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ABSTRACT

In the era of the widespread usage of mobile devices, the requirement for more lightweight
and faster applications continues to exist, aiming for better system resources utilization.
In order to achieve this, many tools have been developed for optimizing applications as
much as possible, with the aid of program analysis. In the case of Android applications,
the main tool used is the ProGuard optimizer. Given configuration files, either default or
defined by the programmer, ProGuard performs optimizations at the bytecode level.

The default configurations are quite simple and conservative, thus leading to missing
chances for further optimizations. Moreover, many applications usually come with library
code, or use dynamic language features, such as reflection, for which further configuration
may be required by the developer.

We present an attempt to automate the generation of ProGuard configurations, using Doop
framework: a Java static analysis framework. We include an experimental evaluation of
the various configurations produced by the Doop framework, against the default suggested
configurations.

SUBJECT AREA: Static Program Analysis and Program Optimization

KEYWORDS: static program analysis, program optimization, doop framework,
proguard, reflection



ΠΕΡΙΛΗΨΗ

Στην εποχή της ευρείας χρήσης των κινητών συσκευών, η ανάγκη για ελαφρύτερες και
ταχύτερες εφαρμογές εξακολουθεί να υπάρχει, με σκοπό την καλύτερη αξιοποίηση των
πόρων του συστήματος. Προκειμένου να επιτευχθεί αυτό, έχουν αναπτυχθεί διάφορα ερ-
γαλεία για τη βελτιστοποίηση των εφαρμογών όσο το δυνατόν περισσότερο, μέσω της
ανάλυσης προγραμμάτων. Στην περίπτωση των Android εφαρμογών, το κύριο εργαλείο
που χρησιμοποιείται είναι ο βελτιστοποιητής ProGuard. Με βάση είτε κάποια προεπιλεγ-
μένα αρχεία ρυθμίσεων, είτε κάποια που ορίζονται από τον προγραμματιστή, το ProGuard
εκτελεί βελτιστοποιήσεις σε επίπεδο bytecode.

Οι προεπιλεγμένες ρυθμίσεις, είναι αρκετά απλές και συντηρητικές, με αποτέλεσμα να
χάνονται κάποιες ευκαιρίες για περαιτέρω βελτιστοποιήσεις. Επιπλέον, πολλές εφαρμογές
συχνά εμπεριέχουν κώδικα βιβλιοθηκών, ή κάνουν χρήση δυναμικών χαρακτηριστικών
της γλώσσας, όπως η ανάκλαση, για τα οποία πιθανώς χρειάζονται περαιτέρω ρυθμίσεις,
απο τον προγραμματιστή.

Παρουσιάζουμε μια προσπάθεια αυτοματοποίησης της παραγωγής των ρυθμίσεων του
ProGuard, χρησιμοποιώντας το Doop: ένα framework στατικής ανάλυσης προγραμμάτων
Java. Συμπεριλαμβάνουμε μια πειραματική σύγκριση των διαφόρων ρυθμίσεων που πα-
ράγονται από το Doop, έναντι των προτεινόμενων προεπιλεγμένων ρυθμίσεων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Στατική ανάλυση και βελτιστοποίηση προγραμμάτων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: στατική ανάλυση προγραμμάτων, βελτιστοποίηση προγραμμά-
των, doop framework, proguard, ανάκλαση
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PREFACE

This project was developed in Athens, Greece between May 2017 and October 2017. At
its initial stages, it was important to get familiar with basic Android application develop-
ment, ProGuard for optimizing Android applications and reflection. Consequently, it was
essential to understand how the Doop framework performs static analysis, and how to use
it in order to produce ProGuard specifications. Yet, the most important part was to exper-
iment with the various configurations produced by Doop framework, besides the default
configurations proposed by Android, and application specific ones.



Integration of static analysis results with ProGuard optimizer for Android applications

1. INTRODUCTION

In the context of Computer Science, the task of analyzing a program aids in inferring
information regarding every execution of the program, without actually executing it. Pointer
or Points-to Analysis [1] is a static program analysis that aims for the computation of an
approximation of the set of objects that a variable or expression may point to. Doop [2] is a
static Analysis framework that performs Pointer Analysis for Java programs, declaratively
using the Datalog language.

