
Transactions with Isolation and Cooperation

Yannis Smaragdakis Anthony Kay Reimer Behrends Michal Young

Department of Computer and Information Science
University of Oregon

Eugene, OR 97403-1202

{yannis,tkay,behrends,michal}@cs.uoregon.edu

Abstract
We present the TIC (Transactions with Isolation and Co-
operation) model for concurrent programming. TIC adds to
standard transactional memory the ability for a transaction to
observe the effects of other threads at selected points. This
allows transactions to cooperate, as well as to invoke non-
repeatable or irreversible operations, such as I/O. Cooper-
ating transactions run the danger of exposing intermediate
state and of having other threads change the transaction’s
state. The TIC model protects against unanticipated interfer-
ence by having the type system keep track of all operations
that may (transitively) violate the atomicity of a transaction
and require the programmer to establish consistency at ap-
propriate points. The result is a programming model that
is both general and simple. We have used the TIC model
to re-engineer existing lock-based applications including a
substantial multi-threaded web mail server and a memory
allocator with coarse-grained locking. Our experience con-
firms the features of the TIC model: It is convenient for the
programmer, while maintaining the benefits of transactional
memory.

Categories and Subject Descriptors C.5.0 [Computer Sys-
tems Implementation]: General; D.1.3 [Programming Tech-
niques]: Concurrent Programming—parallel programming;
D.3.3 [Programming Languages]: Language Constructs and
Features—concurrent programming structures

General Terms Design,Languages

Keywords transactional memory, nested transactions,
open-nesting, TIC, punctuation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’07, October 21–25, 2007, Montréal, Qúebec, Canada.
Copyright © 2007 ACM 978-1-59593-786-5/07/0010. . . $5.00

1. Introduction and Motivation
Transactions as a programming language construct have
been proposed to simplify concurrent application program-
ming and avoid programming errors. Complexity and error
proneness in conventional concurrent programming mod-
els is a consequence of the essential non-locality of rea-
soning about lock (or monitor) acquisition order and con-
dition signaling. Transactional programming (whether sup-
ported by a hardware transactional memory, software trans-
actional memory, or source-to-source translation to conven-
tional locking code) aims to reduce the programmer’s burden
to a single, local design decision about which sequences of
actions should execute “as if atomic.”

To relieve the programmer from non-local reasoning
about concurrency, the programming model presented by
transaction support must have certain essential properties:

• It must compose, in the sense that the decision to make
a region of code in one method transactional is indepen-
dent of whether called or calling methods are transactional.
This further implies that any restrictions or special condi-
tions on enclosing a method call in a transaction should
be tracked by the type system, rather than requiring a pro-
grammer to inspect source code of other classes.

• It must be general enough that common operations can
be (transitively) enclosed in transactions, and that com-
mon concurrent programming idioms can either be used
unchanged or have suitable replacements.

Existing proposals for transaction support still fall short
of these requirements. For example, atomic sections com-
monly need to roll back and undo their effects. (An op-
timistic concurrency control implementation needs to roll
back when it detects interference from another transaction.
A pessimistic implementation needs to roll back, in order to
avoid deadlock, when it fails to acquire a lock.) Roll-back
is incompatible with operations that cannot be undone, such
as I/O. Although I/O can be automatically buffered (e.g., put
off until the end of a transactional section) [27], this is not al-
ways consistent with the program’s logic, particularly when
a read follows a write. Thus, performing irreversible opera-
tions becomes a global property in transactional systems: A

transaction needs to be aware of irreversible operations inall
methods it calls, directly or indirectly. Past solutions tothis
problem have been draconian: Either irreversible operations
have been completely disallowed in atomic sections [29], or
concurrency is disabled and only a single transaction with
irreversible operations can be run at a time [10, 11].

A related problem is that of transaction nesting. The
most reasonable semantics isclosed-nesting: The effects of
a nested transaction are not externally visible until the out-
ermost transaction completes. However, this approach is not
modular. Transactional code that needs to communicate its
results to the outside world needs to be careful to avoid be-
ing used inside another transaction. This makes thread coop-
eration harder. Transactional models often allow depending
on external conditions through guards for atomic sections
[28] or through plain use of aretry statement that restarts
the transaction, undoing its current effects [29]. These ap-
proaches suffice only at the outermost level of nested trans-
actions. Harris and Fraser [28] propose evaluating all guards
of inner transactions at the outermost level. An alternative
is to restart the outermost transaction if an inner transac-
tion’s guard fails. Both approaches are insufficient for allow-
ing threads to cooperate. For instance, consider the simplest
thread coordination—a barrier:

void barrier() {

atomic { count++; }

atomic(count == NUMTHREADS) {

/* barrier reached */

}

}

(We use a Harris-and-Fraser-like Java extension for this
example—note the Conditional Critical Region syntax of the
second atomic section.) The guard of the second atomic sec-
tion will only become true whenall threads have finished
the first atomic section. Yet if we want good composabil-
ity properties, the barrier itself should be usable inside an
atomic section. Such use can possibly be completely acci-
dental, in an atomic section protecting other, unrelated data
from interference:

atomic { ... barrier(); ... }

For ease of exposition, we show the result of inlining the
barrier code, so that the nesting becomes syntactic:

atomic {

...

atomic { count++; }

atomic(count == NUMTHREADS) {

/* barrier reached */

}

...

}

It is hard to see what would be a reasonable semantics
for the atomic sections in this case. Clearly, the Harris and
Fraser approach [28] of evaluating nested guards at the out-
ermost transaction’s level does not apply. The outer atomic

section cannot block at entry until the condition of the inner
section becomes true—the condition itself depends on the
execution of the first inner atomic section. Restarting the out-
ermost transaction upon reaching the unsatisfied inner guard
does not work either—this would undo the effect of the first
inner atomic section, making the guard unsatisfiable. Indeed,
the wordatomicitself seems a misnomer in this case: The in-
tended behavior is that execution of the outer atomic section
will not be atomic, but will instead be interrupted, allow-
ing other threads to observe its results, and itself observing
the results of other threads at the point of evaluation of the
inner atomic section’s guard. This is the essence of thread
cooperation: We want to allow observing the results of other
threads in a controlled manner, even if the code happens to
be called inside an atomic section. I/O can even be viewed as
a special case of a cooperation pattern with the cooperating
thread provided by the I/O device.

In this paper, we present a concurrent programming
model that attempts to allow freedom in how the code is
structured, while handling uniformly both irreversible oper-
ations and thread cooperation. We call the modelTIC for
Transactions with Isolation and Cooperation. TIC allows
temporarily suspending a transaction’s atomicity and isola-
tion properties in the middle of anatomic block. The type
system tracks all occurrences of such suspending operations
and ensures that the user provides a way to recover from
them. For instance, our barrier example can be written as:

void barrierTIC() {

atomic {

count++;

Wait(count == NUMTHREADS);

}

}

The Wait keyword is a TIC addition to a conventional
Transactional Memory (TM) programming model. It sig-
nifies that transactional isolation is suspended until the
condition of theWait statement (in this case “count ==

NUMTHREADS”) becomes true. Based on our previous discus-
sion, the interesting case is that of aWait that does not oc-
cur lexically nested inside anatomic section, but in a transi-
tively called routine. In this case, TIC dictates that the type
system keep track of operations that possiblyWait. All such
operations need to occur inside a block of code designated
by “expose(<methodcall>) establish <stmt>”. Thus, our
barrierTIC routine can be called inside an atomic section
as:

atomic {

...

expose(barrierTIC()) establish { ... } ;

...

}

The statement block following theestablish keyword is
responsible for re-establishing local invariants that therest
of the atomic section expects at this point in the execution.

Importantly, the type system does not allow invocations of
barrierTIC, unless under anexpose ... establish, even if
these invocations occur transitively. That is, if a methodfoo

calls a methodbar, andbar in turn callsbarrierTIC, then
both the call tobarrierTIC and the call tobar need to be
underexpose ... establish expressions. (We discuss later
how this requirement is relaxed with a checked programmer-
supplied type annotation.)

The above example showcases some of the main ele-
ments of the TIC model. Later sections define the full model
more precisely. Note that TIC is orthogonal to many per-
formance and implementation considerations. TIC is a pro-
gramming model, not an implementation technique, and is
intended to be compatible with a variety of different imple-
mentation techniques with different performance character-
istics and demands on program analysis. In order to evaluate
the expressiveness and ease of use of the TIC model for real-
istic concurrent applications, we produced initial implemen-
tations based on Harris and Fraser’s libstm [28] and Dice et
al.’s TL2 [17].

Overall, the TIC behavior can be emulated with tradi-
tional atomic transactions, but not without significant code
reorganization. A reasonable way to view the benefits of TIC
is as a way to relax the severe restrictions of existing tech-
niques, while maintaining the assurance that the programmer
has considered the impact of transaction suspension. Other
authors (e.g., Carlstrom et al. [11]) have advocated mapping
condition-variablewaits in lock-based code to transaction
suspension, but with no type system warning of this behav-
ior to the authors of surrounding transactions.

