParam,
CallGraphEdge(?prevCtx, ?callsite, ?nextCtx, ?meth),
InstructionDefinesVar(?prevInsn, ?actParam),
InstructionUsesVar(?nextInsn, ?formalParam),
!SecureMethod(?meth).

/* Data dependency between the formal and actual param in a reflective
invocation */

CallReturnDependency(?nextCtx, ?nextInsn, ?prevCtx, ?prevInsn) <-
FormalParam[_, ?meth] = ?formalParam ,
ReflectiveActualParams[?callsite] = ?actParams ,
ReflectiveCallGraphEdge(?prevCtx, ?callsite, ?nextCtx, ?meth),
StoreArrayIndex:Base(?prevInsn, ?actParams),
InstructionUsesVar(?nextInsn, ?formalParam),
!SecureMethod(?meth).

/* Data dependency between the return instruction and the caller */
CallReturnDependency(?nextCtx, ?nextInsn, ?prevCtx, ?prevInsn) <-

ReturnNonvoid:Insn(?prevInsn),
Instruction:Method[?prevInsn] = ?meth,
!SecureMethod(Instruction:Method[?nextInsn]),
CallGraphEdge(?nextCtx, ?nextInsn, ?prevCtx, ?meth).

/* Dependency source */
DependentInstruction(?ctx, ?insn) <-

Instruction:Method[?insn] = ?meth,
ReachableContext(?ctx, ?meth),
DependencySourceInstruction(?insn).

/* All kinds of intra-procedural dependency */
DependentInstruction(?ctx, ?insn) <-

DependentInstruction(?ctx, ?prevInsn),
IntraProceduralDependencyOpt(?insn, ?prevInsn),
!SecureInstructionInner(?insn).

/* Mark dependent loads as dependent instructions across all contexts */
DependentInstruction(?ctx, ?insn) <-

TaintedLoad(?ctx, ?insn),
!SecureMethod(Instruction:Method[?insn]),
!SecureInstructionInner(?insn).
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/**
* If an instruction is inter-procedurally dependent on a dependent

instruction
* mark that instruction as dependent in its context
*/

DependentInstruction(?ctx, ?insn) <-
DependentInstruction(?prevCtx, ?prevInsn),
CallReturnDependency(?ctx, ?insn, ?prevCtx, ?prevInsn).

/**
* If a method call has a control dependency on an instruction , every

instruction
* in that method is control dependent on that instruction
*/

DependentInstruction(?ctx, ?insn) <-
DependentInstruction(?prevCtx, ?prevInsnControlDep),
IntraProceduralControlDep(?prevInsn, ?prevInsnControlDep),
CallGraphEdge(?prevCtx, ?prevInsn, ?ctx, ?meth),
Instruction:Method[?insn] = ?meth.

SecureInstructionInner(?insn) <- SecureInstruction(?insn).

/* An instruction that calls a secure method is also secure */
SecureInstructionInner(?insn) <-

CallGraphEdge(_, ?insn, _, ?meth),
SecureMethod(?meth).

/* Insn stores to base.fld */
StoreFldTo(?base, ?fld, ?insn) <-

FieldInstruction:Signature[?insn] = ?fld,
StoreInstanceField:Base[?insn] = ?base.

/* Insn stores to base.fld by reflection */
StoreFldTo(?var, ?fld, ?insn) <-

ReflectiveStoreField(?insn, ?fld, _, _),
!FieldModifier("static", ?fld),
java:lang:reflect:Field:set:base[?insn] = ?var.

/* Insn loads from base.fld */
LoadFldFrom(?insn, ?base, ?fld) <-

FieldInstruction:Signature[?insn] = ?fld,
LoadInstanceField:Base[?insn] = ?base.

/* Insn loads from base.fld by reflection */
LoadFldFrom(?insn, ?var, ?fld) <-

ReflectiveLoadField(?insn, _, _, ?fld),
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!FieldModifier("static", ?fld),
java:lang:reflect:Field:get:base[?insn] = ?var.

/* Var is in instruction 's use set */
InstructionUsesVar(?instruction , ?var) <-

AssignLocal:From[?instruction] = ?var ;
AssignOper:From(?instruction , ?var) ;
AssignCast:From[?instruction] = ?var ;
AssignInstanceOf:From[?instruction] = ?var ;
If:Var(?instruction , ?var) ;
VirtualMethodInvocation:Base[?instruction] = ?var ;
Switch:Key[?instruction] = ?var ;
ActualParam[_, ?instruction] = ?var ;
ReturnNonvoid:Var[?instruction] = ?var ;
Throw:Var[?instruction] = ?var ;
LoadArrayIndex:Base[?instruction] = ?var ;
StoreStaticField:From[?instruction] = ?var ;
StoreInstanceField:From[?instruction] = ?var ;
StoreArrayIndex:From[?instruction] = ?var ;
ArrayInsnIndex[?instruction] = ?var.