Optimization tools, such as the ProGuard optimizer [3], encapsulate a set of analyses or
may utilize other static analysis frameworks’ results, in order to transform a program for
the best possible performance and system resources utilization. This is a challenging task
if dynamic language features like reflection are used within a program, because of the
static nature of the analyses. Modeling all possible behaviors of reflection operations is
not practically achievable in the context of static analyses. Thus static analysis frameworks
attempt to approximate the modeling of these behaviors or consider reflection to be absent
for their analyses [4].

In this thesis, we present an approach for enriching a ProGuard configuration with Doop’s
static analysis results, along the lines of automating the production of such configurations,
for Android applications, by considering the set of reachable methods of a program.

The rest of the thesis is organized as follows:

1. In Chapter 2 we give an overview of Android applications, ProGuard, Reflection, and
Pointer Analysis in the Doop framework.

2. In Chapter 3 we describe how the Doop framework was used in order to produce
specifications for ProGuard configuration.

3. In Chapter 4 we present our experimental evaluation.

4. In Chapter 5 we summarize our conclusions.

Christos V. Vrachas 13
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2. BACKGROUND

2.1 Android

Android[5] is an operating system developed and released by Google, in September 2008.
It is based on the Linux Kernel, and it is primarily used for mobile devices. Android gives
developers the chance to design and develop their own applications, using the Android
Software Development Kit (SDK), and primarily the Java programming language, although
there is support for a variety of other programming languages running on the Java Virtual
Machine (JVM). Contrary to the Android SDK, the Android Native Development Kit (NDK),
offers the opportunity to developers to write code in the C or C++ programming languages,
which is finally translated to native code. Android applications can be developed in Android
Studio, which is the official Android Integrated Development Environment and is equipped
with every tool offered by the Android SDK or the Android NDK tool sets.

The Android SDK comes with plenty of tools that can enhance the application develop-
ment and testing process. The Android Debug Bridge (ADB) [6] and UI/Application Ex-
erciser Monkey[7] are some prominent tools aiding in the development process. Monkey
generates streams of user events, as well as system ones, and can be configured by the
developer. The Android SDK is responsible for compiling Java code along with any other
associated files, such as resource files into an Android Package Kit (APK), which is a type
of archive file, used by Android for the installation of mobile applications. An APK is quite
similar to the Java Archive (JAR) package file. A typical APK file, consists of the following:

1 META-INF directory:
2 MANIFEST.MF: the Manifest file.
3 CERT.RSA: The certificate of the application.
4 CERT.SF: The list of resources and SHA-1 digest of the

corresponding lines in the MANIFEST.MF file.
5 lib: the directory containing the compiled code that is specific to a

software layer of a processor. The directory is split in more
directories within it:

6 armeabi: compiled code for all ARM based processors only.
7 armeabi-v7a: compiled code for all ARMv7 and above based processors

only.
8 arm64-v8a: compiled code for all ARMv8 arm64 and above based

processors only[7][8].
9 x86: compiled code for x86 processors only.

10 x86_64: compiled code for x86 64 processors only.
11 mips: compiled code for MIPS processors only.

Figure 1: APK file contents

Christos V. Vrachas 14
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1 res: the directory containing resources not compiled into resources.arsc.
2 assets: a directory containing applications assets, which can be

retrieved by AssetManager.
3 AndroidManifest.xml: An additional Android manifest file, describing the

name, version, access rights, referenced library files for the
application, which may be in Android binary XML.

4 classes.dex: The classes compiled in the dex file format understandable
by the Dalvik virtual machine and by the Android Runtime.

5 resources.arsc: a file containing precompiled resources, such as binary
XML for example.