In short, our paper makes the following contributions:

• We define the TIC concurrent programming model that ex-
tends transactions to also allow thread cooperation. TIC re-
tains all the benefits of traditional transactions in the com-
mon case ofatomic sections that do notWait. At the same
time, it offers a single, uniform mechanism that allows
both operations thatWait and operations that perform irre-
versible actions to be used inside transactional code, while
enabling the transaction to recover from inconsistencies.

• We demonstrate the simplicity of the model with several
examples. The type system support of the TIC model was
found to be useful for TIC implementations but also for
detecting errors in lock-based code (e.g., locks held during
high-latency network operations).

• TIC offers a more disciplined alternative to many uses of
open-nestedtransactions. For instance, a long-running op-
eration can be delegated to a different thread, withWait

used for inter-thread coordination. Nevertheless, the main
TIC features are complementary to open-nesting. Indeed,
our current formulation of TIC integrates open-nesting
ideas to cover some interesting cases. We allow nested
transactions to be open, if they occur in a method that spec-
ifies compensating actions.

• We offer an optimistic implementation of the TIC model.
We use this implementation to evaluate the model in prac-
tice for realistic multi-threaded applications.

The rest of this paper is organized as follows. We first
present an overview of the TIC model (Section 2) and then
discuss our experience with implementing concurrent appli-
cations with TIC (Section 3). We describe in more detail the
TIC type system and implementation in Section 4. Section 5
discusses the TIC nesting model, as well as connections be-
tween TIC and open-nested transactions. We then contrast
with related work (Section 6) and conclude (Section 7).

2. Isolation and Cooperation
Hell is a place where people live in pairs,

tied back-to-back so they can’t see each other’s face.
– Eastern European popular tradition.

Hell is other people.
– Jean-Paul Sartre.

We next describe in more detail the TIC programming
model. There are two interesting cases that TIC intends
to handle similarly: transactions thatWait and transactions
that call external operations incompatible with transactional
semantics. Such operations typically access some resource
outside the control of the transactional memory system—
e.g., I/O—and either directly expose their results to other
transactions, or are irreversible. We begin our discussion
with the case of transactions that callWait.1

2.1 Transactions that Wait

We discuss the TIC model in the context of anidealizedex-
tension of the Java language for simplicity of exposition. The
same principles can be adapted to other languages and differ-
ent integration techniques. Indeed, as we describe later, our
actual prototype is a C++ library which hides many of the
finer details but still requires manual code instrumentation.

The syntax of a TIC transaction (using the conventions of
the Java Language Specification [22]) is:

AtomicStatement:
atomic Statement

An AtomicStatementis a Java statement and in practice
the statement that follows keywordatomic is usually a com-
posite statement (block):

atomic { statements}

Atomic sections can nest arbitrarily, both in lexical and
in dynamic scope (i.e., an atomic section can include calls
to methods that include other atomic sections). We follow
by default aclosed-nestingsemantics, where nested trans-

1 We use the term “to callWait” for convenience, althoughWait is a
statement.

actions do not truly commit until the outermost transaction
does.

For the most part, our idealized Java extension matches
the decisions of the Harris and Fraser design [28]. E.g.,

• Our transactions have exactly-once execution semantics.

• All program data can transparently participate in a trans-
action.

• All regular Java control flow (including method returns
and exceptions) can be used inside a transaction and result
in normal termination (i.e., commit) of the transaction.

Nevertheless, whereas Harris and Fraser implement
Hoare’s Conditional Critical Regions (CCRs) [35] program-
ming model, we do not support conditional atomic sections,
as these are supplanted by ourWait concept. An atomic
block can call aWait(Expression) operation, with a boolean
Expressionrepresenting the condition ofWait. This has the
effect of checking the condition, and, if it is not true, com-
mitting the current transaction and suspending the thread ex-
ecuting it until the condition becomes true.2 Once the con-
dition becomes true, the transaction restarts from the state-
ment following Wait. For all purposes, the transaction be-
fore the execution of aWait and that after it are two sep-
arate transactions—we call them thetop andbottomtrans-
actions, relative to eachWait statement. The starting point
of the bottom transaction (e.g., for re-trying purposes) isthe
Wait statement, no matter where this is found in the program.
We use the termssuspendingand resumingthe transaction
for committing the top transaction and beginning the bottom
one. We also use the termpunctuatingthe transaction for the
overall effects of callingWait.

Clearly, having aWait operation is unnecessary if it is
unconditionally and directly called inside a single atomic
statement. For instance, a section such as

atomic {

statementBlockA
Wait(condition);
statementBlockB

}

can be written equivalently with a CCR:

atomic { statementBlockA}
atomic (condition) { statementBlockB}

The benefit of having an explicitWait statement is that it
can be used at any point in a transaction. Thus, aWait could
be invoked nested deeply inside a conditional statement,
or from a method called transitively from other methods
invoked inside anatomic. A Wait statement punctuates all

2 We use the same mechanism as Harris and Fraser [28] for checking when
a condition has possibly changed value—namely, we observe what updates
get committed to locations that the waiting transaction accessed. A desirable
property for the condition expression is that it be side-effect free, but we do
not currently try to enforce this automatically.

the nested transactions in whose dynamic scope it occurs,
and not only its directly enclosing transaction.

We have already seen in the Introduction an example
where the use ofWait allows transactions to cooperate.Wait

adds power to atomic sections, but it violates transactional
semantics. Not only can a transaction thatWaits observe the
results of other transactions (loss ofisolation) but it also
exposes its own intermediate results to other threads (loss
of atomicity). This is an unavoidable consequence of sup-
porting communication (through conditions) in the midst
of transactional code, as preserving isolation would prevent
communication. Since we cannot avoid breaching isolation
where processes communicate, we must instead take mea-
sures to make this consequent evident to the programmer,
even when theWait appears at several removes of proce-
dure calls from the transaction that it may punctuate. The
TIC model offers type system support for keeping track of
Waiting operations (as well as other kinds of operations that
violate transactional semantics, as discussed in the next sec-
tion). The programmer can then decide whether the code can
be reorganized so that the operation is performed outside the
atomic section, or if the operation is safe inside the atomic
section with anestablish clause used to re-establish the in-
variants of the transaction after its suspension.

More specifically, we definewaiting methods to be those
that contain a call either toWait or to another waiting method
(that is, all methods that may callWait directly or indirectly).
A call to a waiting method is not legal unless it occurs
inside anexpose ... establish expression. The syntax of
theexpose ... establish expression is

expose (Expression) [establish Statement]

whereExpressionis a single call to a waiting method and the
return value of the method becomes the value of the entire
expose ... establish expression. Theestablish clause is
optional—omitting it is equivalent to an empty statement
following theestablish keyword. If the call to the waiting
method results in the transaction being suspended by aWait,
then, when the transaction resumes and the method call
returns,Statementis executed. Subsequently, if the bottom
transaction later aborts and re-tries, theestablish clause
is also always executed (on return of control flow to this
method). Nevertheless, if the transaction is never actually
suspended, either because its control flow does not reach
the Wait statement, or because the condition of theWait

is already true when first checked, thenStatementis not
executed. For illustration, consider a waiting methodfoo and
a transaction calling it:

void foo() { Wait(x > 0); }

void bar() {

atomic {

y = 0;

expose(foo()) establish { y = 1; } ;

}

}

The value ofy at the end of the atomic block will de-
pend on whether the transaction is ever punctuated. If the
transaction commits as a whole by reading anx greater than
zero, which prevents theWait statement from suspending the
transaction, then theestablish block is not executed, and
the value ofy is zero. Otherwise, the value ofy is 1.

Note that, according to our requirement, methodbar itself
cannot be called outside anexpose ... establish state-
ment. The reason is that the use ofbar in an atomic state-
ment can cause the suspension of the transaction with its top
part (up to the call tobar) committed and the rest of it ex-
ecuting independently and possibly being retried. Code pre-
ceding the call tobar has to establish global invariants, in
anticipation of a possible suspension. Theestablish clause
(and code following it) is then used to ensure consistent ex-
ecution by re-establishing local invariants. (Section 3 offers
usage examples in real scenarios and argues why this is a
good approach for modularity purposes.)

The programmer can suppress the requirement for an
expose ... establish around a method’s calls, if the
method is certain to never be used inside an atomic section.
This is done with the annotationtoplevel. The type system
disallows calls to atoplevel method in transactions. For in-
stance, methodbar in our example above contains a transac-
tion, but it could itself be prevented from ever being called
inside a transaction if its type signature is changed to:

toplevel void bar() { ... /* as before */ }

In this case, calls tobar no longer need to be under an
expose ... establish clause. Naturally, methods that call
toplevel methods are also not usable in transactions—a
property verified by our type system.