/* Var is in instruction 's def set */
InstructionDefinesVar(?instruction , ?var) <-

AssignInstruction:To[?instruction] = ?var ;
LoadArrayIndex:To(?instruction , ?var) ;
StoreArrayIndex:Base(?instruction , ?var) ;
LoadInstanceField:To[?instruction] = ?var ;
LoadStaticField:To[?instruction] = ?var ;
AssignReturnValue[?instruction] = ?var ;
ReflectiveAssignReturnValue[?instruction] = ?var.

/* An instruction is a CFG leaf if it ends with a throw */
CFGLeaf(?headInsn , ?method) <-

Throw(?insn, _),
BasicBlockHead[?insn] = ?headInsn,
Instruction:Method[?headInsn] = ?method.

/* An instruction is a CFG leaf if it ends with a return */
CFGLeaf(?headInsn , ?method) <-

ReturnInstruction(?insn),
BasicBlockHead[?insn] = ?headInsn,
Instruction:Method[?headInsn] = ?method.

/* Nothing post-dominates a CFG leaf */
DoesNotPostDominate(?postDomCandidate , ?insn) <-
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BBHeadInMethod(?postDomCandidate , ?method),
CFGLeaf(?insn, ?method),
?postDomCandidate != ?insn.

/**
* If A may come before B and C does not post-dominate B,
* then C does not post-dominate A either, as after A the execution may go

to B.
* This is a lot more intuitive when one thinks that "DoesNotPostDominate(a

,b) =
* exists path from b to some exit of the method, such that the path skips

a".
*/

DoesNotPostDominate(?postDomCandidate , ?insn) <-
DoesNotPostDominate(?postDomCandidate , ?otherInsn),
MayPredecessorBBModuloThrow(?insn, ?otherInsn),
?insn != ?postDomCandidate.

/* If we can't prove A does not post-dominate B with the other rules, then
A post-dominates B.

* The definition is such that we always get reflexivity: PostDominates(x,x
).

*/
PostDominates(?dominator , ?insn) <-

SameMethodBBHeads(?dominator , ?insn),
!DoesNotPostDominate(?dominator , ?insn).

/* An intra procedural data dep exists when an instruction uses a var
defined by another one */

IntraProceduralDataDep(?prev, ?next) <-
InstructionDefinesVar(?prev, ?var),
InstructionUsesVar(?next, ?var).

/* This block may follow an instruction , but it doesn't postdominate it.
* Invariant of this relation: ?prev is the
* last instruction of a BB, ?nextBlock is the first of a different one.
*/

IntraProceduralBlockControlDep(?nextBlock , ?prev) <-
BasicBlockBegin(?nextBlock),
MaySuccessorModuloThrow(?nextBlock , ?prev),
BasicBlockHead[?prev] = ?prevBlockStart ,
!PostDominates(?nextBlock , ?prevBlockStart).

/**
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* This block postdominates a block that depends on an instruction
* which this block doesn't postdominate
*/

IntraProceduralBlockControlDep(?nextBlock , ?prev) <-
PostDominates(?nextBlock , ?interm),
BasicBlockHead[?prev] = ?prevBlockStart ,
!PostDominates(?nextBlock , ?prevBlockStart),
IntraProceduralBlockControlDep(?interm, ?prev).

/* Same as above, but per instruction */
IntraProceduralControlDep(?next, ?prev) <-

IntraProceduralBlockControlDep(?nextBlock , ?prev),
BasicBlockHead[?next] = ?nextBlock.

/* Intra procedural dependency base */
IntraProceduralDependencyBase(?next, ?prev) <-

!SecureInstructionInner(?next),
(IntraProceduralDataDep(?prev, ?next) ;
IntraProceduralControlDep(?next, ?prev)).

/* Intra procedural dependency - base case */
IntraProceduralDependency(?prev, ?next) <-

IntraProceduralDependencyBase(?next, ?prev).

/* Intra procedural dependency step */
IntraProceduralDependency(?prev, ?next) <-

IntraProceduralDependency(?prev, ?inter),
IntraProceduralDependencyBase(?next, ?inter).

/* Inverted for optimization */
IntraProceduralDependencyOpt(?next, ?prev) <- IntraProceduralDependency(?

prev, ?next).
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