Figure 1: APK file contents

The source code of Android applications, usually written in Java and compiled to Java
bytecode for the JVM, is translated to Dalvik bytecode and stored in Dalvik Executable
(DEX) files, for the Dalvik Virtual Machine, which is a virtual machine supporting the exe-
cution of Dalvik Executable files. Since the release of Android 5.0 ”Lollipop” version, the
Dalvik VM has been completely replaced by the Android Runtime (ART) that executes DEX
files as well as the Dalvik VM. Unlike Dalvik VM, which used Just-in-Time (JIT) compila-
tion, ART introduced Ahead-of-Time (AOT) compilation, and improved Garbage Collection
(GC) mechanisms. JIT compilation is a technique added to the VMs, in order to compile
code to native code dynamically at the execution time, and allow the optimization of the
application based on its execution. AOT compilation does the same only once, when the
application is installed.

The four main components of an Android application are activities, services, broadcast re-
ceivers and content providers. Activities are the entry points responsible for user interact-
ion, by presenting a user interface to the user. Each activity is independent of the others,
however many activities are bound together towards a better user experience. A service
does not provide any user interface, and it is a component responsible for keeping an
application running, while in the background. A broadcast receiver is a component via
which events are delivered to the application from the system, allowing the application to
respond to system-wide broadcast messages. A content provider, typically manages the
application data that can be stored in any persistent storage location, and through it other
applications can request to query or modify the data of another application. Generally,
every application component is declared in the AndroidManifest.xml file.

Even though mobile storage is constantly expanding, there is always a requirement for
more lightweight applications, in terms of APK file size and execution performance. In
order to achieve this, many tools can be used, and one of these is the ProGuard optimizer
for Java bytecode.

Christos V. Vrachas 15
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2.2 ProGuard

ProGuard is the open source Java bytecode optimizer, officially used in Android applica-
tion development in order to create smaller and faster APKs. ProGuard is integrated in
the Android SDK tools, and, in order to enable ProGuard usage in the building process
of an Android application, one has to specify it in the corresponding Gradle build script.
The Gradle [8] build tool is the default building mechanism used in Android application
development, and is integrated in the Android Studio.

A ProGuard pipeline consists of four basic steps: the shrinking step, the optimization step,
the obfuscation step and the preverification step, which is not of interest in the case of
Android applications. Each step of the ProGuard pipeline is optional, and thus can be
skipped by defining the appropriate rule in the configuration file.

In the shrinking step, ProGuard detects classes, fields, methods and attributes which are
not used and there is no need for them to be kept, and removes them. The shrinking step
is the most important, since the application size can be reduced by a lot, by the elimination
of dead code.

The optimization step of ProGuard performs optimizations on the bytecode level of the
methods, based on the results of the static analysis it performs. There is a list of optimizat-
ions that can be enabled, based on the above analyses. One can specify which optimiza-
tions can be performed or not, by providing an ”-optimizations” rule in the configuration
file with a filter of optimizations, leading to a more efficient application in terms of APK
size and execution performance. These optimizations are based on the results of control
flow analysis, data flow analysis, partial evaluation, static single assignment, global value
numbering and liveness analysis. Furthermore, the optimizations may lead to better re-
sults depending on the application code and the virtual machine that the application is
executed on.

The obfuscation step, is where ProGuard transforms classes, fields, and methods names
to trivial names. Other than reducing the size of the final APK to a greater extent, obfusca-
tion is important because it leads to an APK which is harder to reverse engineer, making
it difficult to get the initial application source code.

ProGuard decides what should be kept or discarded, based on the entry points declared
on the respective keep specifications of the configuration files, where entry points are
classes, class members, packages, etc. Each step takes into consideration the specified
entry points, in order to perform its work. Entry points are not shrunk or obfuscated, unless
explicitly declared. The entry points ”keep” specifications are the following:

Christos V. Vrachas 16
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1 -keep [,modifier, ...] class_specification : specifies the classes and
their members to be kept as entry points.

2 -keepclassmembers [,modifier,...] class_specification : specifies the
members to be preserved if their classes are preserved as well.

3 -keepclasseswithmembers [,modifier,...] class_specification :
specifies the entry points to be preserved, if and only if the
declared members are preserved.