It is important to realize that the requirement for an
expose clause is the type system reminder to the program-
mer that he/she needs to fulfill two obligations: ensure that
atomicitycan be relaxed, so that other threads can observe
current results consistently, and ensure thatisolationcan be
relaxed so that the current transaction can observe the effects
of other threads (after theWait returns) without violating its
consistency properties. The first of these properties is typi-
cally handled by the codeprecedingthe call toWait and not
by the code followingWait (including theestablish clause
in callers), whose purpose is to handle the second property.

2.2 Handling Suspending Operations

Waiting methods are not the only ones that require special
treatment in transactions. Any method that violates either
atomicity or isolation needs to be handled specially. Typi-
cally this is due to irreversible actions affecting external re-
sources. We call all non-waiting methods that require special
handlingsuspendingmethods. The treatment of suspending
methods in TIC is almost identical to the treatment of wait-
ing methods, described previously. This uniformity is an in-
teresting feature of TIC. Nevertheless, there are some sub-
tleties. First, we need to conceptually identify which meth-

ods are theroot suspending methods so that method type
signatures at the interface with system code are correctly la-
beled. Second, as is also common in other transactional set-
tings, a programmer is allowed to specify “undo” actions to
allow suspending methods to be safely used in transactions.
Finally, the behavior of retrying a transaction is slightlydif-
ferent in the case of suspending methods, compared to wait-
ing methods. We discuss these points next.

An (external) operation is safe to use inside a transaction
without surrounding code being aware, if both:

1. its effects are not exposed to other threads in a way that
may violate application correctness

and

2. its effects can be reversed.

Some approaches (e.g., [16]) propose weakening the sec-
ond condition to “the operation isidempotent: Re-executing
it has the same effects and result as executing it once”. How-
ever, this is not correct in a general programming model.
Even if an operation is idempotent, retrying a transaction af-
ter a change to shared data can result in the operation now
being outside the control-flow of the transaction, or being
called with different arguments. Establishing the idempo-
tency of an entire transaction body after a change to shared
data is generally infeasible. Thus, neither reusing previous
results and effects of a suspending operation nor re-running
it are generally safe in the course of retrying a transaction.

In the TIC model, methods that have effects that violate
the requirements of the transactional memory system can
be labeled using the annotationsuspending in the method
declaration. This annotation is best applied to system-level
operations (e.g., native methods in Java). Any method that
calls a suspending method is also implicitly suspending—
we use the term “root suspending operations” to distinguish
the base methods that have thesuspending annotation. For
instance, a JDK implementation will likely declare method
write in java.io.RandomAccessFile as:

public suspending native void write(int b)

throws IOException;

External operations that can be reversed represent the
easy case of handling suspending methods. Following the
example ofopen-nestingtransactional models [46, 45, 52],
we allow the user to specify for each “forward” operation
an “undo” operation and an “on-commit” operation (collec-
tively called “compensating operations”). These are desig-
nated by annotationsundo and oncommit, respectively, on
the forward operation. Both operations are methods on the
same object as the forward operation. Additionally, compen-
sating operations accept arguments of the same type as the
forward operation, plus extra arguments of the same type
as the return type of the forward operation (if non-void) and
any exception types the forward operation may throw. For in-
stance, a common pattern is that of an operationrelease as

the undo operation for methodallocate (but not vice versa).
This would be specified as:

undo(release)

Entity allocate(String name, int length);

void release(Entity e, String n, int l);

Every method that has anundo annotation causes the out-
ermost transaction it contains to have open-nesting seman-
tics, relative to the method’s enclosing transactional context.
This means that the transaction commits at its end, indepen-
dently of any parent transaction, thus making its results im-
mediately visible to other threads. If the parent transaction
(i.e., the transaction surrounding the method) needs to roll
back and retry, the system calls the method’s undo operation
to reverse prior committed effects of the nested transaction.
Root suspending operations in a method with anundo anno-
tation are also handled similarly. A root suspending opera-
tion is treated as if it were an open-nested transaction. It is
considered to commit if control flow reaches it, which causes
(upon method completion) the undo action of the surround-
ing method to get registered for a possible compensating ac-
tion in the future.

The TIC model for compensating actions is slightly
unconventional, in that the on-commit operation in TIC
is independent of nesting semantics: a method can have
an oncommit annotation either with or without having an
undo annotation and open-nested transactions in it. The on-
commit operation is registered upon return of the annotated
method. If/when the innermost open-nested transaction, or
(if all transactions are closed-nested) the outermost transac-
tion surrounding the method validates its reads and is ready
to commit, the system calls the on-commit operation of the
method.

We later give a more precise description of the TIC nest-
ing model, as well as a comparison with traditional open-
nesting (Section 5). Until then, we focus more on TIC’s
transaction punctuating features and compare the model to
standard closed-nested transactions.

The interesting case of external operations concerns those
that are not called under a method with an undo operation.
Such suspending operations are treated much like waiting
ones. A transaction can call a suspending operation only un-
der anexpose ... establish clause. The transaction will
again be punctuated: It will commit immediately before the
root suspending operation call, just as it commits before
blocking on aWait. The establish statement is expected
to re-establish the transaction’s invariants after the suspend-
ing call and the resulting loss of isolation. There is a subtle
difference, however. In case of a transaction retry, the root
suspending method call is not repeated. Instead, execution
resumes from the return point of the root suspending oper-
ation, making the correspondingestablish clause the first
statement executed. For instance, consider a transaction:

atomic {

if (!balanceUpdated()) {

bal = compute();

expose(print("Balance:" + bal)) establish {

if (balanceUpdated()) // someone raced us

return;

} ;

updateBalance(bal);

}

}

The transaction computes a result based on shared vari-
ables and exposes it with an external, irreversible operation
(print). At this point, the transaction commits and a dif-
ferent thread may have raced to fill in the needed result. In
this case, the transaction conservatively chooses to avoidthe
final update. If the transaction proceeds toupdateBalance

and this encounters contention that causes a retry, then the
transaction will restart from the point right after the execu-
tion of the external operation—that is, from the statement
underestablish. If the user wants to repeat the suspending
operation in case of a transaction retry (perhaps with differ-
ent arguments) an explicit loop should be placed around the
code containingexpose ... establish. For instance, con-
sider the following example:

atomic {

balance = compute();

print("Your balance is " + balance);

bet = input("How much will you wager?");

if (bet <= balance)

register(bet);

}

If print andinput are irreversible operations, then this is
not valid TIC code—expose ... establish clauses need to
be used. Nevertheless, this example represents a “hopeless”
case. There is no way to re-establish the transaction’s invari-
ants with anexpose ... establish clause if the external
world (human user) observes a balance that is no longer cor-
rect. The only reasonable recovery in this case is to retry the
whole transaction. The user’s input is based on prior output,
and, hence, needs to be obtained again. We can do this with
an explicit loop:

atomic {

while (true) {

balance = compute();

expose(print ("Your balance is " + balance)) ;

bet = expose(input("How much will you wager?"))

establish

{ if (balance == compute()) break; };

}

if (bet <= balance)

register(bet);

}

This creates the obligation to handle transaction sus-
pension in all possible transactions surrounding the cur-
rent code. For this example, since no recovery of any kind

is meaningful and we need to repeat the entire transac-
tion, we have an alternative that places a lower burden on
clients: We can use theundo annotation to prevent transac-
tion punctuation and remove the obligation of usingexpose

... establish clauses in all surrounding transactions. An
empty undo action causes the suspending operations to be-
have as if they are perfectly reversible. In this way we also
avoid the explicit loop, in favor of the natural looping behav-
ior of transaction retry. For instance, we wrap theprint and
input methods:

undo(doNothingString) void myprint(String s) {

print(s);

}

undo(doNothingintString) int myinput(String s) {

return input(s);

}

Using the wrapped methods in place of the originals
achieves the desired effect without a need for a loop or
expose ... establish.

3. Applications and Experience
We next discuss examples of the applicability and benefits
of TIC relative to existing transactional programming mod-
els. We use C, C++, and Java realizations of TIC in our
examples—see Section 4 for an implementation discussion.

3.1 Shortcomings of Traditional Models and TIC

TIC arose from our experience in implementing multi-
threaded applications and trying to express them or restruc-
ture them to work with transactional memory mechanisms.
Despite assertions regarding the composability of transac-
tions in comparison to locking [28, 29], we have found trans-
actions to not compose well because of the presence of non-
transactional operations. We saw an example in the Introduc-
tion, involving a barrier pattern. In practice, many common
patterns have to do with system-level suspending operations
and not with the need to cooperate with other threads.3

A general pattern that we observed several times in prac-
tice is the following: An atomic section would normally have
a suspending operation inside it. With some code restructur-
ing and minor bookkeeping, the operation may be movable
outside the transaction:

void methodWithTransaction() {

atomic {

... <set bookkeeping data> ...