4 -keepnames class_specification : Specifies class names not to be
obfuscated, if they are not removed in the shrinking phase

5 -keepclassmembernames class_specification : Specifies class members'
names not to be obfuscated if they are not removed in the
shriniking phase

6 -keepclasseswithmembernames class_specification : Specifies classes'
and class members' names to be preserved, on the condition that
each specified class member is preserved

7 after the execution of the shrinking step

Figure 2: ProGuard keep specifications

The above specifications, mention a modifier and a class_specification. The keep modi-
fiers are the following:

1 allowshrinking : This modifier specifies that the entry point specified
in the -keep rule may be shrunk, even if it has to be preserved.

2 allowoptimization : This modifier specifies that the entry point
specified in the -keep rule may be optimized.

3 allowobfuscation : This modifier specifies that the entry point specified
in the -keep rule may be obfuscated.

Figure 3: Keep modifiers

A class_specification on the other hand, is a template used in the -keep rules in order to
declare the entry points. The template syntax is quite similar to the Java syntax of a class
or interface specification.

Christos V. Vrachas 17
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1 [@annotationtype] [[!]public|final|abstract|@ ...] [!]interface|class|enum
classname

2 [extends|implements [@annotationtype] classname]
3 [{
4 [@annotationtype]

[[!]public|private|protected|static|volatile|transient ...]
<fields> | (fieldtype fieldname);

5 [@annotationtype]
[[!]public|private|protected|static|synchronized|native|abstract|

6 strictfp ...] <methods> | <init>(argumenttype,...) |
classname(argumenttype,...) | (returntype
methodname(argumenttype,...));

7 [@annotationtype] [[!]public|private|protected|static ... ] *;
8 ...
9 }]

Figure 4: ProGuard class specification

In order to use ProGuard in Android application development, one has to declare it into
the appropriate build type on the application’s Gradle Build script, by adding the line mini-
fyEnabled true. An example of enabling ProGuard in debug mode build, is the following:

1

2 android{
3 buildTypes {
4 minifyEnabled true
5 proguardFiles getDefaultProguardFile('proguard-android.txt'),

'proguard-rules.pro'
6 }
7 ...
8 }

Figure 5: ProGuard gradle script sample

The proguardFiles option declares the ProGuard rules to be used by ProGuard. The
Android SDK comes with two files, the default ProGuard files, ’proguard-android’ and
’proguard-android-optimize’. The default ’proguard-android’ file consists of the following
rules:

Christos V. Vrachas 18
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1 -dontusemixedcaseclassnames
2 -dontskipnonpubliclibraryclasses
3 -verbose
4

5 -dontoptimize
6 -dontpreverify
7

8 -keepattributes *Annotation*
9 -keep public class com.google.vending.licensing.ILicensingService

10 -keep public class com.android.vending.licensing.ILicensingService
11

12 -keepclasseswithmembernames class * {
13 native <methods>;
14

15 }
16

17 -keepclassmembers public class * extends android.view.View {
18 void set*(***);
19 *** get*();
20

21 }
22

23 -keepclassmembers class * extends android.app.Activity {
24 public void *(android.view.View);
25

26 }
27

28 -keepclassmembers enum * {
29 public static **[] values();
30 public static ** valueOf(java.lang.String);
31

32 }
33

34 -keepclassmembers class * implements android.os.Parcelable {
35 public static final android.os.Parcelable$Creator CREATOR;
36

37 }
38

39 -keepclassmembers class **.R$* {
40 public static <fields>;
41

42 }
43

44 -dontwarn android.support.**
45

46 -keep class android.support.annotation.Keep
47

48 -keep @android.support.annotation.Keep class * {*;}
49

50 -keepclasseswithmembers class * {
51 @android.support.annotation.Keep <methods>;
52

53 }

Figure 6: Default ProGuard Android configurationChristos V. Vrachas 19
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1

2 -keepclasseswithmembers class * {
3 @android.support.annotation.Keep <fields>;
4

5 }
6

7 -keepclasseswithmembers class * {
8 @android.support.annotation.Keep <init>(...);
9

10 }

Figure 6: Default ProGuard Android configuration

The provided default configuration of ProGuard for Android applications keeps annota-
tions, the ILicensingService class, and every class that contains native methods. Further-
more, it keeps the setter and getter methods of every class extending the View class, as
well as every method of an activity class with an input View parameter. It also keeps val-
ues and valueOf methods of enumeration classes, and the Creator fields of the Parcelable
class. Finally, every static field of inner auto generated R classes and the Keep class as
well as methods, fields and constructors annotated with Keep are not shrunk or obfus-
cated.

The default configuration file used in order to optimize applications consists of the same
rules, but, instead of the -dontoptimize rule, the following are added:

1 -optimizations
!code/simplification/arithmetic,!code/simplification/cast,!field/*,

2 !class/merging/*
3 -optimizationpasses 5
4 -allowaccessmodification

Figure 7: Default Android optimization configuration

In the figure above, it is declared that ProGuard should perform every optimization but for
optimizations for arithmetic instructions, casting operations, field optimizations and class
merging, and that the maximum passes of optimizations should be five. Finally, it is spec-
ified that access modifiers of every class and class members may be modified.

After each build, ProGuard generates four files, which are described as follows:

1 A dump file, which describes the structure of all the class files.
2 A mapping file, which maps each initial class, method and field name to the

equivalent obfuscated one.
3 A seed file, listing the entry points.
4 A usage file, listing the removed code.

Figure 8: ProGuard output files

Christos V. Vrachas 20



Integration of static analysis results with ProGuard optimizer for Android applications

The default rules are usually sufficient, though each applicationmay require further configu-
ration, especially in the case that library code or dynamic features of the programming lan-
guage are used within the application code. This is when application-specific rules may be
required, and the developer has to provide ProGuard with extra configuration directives
and be familiar with the application’s source code. This is rather impossible in the case of
closed-source libraries that do not provide their own library-specific ProGuard files, thus
there is a need for analyzing the library code for better configuration.

2.3 Reflection

Reflection is a dynamic language feature that allows the modification of a program’s struc-
ture and behavior dynamically. With reflection, someone can get information about a class,
discover its public and private members, instantiate a new object, or invoke a method at
runtime, even lacking static knowledge of its existence.

In Java, reflection can be used via the java.lang.reflect and java.lang.Class packages.
Consider the following example, where, provided with a class name in java.lang.String
format, we want to invoke a method named foo, if such exists. In order to accomplish this,
one would get a java.lang.Class object, then create a new object of the given class, and
finally get a java.lang.reflect.Method object representing the method, and invoke it with
the newly created object. In terms of Java, this should be done as follows:

1 String className = ...; // possibly a constant string
2 Class myClass = Class.forName(className);
3 Object myObject = myClass.newInstance();
4 String methodName = ...; //possibly a constant string
5 Method myMethod = myClass.getMethod(methodName, ...);
6 myMethod.invoke(myObject, ...);

Figure 9: Common reflection pattern

Reflection use occurs in the case of Android applications as well. A solid example for the
need of reflection use is version and device compatibility. After each Android update, a
class could be removed, so, to check whether it still exists, one can use reflection.

Despite the fact that reflection is quite useful, it can also result in problems, when analyzing
or optimizing a program. In such a scenario, the developer should specify a class, or a
class member that is invoked dynamically, to be kept as an entry point, in the ProGuard
configuration. ProGuard can handle some basic reflection usage, but the developer may
have to manually specify what should be kept, which is a rather unpleasant task, especially
when reflection is used within a library that the developer is not familiar with. That is where
whole-program static analysis tools can help.
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2.4 Points-to Analysis and the Doop Framework

Datalog is a declarative logic programming language, which among other, has found use
as a query language for deductive databases. In Datalog, computation consists of mono-
tonic logical inferences that apply to produce new results until a fixpoint is reached.

Doop is a static analysis framework for pointer or points to analysis of Java programs,
that implements a range of algorithms for pointer analysis, including context insensitive,
call-site sensitive and object sensitive analyses. The most defining feature of the Doop
framework, is the use of Datalog for its analyses.

Datalog has proven to be a great fit for the domain of program analysis, and has been
extensively used both for low-level and for high level analyses. The ability of Datalog to
define recursive relations solves the problem of mutual recursion, which is the source of
complexity in program analysis.

At first, Doop used a commercial Datalog engine, developed by LogicBlox Inc. Doop cur-
rently uses an open source Datalog implementation, called Soufflé [9], which compiles a
Datalog program to a native C++ program.