}

<use bookkeeping data to perform external op>

}

Nevertheless, this has rarely been sufficient. Other code
using a transaction (possibly to protect some entirely dis-

3 It is unrealistic to expect that eventually all system-level operations will
acquire transactional semantics. Even though transactional memory alloca-
tors or transactional file systems already exist, transactional network I/O,
or user I/O is nearly infeasible. In general, much of the external world is
deeply not transactional, as effects cannot be undone.

tinct data than the above transaction) often needs to call
methodWithTransaction (and may even do so inside a loop):

atomic {

... methodWithTransaction(); ...

}

Now the external operation suddenly finds itself exe-
cuted as part of a transaction, and possibly (erroneously) re-
peated when the transaction retries. The operation needs to
be moved again, this time outside the atomic section in the
caller method. This may require significant code restructur-
ing: Functional abstraction may need to be violated, trans-
actions may need to be split, etc. The unfortunate conclu-
sion is that transactions do not compose well. A transaction
can be oblivious to the synchronization strategies of methods
it calls, but it cannot be oblivious to suspending operations
in these methods. In short,in transactional code, perform-
ing an irreversible operation is a global property, just as,
in lock-based code, holding locks is a global property. Sus-
pending operations have the potential to render incorrect all
transactions under whose dynamic scope they execute, and
not just the immediately surrounding transaction.

The problem of transactional code not composing in the
presence of waiting or suspending operations is unavoid-
able and TIC offers no magical solution. What the model
does is expose to the programmer the points where extra
“glue” needs to be applied and enable him/her to handle the
composition of transactional code, by restoring onlylocal
invariants every time. The programmer always has the op-
tion to revert to standard techniques for handling suspend-
ing/waiting in transactional programs, such as moving code
outside transactions. In many cases, however, using TIC re-
sults in significantly simpler and more modular code, in ad-
dition to helping avoid bugs. We give some specific exam-
ples from actual code.

3.2 Recovering from Suspending Operations

We reengineered the version of the Kingsley memory allo-
cator supplied with the Heap Layers suite [6] to work with
transactions, as opposed to fine grained locking. The pattern
we present, however, is typical of multiple memory alloca-
tors. It is a good example for the TIC model, because it ex-
poses complexity without being overwhelming.

The Kingsley allocator is one of the fastest general-
purpose memory allocators [6]. The allocator divides free
blocks into power-of-two size classes. A fragment of the
code in the main allocation routine (using transactions but
notusing the TIC model) is shown in Figure 1. The code uses
an atomic section to consistently access a shared data struc-
ture. In the middle of multiple accesses to shared data, the
code calls operationmorecore to get more memory from the
operating system if the appropriate free list is empty. Func-
tion morecore, however, callssbrk, which is an irreversible
system operation. (Even if the operating system allows low-
ering thebrk pointer, another thread could have moved it

void *kmalloc(int sz) {

.../* determine which free list to use, based

on size, see if free blocks are available */

atomic {

if ((op = nextf[bucket]) == NULL) {

morecore(bucket);

if ((op = nextf[bucket]) == NULL) {

return (NULL);

}

}

/* remove from linked list */

nextf[bucket] = op->ov_next;

op->ov_magic = MAGIC;

op->ov_index = bucket;

...

}

...

}

Figure 1. The main structure of the Kingsley allocator’s
malloc routine.

by that time.) Thus, if the transaction naively retries,sbrk

will be called twice, leaking OS resources. The code for
morecore is shown (only very slightly simplified) in Fig-
ure 2. The purpose of showing this code is to demonstrate
where suspending callsbrk is in the program logic, as well
as to show accesses to the shared data structure (rooted at ar-
ray nextf) which depend on the result of thesbrk, yet need
to be under the surrounding atomic.

Consider the code reorganization required to removesbrk

from inside transactional code. This would require breaking
morecore in two parts, top and bottom, and movingsbrk
into the body ofkmalloc. Since the top and bottom parts of
morecore need to communicate data, their interfaces need to
include extra arguments (e.g.,nblks, op). The modularity of
the original code is lost:kmalloc now needs to be directly
aware of the functionality that used to be insidemorecore.

For this example, one can also envision a solution with
a pair of unstructuredbeginAtomic/endAtomic primitives,
instead of a block structuredatomic section. Yet this would
be a very error prone programming model. Furthermore,
note that (unlike with locks) a programmer cannot use a
block structuredatomic to build unstructured primitives.

The TIC approach solves the problem cleanly. The trans-
action is committed before callingsbrk and the call tosbrk
is never repeated, even if the rest of the transaction re-
tries. The potential consistency problem with suspending
the transaction at the point of callingsbrk is that a differ-
ent thread can race and may happen to replenish the same
bucket. The original code overwrites the link to such up-
dated entries in the bucket, as it assumes thatnextf[bucket]

is NULL. An easy rewrite of the part ofmorecore following
the call tosbrk is enough to ensure that the result ofsbrk

is consistently added to the data structure, even if another
thread has changed the bucket. The new code does not as-
sume that the bucket is still empty after the potentially sus-
pendingsbrk call. Indeed, with the rewritten code, even an

static void morecore(int bucket) {

register union overhead *op;

register long sz; /* size of desired block */

long amt; /* amount to allocate */

int nblks; /* how many blocks we get */

sz = 1 << (bucket + 3);

if (sz <= 0)

return;

if (sz < pagesz) {

amt = pagesz;

nblks = amt / sz;

} else {

amt = sz + pagesz;

nblks = 1;

}

op = (union overhead *)sbrk(amt);

/* no more room! */

if ((long)op == -1)

return;

/*

* Add new memory allocated to that on

* free list for this hash bucket.

*/

nextf[bucket] = op;

while (--nblks > 0) {

op->ov_next = (union overhead *)((caddr_t)op + sz);

op = (union overhead *)((caddr_t)op + sz);

}

}

Figure 2. The routine to get more system memory inside
the Kingsley allocator. Moving thesbrk call outside the en-
closing transaction (in the calling routine,kmalloc) requires
major code reorganization.

emptyestablish clause is sufficient. The result is correct re-
gardless of whether the data structure was concurrently mod-
ified by another thread:

static void morecore(int bucket) {

union overhead *fst = NULL;

... // as before

op = expose ((union overhead *)sbrk(amt));

fst = op;

while (--nblks > 0) {

op->ov_next =

(union overhead *)((caddr_t)op + sz);

op = (union overhead *)((caddr_t)op + sz);

}

op->ov_next = nextf[bucket];

nextf[bucket] = fst;

}

Similarly, thekmalloc routine is easily fixed to be unaf-
fected by the transaction suspension caused bysbrk inside
morecore. An emptyestablish clause would be sufficient,
but note that the suspending operationmorecore will cause
the punctuation of any user-level transactions that happento
usekmalloc. Even though the depth of transaction nesting
is expected to be low in typical applications [16], we still
would not want to impose on users the burden of handling
punctuation at every level of their transactions every time

they callkmalloc. Instead, it is easy to supply an undo rou-
tine forkmalloc (a wrapper aroundkfree) so that its atomic
section commits independently of any surrounding transac-
tions, and has its results reversed if the surrounding transac-
tion retries. The changes are shown below.

undo(myKfree) void *kmalloc(int sz) {

... // as before

expose (morecore(bucket));

...

}

3.3 Cooperating Threads

The TIC ability toWait inside a transaction enables thread
cooperation without disrupting transactional coding pat-
terns. Barrier patterns, such as the one shown in the Intro-
duction are a simple case of applicability for TIC. TIC makes
expressing barriers easy by allowing aWait statement to cir-
cumvent atomicity by exposing results, and to disable iso-
lation so that effects of other threads can be observed. This
means that a barrier call requires special handling in all en-
closing transactions, with anexpose ... establish clause.

It should be noted that the semantics ofWait in TIC
is consistent with prior experience in re-engineering multi-
threaded applications. Chung et al. [16, 12] rewrote 35 lock-
based applications to use transactions. They note that the
most reasonable simulation of condition variablewaits in
the transactional world is to “mapwait to an END marker
(end previous transaction) and a BEGIN marker (start new
transaction) pair” [16]. This is directly analogous to our
treatment ofWait. In a different study, the same authors
write: “we have never seen a benchmark or system that ex-
hibits a problem treatingwait as commit” [12]. Neverthe-
less, they also note that “if we treatwait as a commit, it is
easy to come up with contrived programs that will not match
the previous semantics”. The TIC ability to identify these
cases and recover with anexpose ... establish clause is
unique, to our knowledge.

For an actual example where recovery is easy but
necessary, Figure 3 shows two methods, rewritten in a
transactional form, from the code of the Zimbra Col-
laboration Suite. (The routines are slightly simplified—
intermediary methods were removed, as was the code for
throwing and handling some database exceptions.) There
are two atomic sections, one in each method. Method
setConnectionProvider has a transaction that may be
suspended at various points. There are threeexpose ...

establish clauses shown in the code. Two of these are for
suspending operations, such asdestroy or start. One of
the calls is togetConnection, which is a waiting method. If
a connection is not available in a shared pool, the thread will
wait until another thread returns a connection to the pool. In
all cases, the transaction only needs to worry about its own
invariants in case of suspension. Recovery is quite easy: The

public static void

setConnectionProvider(ConnectionProvider provider) {

atomic {

if (connectionProvider != null) {

ConnectionProvider old = connectionProvider;

expose(connectionProvider.destroy()) establish {

if (connectionProvider != old) return;

} ;

}

connectionProvider = provider;

expose(connectionProvider.start()) establish {

if (connectionProvider != provider) return;

} ;

// Now, get a connection to determine meta data.

Connection con = null;

con = expose(connectionProvider.getConnection())

establish {

if (connectionProvider != provider)

return;

} ;

setMetaData(con);

... // multiple other uses of con

}

}

public Connection getConnection() {

ConnectionWrapper con = null;

while(true) {

atomic {

// if shutting down, don’t create connections

if (shutdownStarted) return null;

Wait(connectionAvailable);

con = getCon();

if(con != null) {

con.checkedout = true;

con.lockTime = System.currentTimeMillis();

return con;

} // else someone got it before us, try again

}

}

}

Figure 3. getConnection is a waiting method. Calling it
requires anexpose ... establish clause, which is quite
easy to write.connectionProvider is a shared variable.

routine can just return if any other thread has raced to over-
write theconnectionProvider shared variable.

3.4 Temporary Violations of Atomicity

Long-running operations in the middle of a transaction in-
crease the probability of the transaction aborting due to con-
tention. TIC allows a long-running computation to move to
an independent thread and the transactions to coordinate us-
ing Wait. In the easiest case, the long-running operation only
needs to signal its completion to the main transaction. TIC
then also allows labeling the operation assuspending, in
which case the transaction will commit just before perform-
ing it and a new transaction will start after it.

The latter also corresponds to a common lock-based pro-
gramming pattern: releasing a lock only to reacquire it after
an operation. We counted at least 8 instances of this pattern

for different tasks in AOLserver, all for long-running oper-
ations. (AOLserver is an open-source web server, originally
by America Online. See http://www.aolserver.com .) For in-
stance, AOLserver uses code of the following form in its in-
terface to the Tcl interpreter.

lock(l);

...

do { ...

unlock(l);

... // call Tcl interpreter with script arg

lock(l);

} while(cond);

...

unlock(l);

In the TIC model, this corresponds to committing a trans-
action and starting a new one after the Tcl interpreter invo-
cation, without any need for establishing consistency. That
is, the Tcl invocation operation is labeledsuspending, and
called under anexpose call with noestablish clause.

3.5 Type System Warnings

In the TIC model, the type system does not guarantee trans-
action safety, but serves as a reminder to ensure that the pro-
grammer has not overlooked waiting or suspending opera-
tions. This is often sufficient for detecting serious function-
ality or performance errors. We encountered a representative
example in our rewrite of the AlphaMail server [38], which
we re-engineered to use transactions.

AlphaMail’s functionality of interest is an IMAP web
cache: a middleware system that facilitates communica-
tion between the web server software and an IMAP server.
AlphaMail uses a cache data structure that holds data
about recently accessed IMAP data folders, including a per-
sistent connection to the network folder. This is a C++
map<string,shared ptr<IMAPFolder> > data structure: an
associative map from strings to reference-counted pointers
to IMAPFolder objects. A cleaning thread runs periodically
over the data structure to remove entries corresponding to
folders not accessed recently. This traversal is a standard
data structure removal:

atomic {

...

for(i=cache_map.begin(); i!=cache_map.end(); i++)

if(getIdleTime(i->second) > timeout)

cache_map.delete(i->first);

}

The seemingly innocuous code results in undesirable in-
teractions with synchronization code. Thedelete call re-
moves the item from the map, and, if this was the last ref-
erence to the item in the program, then theshared ptr de-
structor deletes theIMAPFolder object itself. Irreversible op-
erations (network flush and close) can then occur through
a complex chain: Destroying theIMAPFolder destroys an
iostream object, which destroys astreambuffer object,

which shuts down aTCPStream, which contains the offend-
ing operations. This is a standard case where our type sys-
tem warns of suspending operations, similarly to other ex-
amples we discussed earlier. Although the operations are
deeply nested, anexpose ... establish clause is needed
at every level to allow them to be used in a transaction. In-
terestingly, however, the above sequence was also a serious
bug in an earlier lock-based version of AlphaMail. The code
is holding a lock while the connection is being closed, which
prevents concurrency during a long-running operation. In the
worst case, the connection to the IMAP folder is experienc-
ing network problems, making hundreds of other users hang
until the network connection times out.

3.6 On-Commit Operations

Often we can postpone suspending operations until the sur-
rounding transaction can commit. This can be done with
an on-commit operation. We consider an example from Al-
phaMail [38]. AlphaMail is written in C++ and is linked
against a non-transactional memory allocator. (Although
memory allocation can be built so that it integrates seam-
lessly with transactions [37], there may be performance
reasons to prefer a multithreaded allocator utilizing fine-
grained locking, e.g., [5]. Furthermore, there are always low-
level libraries that use their own allocation routines (e.g.,
OpenSSL’sSSL CTX new/delete). It is not reasonable to ex-
pect a close integration for all such libraries.)

The interface of an application with a memory allocator
is narrow, consisting only of operatorsnew anddelete (or
malloc andfree). Therefore, it is reasonable to expect that
combining a transactionally implemented application witha
fine-grained locking allocator should be easy. Yet, although
it is relatively easy to write an undo routine fornew (using
delete) it is not similarly easy to write a satisfactory undo
routine fordelete. (Reversing adelete is not possible even
if the allocator internals are known: once the object has been
reclaimed, some other thread could have raced and reused
the space.)delete is also quite hard to handle since it is a
lightweight enough operation that it is likely to be used in
many transactions (unlike I/O operations that have high la-
tency and will likely need to be moved outside of critical
sections). One of the uses ofdelete in AlphaMail is in a ref-
erence counted shared pointer class. As commonly expected,
the assignment operator of a shared pointer decrements the
reference count of the object that the pointer used to point to
and callsdelete on it if the count is zero. It is relatively easy
to move the call todelete outside the atomic section, by in-
troducing variables to remember whether the object should
be deallocated and doing so later. The relevant code frag-
ment is shown in Figure 4. (The code is slightly simplified—
notably it does not include the common intrusive reference
counting optimization [3, ch.7].)

Nevertheless, this hardly fixes the problem. Shared point-
ers are used in several places in the application inside trans-
actions. Consider a seemingly innocuous statement such as:

template<class T> class shared_ptr {

...

public:

shared_ptr<T> &operator=(const shared_ptr<T> &b) {

bool delete_old_object = false;

int *old_count;

T *old_obj;

atomic {

old_count = shared_count;

old_obj = obj;

obj = b.obj;

shared_count = b.shared_count;

(*shared_count)++;

(*old_count)--;

if(*old_count == 0)

delete_old_object = true;

}

if(delete_old_object) {

delete old_count;

delete old_obj;

}

}

private:

T *obj;

int *shared_count;

};

Figure 4. A shared pointer class that makes sure the deal-
location is performed outside theatomic section, since
delete is not transaction-safe.

atomic {

... p = q; ...

}

For p of type shared ptr<int>, the assignment calls
shared ptr<int>::operator= which contains the call to
delete. If the transaction retries,delete will be called twice.
Fixing this problem by moving code requires destroying the
encapsulation of the shared pointer class and moving some
of its functionality outside all transactional code. Thus,this
is the standard problem we discussed in Section 3.1: Calling
delete is a property visible to all clients of the operator. In
this case, we can postpone the results of thedelete call until
the end of the transaction. This is easy to do by just creating
an on-commit operation forshared ptr<int>::operator=.
The transaction code is then free of suspending operations,
but makes a record of deleted objects available to the on-
commit operation. In the current formulation, the easiest
way for the two routines to share data is through arguments
and return values. (In the future, one can imagine adding
richer support for sharing data with compensating actions—
this is an aspect orthogonal to TIC’s main features.) Thus,
we can make an intermediate routinerelease item, which
operator= calls with the objects to delete as arguments. The
on-commit operation,free item is attached to this routine.
The system stores the arguments and makes them available
to the on-commit operation, which performs the deletion:

template<class S>

oncommit(free_item<S>) void release_item(S *c) {

// no-op. Transaction system records params

}

template<class S>

void free_item(S *param1) {

delete(param1);

}

The above on-commit operation does not need any con-
currency control, as it accesses no shared data. An important
point, however, is that the on-commit operation can con-
tain transactions, which execute open-nested in the current
context. Thus, it can roll back and retry, which renders sus-
pending operations problematic. Therefore, on-commit op-
erations themselves can have the same need as regular code
to includeexpose ... establish clauses, in order to re-
cover from transaction punctuation. The exact nesting model
of TIC, as well as the interactions between nested transac-
tions, compensating actions, and transaction punctuationare
discussed in detail in Section 5.