Doop, at its core, uses the Soot framework for the preprocessing step that takes as an input
the bytecode of a Java program, and generates the input facts to be used for an analysis,
in the form of relations. Due to this, there is no need for source code for the framework to
perform its analysis, which is important if we take into consideration that libraries whose
code is not open source can be analyzed as well. The relations that are generated from
the input program are also known as EDB (Extensional Database) predicates, in Datalog
terminology.

Once the preprocessing step is finished, and the facts are generated, a simple pointer
analysis can be expressed in Datalog as a transitive closure computation, in the following
form:

1 VarPointsTo(?heap, ?var) <- AssignHeapAllocation(?heap, ?var).
2 VarPointsTo(?heap, ?to) <- Assign(?to, ?from), VarPointsTo(?heap, ?from).

Figure 10: Datalog pointer analysis : VarPointsTo(?heap, ?var)

The two rules shown in the above figure are known as IDB (Intensional Database) rules
and are used for the derivation of new facts. The first rule constitutes the base of the
computation, and states that upon the assignment of an allocated heap object to a variable,
this may point to the heap object. The second rule states that, upon the assignment of a
variable to another, the latter may point to any object that the former may point to.

Pointer analysis of static analysis frameworks attempts to compute a precise representa-
tion of a program’s heap, by recursively computing the set of objects a variable may point
to. Static handling of various language features, especially dynamic ones, like reflection,
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may produce unsound results: the analysis will miss possible runtime behaviors. As a con-
sequence, many static analysis frameworks consider such features to be absent for their
analyses. Reflection statements can occur at any location of the program, thus creating
the requirement for a whole program analysis in order to acquire an understanding of the
program’s heap, for a more precise reflection tracking. Doop’s reflection handling is based
on the fact that points-to and reflection analysis can be combined, as described in [4].

Static analysis frameworks of Java programs, usually start their computations from the
main method of the program’s main class. However, this is not the case for Android appli-
cations, where no such method exists. Doop supports the analysis of Android applications,
by discovering the application’s components and the UI elements described in the applica-
tion’s XML configuration files, in order to start its points-to computations from the multiple
entry points those components may have [10].

Christos V. Vrachas 23



Integration of static analysis results with ProGuard optimizer for Android applications

3. KEEP SPECIFICATIONS GENERATION IN DOOP

The Doop framework’s static analysis,computes the set of the Reachable methods of a
program, among others, which constitutes the base of our Datalog KeepMethod rule for
producing ”keep” method specifications for ProGuard, and is as follows:

1 .decl KeepMethod(?m:Method)
2 .output KeepMethod
3

4 KeepMethod(cat("-keepclassmembers class ", cat(?type, cat(" { ",
cat(?retType, cat(" ", cat(?simpleName, cat(substr(?descriptor,
strlen(?retType), strlen(?descriptor)), "; }")))))))) :-

5 Reachable(?m),
6 MethodLookup(?simpleName, _, _, ?m),
7 Method_Descriptor(?m, ?descriptor),
8 Method_SimpleName(?m, ?simpleName),
9 Method_DeclaringType(?m, ?type),

10 Method_ReturnType(?m, ?retType).

Figure 11: Keep method specification rules

The above rules state that for every reachable method in the program, a string constant
of the form ”-keepclassmembers class ?type ?retType ?descriptor; ” should be produced,
leading to the creation of a KeepMethod file, listing all the -keepclassmembers rules for the
reachable classmethods. TheMethodLookup,Method_Descriptor, Method_SimpleName,
Method_DeclaringType and Method_ReturnType predicates are used for matching the
method and get its name, its return type, its parameters and finally the class it belongs to.
Within just a few lines of Datalog, we manage to have a complete ProGuard configuration
file, with a solid set of keep rules, at the end of Doop’s analysis. A sample of a KeepMethod
file for the Material Calculator application, is the following:

1 -keepclassmembers class java.lang.reflect.Array { java.lang.Object
newInstance(java.lang.Class,int[]); }