4. Type System and Implementation
Discussion

We next discuss more precisely some aspects of the TIC
design, as well as our prototype implementations.

4.1 Language Summary and Type System

To summarize the previous sections, the elements of the TIC
programming model are:

• Theatomic keyword to designate transactions.

• TheWait keyword to explicitly suspend transactions until
a condition is satisfied.

• Thetoplevel method annotation, which makes a method
unusable inside a transaction.

• Theexpose ... establish syntax for calling waiting or
suspending methods.

• The suspending method annotation designating a root
suspending method.

• The undo andoncommit method annotations that specify
compensating actions for the method and (in the case of
undo) cause a method to commit its transactions indepen-
dently of external nesting.

Note that many of these do not have run-time semantics,
but only static semantics. That is, they exist purely for typ-
ing purposes. They enable the type system to keep track of
code that requires special handling in transactions, in order
to remind the programmer appropriately. Overall, our type
system is straightforward, as it ispropositional: It only adds
three true/false flags to program methods. The first flag de-
notes waiting operations, the second denotes suspending op-

erations, while the third denotes operations guaranteed tobe
unusable inside transactions. The flags propagate as follows:

• A Wait statement sets flagwaiting for the method that
contains it, unless the method also has atoplevelflag.

• A suspending method annotation sets flagsuspendingfor
the method. A method with asuspending annotation can-
not also have anundo annotation or atoplevel annotation.

• A toplevel method annotation sets flagtoplevelfor the
method.

• On a method call, if the callee has asuspendingflag, the
same flag is set on the caller, unless the caller has the
toplevelflag or anundo annotation.

• On a method call, if the callee has awaitingflag, the same
flag is set on the caller, unless the caller has thetoplevel
flag.

• On a method call, if the callee has thetoplevelflag, the
same flag is set on the caller, unless the caller has anundo

annotation.

(Note that we phrased the rules as inferences with
negation—e.g., “has ... unless the caller has...”. In general
this might lead to ambiguity. The reader can verify that nega-
tion is stratified, however, hence we can get a consistent flag
assignment by letting the rules run to fixpoint.)

As discussed earlier, the consequences of these flags are
straightforward. A method flaggedtoplevelcannot be used in
a transaction. A method flaggedwaitingor suspendingneeds
to be under anexpose ... establish clause when used in
a transaction.

The above rules assume a known caller-callee graph. In
an object-oriented language our type system needs to be
conservative, in order to support dynamic dispatch and an
unknown set of subclasses: Overriding methods are only
allowed to be more broadly applicable than the methods
they override. Then we need to introduce an explicit method
annotationwaiting and some additional rules:

• A waiting method annotation sets flagwaiting for the
method, unless the method also has atoplevelflag.

• A method with thesuspending, waiting, or toplevelflag
cannot override one without the same flags.

• A method with anundo annotation cannot be overridden
by one without it.

Note that the last two arenotpropagation rules. The rules
do not cause the overridden/overriding method’s flag to be
set. Instead they dictate that if the flag is not set under the
propagation rules, the overriding is illegal.

These rules are safe, but restrictive. E.g., they force every
client of an interface method to make a call under anexpose

... establish if even one implementation of the method is
suspending.

4.2 TIC Prototypes

We described our language extensions in an idealized setting
(as new keywords with full language support). As is stan-
dard practice, however, we approximate these features with
simpler extensions that offer an easier transition path from
existing languages. Our original prototype was a back-end C
library, based on Harris and Fraser’s libstm back-end library
[28]—a fully optimistic concurrency implementation, with
read and write logging. Our changes to the library implement
the main back-end features of TIC—namely, the full contin-
uation support, explained next, and the TIC nesting model
(including open nesting support) described in Section 5. The
libstm implementation gave us a way to evaluate a proto-
type quickly. Nevertheless, it was not ideal for practical use,
mainly because of its lazy validation policy: Since the library
does not detect inconsistent data reads until explicit valida-
tion time, client programs needed to be hardened in multiple
ways (typically using signal handlers, but also by ensuring
no infinite loops occur) to avoid anomalies from reading in-
valid data. For a more practical library, our current working
prototype is based on TL2 [17]: an optimistic concurrency
implementation with eager read validation.

To experiment with our library in actual applications,
we created a C++ wrapper library, containing macros (for
atomic, expose, establish), and a set of classes to support
threads, semi-automatic nesting, and compensating actions.
The user still needs to carefully ensure that the desired mem-
ory actions are performed through the transaction system,
but the C++ wrapper offers rudimentary syntactic sugar and
safety checks. (As for other C libraries, the biggest challenge
for seamless use in C++ is that the user needs to explicitly
compensate for the implicit semantics of C++ operations—
e.g., destructors—that are not preserved by our runtime ma-
nipulations.) We have not yet created a mature implementa-
tion for Java (currently the user needs to directly call the C
back-end) but it is straightforward to employ the standard ap-
proach of Java 5 method-level annotations [22, section 9.7]
for syntax extension and bytecode transformation for adding
semantics, without needing to change the source compiler.
Our propositional type system easily translates to existing
constructs in the Java type system (e.g., require anexpose

... establish clause through Java’s static check for excep-
tion catching). The recent literature is rich with mechanisms
applicable in our context for translating transactional exten-
sions down to regular Java [1, 30, 31, 34, 40, 46]. There-
fore, this aspect of the implementation is well-understood,
and we concentrate next on elements unique to TIC that are
currently captured by our back-end library.

4.3 Implementation Discussion

The TIC model has slightly higher implementation require-
ments than a standard transactional programming model.
This is due to the need for full continuations when a transac-
tion needs to retry after it is suspended. Consider our earlier

example ofkmalloc with an atomic section that contains a
call tomorecore, which contains a suspending operation.

undo(myKfree) void *kmalloc(int sz) {

... atomic {... expose(morecore(bucket));...} ...

}

void morecore(int bucket) {

register union overhead *op;

register long sz; /* size of desired block */

long amt; /* amount to allocate */

int nblks; /* how many blocks we get */

union overhead *fst = NULL;

...

op = expose ((union overhead *)sbrk(amt));

...

}

Just before the call tosbrk, the transaction consisting
of all program actions from the beginning of theatomic
block up until thesbrk statement commits. A new transac-
tion is started, immediately after the call. If that new trans-
action encounters contention and needs to retry, its starting
point is immediately after thesbrk call even though func-
tion morecore has returned. This means that the transaction
system needs to have captured the full continuation corre-
sponding to the state right after thesbrk call. This should in-
clude the state of stack variables, such assz, bucket, op, etc.
(We assume a conventional stack/heap state split, although
clearly a runtime system may choose any alternative imple-
mentation.)

The requirement for full continuations is only a modest
increase from the bookkeeping required in standard (non-
punctuating) transactional models. The heap portion of a
program’s state, as well as the state of the topmost stack
frame, need to be tracked by conventional transaction mech-
anisms anyway. For instance, consider the above routine
kmalloc with a standard block-structured atomic section. On
a transaction retry, the implementation still needs to be able
to restore the stack state ofkmalloc as of the beginning of
theatomic block. However, a conventional implementation
does not need to track the stack state of suspending methods
called bykmalloc.

This modest cost of creating and using full continuations
is actually incurred rarely. Full continuations are needed
only in atomic sections that have anexpose clause or a
Wait operation, and only if transaction suspension actually
occurs—that is, if the condition of theWait operation is
false, or an innermost suspending operation is indeed exe-
cuted.

Our implementation relies on the existing TL2 mecha-
nisms for handling conflicts when concurrent atomic sec-
tions access global or heap data and to discover when a trans-
action needs to be aborted. Changes were necessary only
to handle saving and restoring local state (i.e., registersand
stack frames) when a transaction commences and aborts, re-
spectively.

Our implementation specifics (modulo open-nesting, de-
scribed in the next section) are fairly straightforward. Read
and write operations to global and heap locations are imple-
mented with calls to the underlying library’s word-level read
and write primitives. Entry to and exit from an outermost
atomic section results in the beginning and attempt to com-
mit, respectively, of a TL2 transaction. Innermost (i.e., root)
suspending operations attempt to commit the transaction. If
the transaction successfully commits, the suspending oper-
ation is executed and a new transaction begins immediately
after it. In case of aWait, we first test theWait condition
and attempt to commit the transaction if it is false. The new
transaction begins with an evaluation of theWait condition.
We had to enhance the base TL2 library to include a block-
ing primitive, which was modeled afterSTMWait in libstm.

When a conflict is discovered, the commit operation can-
not complete, and the current transaction must be rolled back
to its initial state. The base library takes care of restoring
global variables and heap data; to restore the state of any lo-
cal variables and the program counter we use our own imple-
mentation of continuations. This is architecture specific,but
straightforward, as we are not concerned with heap space.
The implementation saves continuations when transactions
are punctuated (via theexpose andestablish macros). The
management of continuations is handled behind the scenes
by calling semi-portable routines, such asmemcpy (to copy
the stack),setjmp, andlongjmp. As discussed, continuations
are created only when aWait statement is reached and its
condition is false or a call is made to a root suspending op-
eration.

Our measurements show that the cost of saving/restoring
full continuations is modest, and becomes negligible if one
considers how rarely it is incurred (only on actual suspen-
sion). For ourkmalloc example, we measured a cost of 230
cycles for saving the registers and stack frames for a full con-
tinuation (all numbers are for single-threaded execution on
a 2.16GHz Intel Core 2 Duo and report the median of seven
runs, each averaged over 30,000+ iterations). However, the
overhead ofsetjmp is already incurred by TL2 on all trans-
actions as part of setup for possible transaction retries. This
means that the cost of a continuation is reduced to the cost
of a memcpy for the current thread’s active stack frames. For
example, a transaction containing no function calls and two
writes takes 900 cycles. The same code with the transaction
punctuated between the two writes takes 1650 cycles, which
is almost identical to two separate single-write transactions
at 1640 cycles.

5. Nesting in TIC
We next discuss topics concerning TIC and transaction nest-
ing. We first examine the relationship of TIC to the idea of
open-nesting in general. Then, we describe in more detail
the TIC nesting model. We also discuss the safe use of open-

nesting transactional systems in general, and interestingin-
teractions of transaction punctuation with open-nesting.

5.1 Relation to Open-Nesting

The main feature of the TIC model is transaction punctuation
through waiting or suspending operations. Nevertheless, TIC
also integrates open-nesting features, such as open transac-
tions and compensating (undo and on-commit) actions. It is
interesting, therefore, to ask how TIC compares with open-
nested programming models. The answer is twofold:

• TIC has distinctly different goals than open nesting:
Rather than addressing scalability and performance con-
cerns, TIC aims to support thread communication and irre-
versible operations, while maintaining the high-level prop-
erties of transactions. Nevertheless, TIC can sometimes be
used to address performance concerns, as an alternative to
open-nesting. Consider the example of a fairly independent
but long-running operation that needs to be executed in the
middle of a transaction. (We saw such examples in Sec-
tion 3.4.) Open-nesting allows long-running operations to
commit independently, in an open transaction. TIC allows
them to move to a different thread and have the two threads
coordinate usingWait statements. Alternatively, TIC al-
lows the programmer to label the long-running operation
with a suspending annotation, which punctuates the main
transaction and returns to it on completion.

In principle, open-nesting could also be used for some
of the main TIC tasks of thread communication and irre-
versible operations. Yet open-nesting offers alower-level
programming model, delegating to the user the responsibil-
ity for establishing higher level properties using (regular or
abstract) locks [13, 45].4 Without user intervention, the de-
fault semantic guarantees of open-nesting are much weaker
than those of TIC. Agrawal et al. [2] offer examples where
open-nesting violates fundamental properties of transac-
tional memory, such as serializability and composability.
The difference between TIC and open-nesting isnot in the
violation of serializability, however. Transaction punctu-
ation also violates serializability for a punctuated atomic
section as a whole, guaranteeing instead serializability for
individual transaction parts. The difference is that open-
nesting also violatesprogram order(i.e., the logical or-
der of operations in a single thread). For instance, when
an open-nested transaction commits memory changes, the
preceding changes in parent transaction data remain un-
committed. In this way, the effects of an open-nested trans-
action may appear to take placebeforeparent transaction

4 Note that, originally, in the database setting, the termopen-nestedreferred
to “the ‘anarchic’ version of multi-level transactions” [23], which have no
semantic restrictions between parent and child transactions (i.e., no seman-
tic locking). Some authors follow this distinction in the transactional mem-
ory literature [13] but most, like us, use the term to includethe possibility
of locks for expressing high-level constraints [44, 45, 46].

actions that caused the open-nested transaction’s execu-
tion.

Additionally, with open-nesting there is no guarantee
(again, without explicit user intervention) that compos-
ing individually atomic operations in a single atomic sec-
tion will yield an atomic operation. The excellent Agrawal
et al. example [2] is illustrative: An open-nested transac-
tion can be checking some shared memory location,m,
and storing the result in a local variable,c, thus affecting
the control (or data) flow of its parent transaction. Nev-
ertheless, the transactional system is not aware thatc is
invalidated whenm’s contents change. The problem af-
fects all (closed-nested) transactions that contain the open-
nested one, making the operation containing the open-
nested transaction non-composable with others. TIC punc-
tuation raises similar issues, but, unlike in open-nesting,
the programmer does not need to look inside the composed
operations to determine that they may cause violations of
atomicity: The type system warns when this is the case and
requires the user to supplyexpose...establish clauses.

In a sense, open-nestingpuncturesa transaction instead
of punctuatingit. Open-nesting exposes results both to and
from the parent transaction, which can violate isolation and
atomicity, respectively. We believe that a disciplined ap-
proach calls for transaction punctuation when this occurs.
Nevertheless, this forces on the user the obligation to write
correctexpose...establish clauses at every nesting level.
This may be undesirable, even though each level’s reason-
ing is local (i.e., deals only with that level’s invariants).

• There are elements that TIC just inherits from open-
nesting models, since the main TIC feature (punctuation) is
largely orthogonal to open-nesting. We profitably used TIC
open-nesting features in our examples to stop propagation
of the need forexpose ... establish clauses in caller
methods. This is the main use of open-nesting in TIC:
When an externally visible operation can be reversed (with
an undo action, possibly combined with an on-commit ac-
tion to postpone some effects) the operation can be safely
used in transactions without punctuating them and forcing
the programmer to re-establish invariants. (For this to be
valid, the possibility of other threads observing the exter-
nal effects should not affect application-level correctness,
as discussed in Section 2. This is a strict condition, which
could be relaxed by adding locks to the model to let the
user prevent operations that might conflict.) We believe
that this is a modest, but desirable, use of open-nesting,
which is well-aligned with the principles of correct open-
nesting usage [45]: The open-nested transaction is at a sep-
arate, lower level of abstraction than its parent transaction.

The TIC open-nesting model is currently limited. For in-
stance, our set of compensating actions only contains on-
abort (i.e., undo), and on-commit actions. More handlers
(on-validate, on-top-commit) may offer extra power to

open-nesting models, especially in conjunction with lock-
ing support (which brings out the need to distinguish val-
idation from commitment) and with more advanced data
sharing between forward and compensating actions. We
have not found the current limitations to be seriously con-
straining, since transaction punctuation can replace many
uses of open-nesting. In the future, the TIC open-nesting
features can be enriched without affecting the main ele-
ments of the model.

5.2 The TIC Nesting Model

We next describe more precisely the current TIC nesting se-
mantics. This allows us to answer questions such as “what
is the execution context and concurrency model of an undo
operation?” and “what happens when a suspending operation
occurs inside an open-nested transaction?” This also exposes
in more detail the current open-nesting support of TIC. We
believe that this behavior can largely be tuned without affect-
ing the main features of the model, but the current specifica-
tion fits well with our notion of correct open-nesting usage,
as we will demonstrate. We make an effort to distinguish the
description of the nesting behavior from our current imple-
mentation, so we avoid referring to implementation artifacts
(e.g., locks or read/write logs) except when explicitly com-
paring implementation techniques.

Let us first define how language constructs affect open-
or closed-nesting. There are two kinds of relevant scoping
language constructs, which nest dynamically. The first is
methods with anundo annotation, as well as undo and on-
commit actions themselves—we call their scope anopen
context. The second is atomic sections and root suspending
operations—anatomiccontext. That is, we treat transactions
inside an undo or on-commit action as open-nested (as Ni
et al. [46] do), and we treat root suspending operations as if
designating a separate transaction for the purposes of nesting
behavior. The behavior of the system in each context is
determined by the contexts surrounding it in dynamic scope:
we process contexts from outer to inner, or caller to callee.
The rules are simple: (We write “context1+ context2” to
mean that the rule applies for code whose immediate context
is context2when context2is dynamically nested directly
insidecontext1with no other context between.)