2 -keepclassmembers class java.lang.ThreadGroup { void <init>(); }
3 -keepclassmembers class java.lang.Thread { void

<init>(java.lang.ThreadGroup,java.lang.Runnable); }
4 -keepclassmembers class java.security.PrivilegedActionException { void

<init>(java.lang.Exception); }
5 -keepclassmembers class java.lang.Object { java.lang.Object clone(); }

Figure 12: Calculator KeepMethod file

The produced ”keep” method rules, are combined with a set of standard rules, proposed
by Android, thus leading to the creation of concrete ProGuard configurations, ready to be
integrated in the building process. The set of standard rules used are described in the
following figure:
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1 -dontusemixedcaseclassnames
2 -dontskipnonpubliclibraryclasses
3 -verbose
4

5 -dontoptimize
6 -dontpreverify
7

8 -dontnote
9 -ignorewarnings

Figure 13: Doop configuration standard rules
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4. EXPERIMENTAL EVALUATION

In this section, we present our experimental evaluation of the analyses performed by the
Doop framework for different open source APKs, available on GitHub[11], as well as the
experiments performed for the various ProGuard configurations generated by the Doop
framework, in contrast to the default Android configuration. Thus we consider the follow-
ing four possible cases of ProGuard configuration for each application: ProGuard dis-
abled, ProGuard default Android configuration, ProGuard Doop configuration and finally
ProGuard Doop configuration with reflection handling. For each configuration, we test the
application with the Android Monkey tester tool.

Table 1: Doop keep method specification sizes in terms of keep rules

APKs Doop default Doop with reflection handling
Material Calculator 22750 37996
Gson Android Example 21249 34017
Mintube 23546 34837
Radiodroid 27745 44317
Reddinator 28438 43286

The default Android configuration, as well as the Doop configurations with/without reflec-
tion handling were sufficient for the APK size to be reduced and to be able to be executed
in most of the applications tested, though in some cases there was a need for ignoring the
obfuscation step. Doop configurations outperformed the default one for most applications,
but for a few that the APK size reduction was the same. As shown in Table 1, Doop’s
reflection handling adds way more keep rules to the configuration, considering that the
set of all reachable methods is inluded in ”keep” clauses.

Table 2: Doop analysis execution time (seconds) for keep method specifications generation

APKs Doop default Doop with reflection handling
Material Calculator 214 730
Gson Android Example 161 491
Mintube 147 542
Radiodroid 180 1031
Reddinator 213 1040

For the generation of the keepmethod specifications, several analyses had to be executed
with the Doop framework on a server consisting of Intel(R) Xeon(R) CPU E5-2687W v4
@ 3.00GHz CPUs, and 512GB RAM. Analyses were executed using the Android SDK
25 platform. In Table 2, Doop’s analysis execution times are presented, where analyses
handling reflection are way slower from those that do not, as expected. Finally, applications
were tested with the Monkey tester with a setup of 1000 pseudorandom events, with an
emphasis on activity launches.
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We start our experiments presentation with theMaterial Calculator, Gson Android example
and Mintube applications in the first subsection, followed by Radiodroid and Reddinator
on separate subsections. For our evaluation, we compare the APK size reduction and the
number of library and program classes, for each of the four configurations, and whether
the APK could be executed after ProGuard shrinking/obfuscation.

4.1 Material Calculator, Gson Android example, Mintube cases

We start by presenting the APK sizes, number of classes with/without ProGuard and
whether the execution of the three of these applications was successful for each configura-
tion, in the following table.

Table 3: Material Calculator

APK and Configuration APK size Library Classes Program Classes Monkey
Calculator no ProGuard 2.8MB 4237 2729 OK
Calculator default configuration 1.8MB 1079 1189 OK
Calculator Doop configuration 1.7MB 1079 1135 OK
Calculator reflection configuration 1.8MB 1079 1338 OK

Table 4: Gson Android example

APK and Configuration APK size Library Classes Program Classes Monkey
Gson ex. no ProGuard 1.5MB 4590 1717 OK
Gson ex. default configuration 804KB 1068 551 OK
Gson ex. Doop configuration 567KB 1068 500 OK
Gson ex. reflection configuration 833KB 1068 695 OK

Table 5: Mintube evaluation

APK and Configuration APK size Library Classes Program Classes Monkey
Mintube no ProGuard 1.6MB 3880 1977 OK
Mintube default configuration 930KB 1024 1007 OK
Mintube Doop configuration 918KB 1024 1065 OK
Mintube Doop reflection 935KB 1024 1109 OK

The Doop configurations mentioned in Table 2 are as produced by the Doop framework’s
analysis, enriched with the standard rules defined in Figure 13. Doop normal configura-
tions seem to be clearly better than the default configuration, but for the Doop reflection
configuration which outputs slightly bigger APKs. For the case of Gson Example, the APK
size reduction is significant with Doop’s configuration, though this is an expected result
since the application is quite simple.
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4.2 Radiodroid case

The execution of Radiodroid using the Monkey tester failed for both the default and Doop
configuration, as shown in Table 6, since the application crashed, though it was successful
for the case of building and testing the application with the Doop reflection configuration
file. The final APK was shrunk and obfuscated over the initial one with a significant reduc-
tion of its size, thus establishing the fact that Doop’s reflection handling can be decisive
for the analysis and optimization of an Android application with reflection usage, whereas
Android’s default configuration could not model it, leading to a failed execution of the ap-
plication.

Table 6: Radiodroid evaluation

APK and Configuration APK size Library Classes Program Classes Monkey
Radiodroid no ProGuard 2.7MB 4237 3229 OK
Radiodroid default configuration 1.7MB 1217 1918 CRASH
Radiodroid Doop configuration 1.6MB 1217 1979 CRASH
Radiodroid reflection configuration 1.7MB 1217 2054 OK

4.3 Reddinator case

In the case of Reddinator, neither of the ProGuard configurations was sufficient, to gen-
erate an APK that would not crash, but for the case of Doop’s reflection configuration with
the obfuscation step disabled.

Table 7: Reddinator evaluation

APK and Configuration APK size Library Classes Program Classes Monkey
Reddinator no ProGuard 3.4MB 4237 2661 OK
Reddinator default configuration 2.6MB 1231 1302 CRASH
Reddinator Doop configuration 2.3MB 1231 1322 CRASH
Reddinator reflection configuration 2.4MB 1231 1586 CRASH
Reddinator reflection no obfuscation 2.7MB 1231 1586 OK

The application would crash because of a class not found exception. Preventing the obfu-
scation step leads to the successful execution of the application with Doop’s reflection con-
figuration for ProGuard, with a small increase of the APK size to 2.7MB in contrast to the
unobfuscated one, whereas the other two configurations produced APKs that still crash.
Reddinator proves yet again the power of Doop’s configuration with reflection handling for
ProGuard, which with minor modification lead to the successful execution of Reddinator.

Based on our experimental results, we conclude that the Doop framework can be used to
generate configurations that lead to the production of either smaller or more correct APKs
in the sense of avoiding application crashes, with possibly minor or no modification.
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5. CONCLUSIONS

Program optimization is a valuable step for developing faster and more efficient applica-
tions. Static analysis constitutes a valuable asset for superior optimizations. The ProGuard
optimizer is a must-use tool towards this step, and just by enabling its shrinking step we
can get significant results in terms of APK size reduction. However its poor reflection han-
dling may result in application crashes, thus requiring the developer to manually declare a
set of rules for what has to be kept for the application to be able to execute. The integration
of more sophisticated static analysis with better reflection handling in ProGuard configu-
rations may add to ProGuard’s optimization power, while automating the generation of
such configurations can be easily done with a few declarative rules, as we presented in
this thesis. Doop’s simple keep method configurations outperformed the Android default
configuration in most of the applications tested, especially for the cases of reflection usage
within the application.
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ACRONYMS AND ABBREVIATIONS

SDK Software Development Kit
NDK Native Development Kit
APK Application Package
JVM Java Virtual Machine
VM Virtual Machine
ART Android Runtime
JIT Just-in-Time
AOT Ahead-of-Time
GC Garbage Collection
API Application Programming Interface
EDB Extensional Database
IDB Intensional Database
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