• atomic + atomic : The inner atomic section is closed-
nested (more precisely,flat-nested[2]) in the outer one,
forming a single transaction, for all intents.

• atomic + open : The code in theopen context is out-
side the control of the transactional system. (If such code
needs concurrency control, it should contain atomic sec-
tions, thus creating anatomiccontext.) The parent transac-
tional context is recorded for possible later use. If theopen
context is a method with anundo annotation, the undo ac-
tion is registered at the method’s point of invocation. The
action is not enabled, however. (It will not be unless the
method includes anatomiccontext.)

• open+ open: No change. Code in the inner context re-
mains non-transactional, the recorded parent transactional
context remains the same.

• open+ atomic : The atomic section starts a new transac-
tion, open-nested in the current parent transactional con-
text. If theopencontext corresponds to a method with an
undo annotation, the undo action at the point of method
call return is enabled for execution during the parent trans-
action roll-back process.

Most of our treatment of open-nesting and compensat-
ing actions follows standard conventions. E.g., undo actions
are called in the reverse order they are registered, an outer
undo action prevents inner ones from being executed, etc.
For issues of read-write and write-write conflicts between
an open-nested transaction and its parent, we follow an ap-
proach similar to Ni et al. [46] (e.g., updating the parent’s
log). Nevertheless, some elements require clarification orare
unconventional. These are listed next:

• Transaction punctuation affects only the current real
transaction—i.e., all atomic sections up to the innermost
open-nesting boundary, or up to the top-level atomic sec-
tion (if no open-nesting has taken place). This is also con-
sistent with our type system definitions of Section 4.

• All open-nested transactions roll back to their beginning
point and never cause the parent transaction to abort. Re-
call that, per our previous definitions, open-nested transac-
tions are started at the top-level atomic section of a method
with an undo operation, as well as a method that is itself
called as an undo or on-commit action.

• Open-nested transactions can see the local (i.e., non-
shared memory) effects of their parent transaction, as well
as a consistent view of shared memory. This permits mul-
tiple implementations: A consistent view of shared mem-
ory can be the current committed state, or the state that
would result if the parent transaction were to commit at this
point—in case, of course, its actions are still valid. (An ex-
plicit validation call is required for an implementation with
lazy validation.)

To see the rationale for the above behavior, we next con-
sider some examples.

It is a general requirement in open-nested transactions
that on-abort actions (i.e., our undo operations) should be
able to abort and commit independently (i.e., restart from
their beginning when retrying, instead of restarting the par-
ent transaction). The requirement comes from the use of
undo operations: it makes no sense for an undo to cause a
parent abort, since it was the parent abort that necessitated
the undo in the first place.

In TIC, it is natural to extend the above requirement from
just undo actions to all kinds of open-nested transactions be-
cause of the possibility of transaction punctuation. Consider
the following example: (We try to keep the examples concise

by using pseudo-keywords. We use “openatomic” in place
of a separate method with anundo annotation and an atomic
section in it, and “undo” for an undo method with an atomic
section in it.)

atomic { ...

openatomic {

... p = expose(sbrk()); ...

} undo { ... }

}

The top part of the open-nested transaction can commit
independently at the point of suspension (call tosbrk—used
just as an example of a suspending operation). If, however,
the bottom part of the open-nested transaction (i.e., after
the sbrk) needs to abort and retry, it cannot restart at the
top of its parent transaction (since this would repeat the
top part of the open-nested transaction, as well, and the
suspending operation has already committed its results to
memory). Instead, the punctuated open-nested transaction
commits and aborts independently of its parent.

As stated above, open-nested transactions see a consis-
tent view of shared memory (i.e., cannot see partial trans-
action results, unless these come from the parent transac-
tion and have not been invalidated). Typical implementa-
tions of open-nesting are pessimistic/lock-based withundo
logging: Information is kept to allow undoing shared mem-
ory effects. In this case, shared memory already reflects the
uncommitted effects of the parent transaction, so it is rea-
sonable for the open-nested transaction to access them. An
optimistic implementation, however, will typically storethe
parent transaction’s effects in a log until the parent commits
(redo logging). In this case, it may not be reasonable to al-
low the open-nested transaction to see the uncommitted ef-
fects of its parent. For instance, in the case of an undo oper-
ation, the parent transaction’s state is not a valid state. (The
undo operation is called exactly because the parent transac-
tion encountered interference and abortedafter performing
operations that may be invalid.) Furthermore, the possibility
of exposing state that only exists in the parent’s log makes
the programming model awkward. Consider the following
example: (Interestingly, a very similar example was shown
independently in [44].)

// n originally 0

atomic {

n = 1;

openatomic {

n++;

} undo { n--; }

...

}

The decrement operation is not a correct undo action
for the increment. Incrementing the shared memory variable
inadvertently exposes the effects of the parent transaction.
A correct undo requires reverting to the original value of
the variable. This is not possible unless we expose to the

user a richer set of values than just the parent transaction’s
view of a variable. (Other alternatives include enabling the
above code to execute correctly by causing cascading aborts
for all transactions that happen to read exposed data. This is
complex and suffers from heavy overheads, however.)

To circumvent the above problems, in our optimistic im-
plementation we do not allow an open-nested transaction to
observe the uncommitted shared memory effects of its par-
ent transaction. Instead, the open-nested transaction only ob-
serves the latest committed values to shared memory. This
is somewhat counter-intuitive, but in line with correct use
of open-nesting. Moravan et al. [44] proposed the follow-
ing discipline condition for open-nested transactions: An
open-nested transaction should not write any data written by
the parent transaction. Indeed, we believe that the condition
should be even stronger:An open-nested transaction should
never perform a write that is (control- or data-)dependent
on shared data written by its parent transaction. Without
the stronger condition, it is easy to violate global invari-
ants (that depend only on shared data, and which all trans-
actions would respect if they were isolated) by having an
open-nested transaction expose uncommitted state. (With the
stronger condition, an open-nested transaction can inadver-
tently only violate invariants that involve both global and
local data.) An easy way for the programmer to ensure the
condition is to not allow an open-nested transaction to ac-
cess any shared data written by the parent. In this case, our
requirement for a “consistent view of shared memory” in an
open-nested transaction is sufficient to make the code obliv-
ious to implementation specifics, such as whether the parent
transaction’s uncommitted writes are visible.

The above principle also covers well our intended use of
open-nesting in TIC: We employ open-nesting to hide op-
erations that are reversible at the application level. For an
operation to be reversible, it should not be exposing its par-
ent transaction’s data to other threads (which is a potentially
irreversible effect) in a way that affects application correct-
ness. Thus, it is a good property for an open-nested trans-
action to never access shared data from its parent. This fol-
lows the conventional wisdom about strict abstraction sep-
aration of open-nested actions: Quoting Moss [45], “in the
open nesting case the parent and child executeat different
levels of abstraction.” Our kmalloc example of Section 3 is
exactly such a case.

6. Related Work
Modularity is a central recurring theme in the development
of models and mechanisms for concurrent programming,
from supplanting raw semaphores with conditional critical
regions [35] and then monitors [36], through refinement
of monitor and condition variable semantics to reduce the
fragility of process coordination [39], through introduction
of the transaction concept [21] to decouple maintenance of
consistency from definition of individual data structures,up

to more recent work on programming language support for
transactions.

The TIC model draws inspiration and ideas from several
earlier models, both transactional and monitor-based. The
programmer requirement to reestablish the global invariant
just beforeWait() and to reestablish local invariants justaf-
ter follows directly from the correctness reasoning already
established in the earliest definitions of monitors [36]. Our
approach to transaction suspension is somewhat analogous
to mechanisms that punctuate atomicity in monitors in a con-
trolled way (e.g.,serializers[4]). Punctuated transactions are
also somewhat analogous tochain transactionsin database
systems [23] and their variants for persistent programming
[7] and workflow systems [48], but after the first part of a
punctuated transaction commits atexpose, it is independent
of subsequent parts, exposes its results, and can never be
rolled back. Our type system handling of suspending opera-
tions is close to conventions for monads in Haskell, and the
Haskell type system has been used before for the purpose of
identifying non-transactional operations [29].

Herlihy and Moss proposed transactional memory sys-
tems more than a decade ago [32], and design of hardware
support has accelerated in response to the widespread avail-
ability of multi-core computer hardware. Several hardware
transactional memory projects, including logTM [43], TCC
[26, 12, 42] and others [32, 47, 15, 49, 8, 51] are explor-
ing the design space for hardware support for transactional
memory. Proposals vary regarding whether conflicts are de-
tected eagerly or lazily, whether changes are made directly
to memory (with old values stored elsewhere in case a trans-
action is aborted) or written only when committing (making
abort cheap but commit more expensive), how external or
non-transactional actions are treated (e.g., whether and how
to support open nesting), etc. In principle, a programming
model should hide from the programmer whether the un-
derlying mechanisms are partly or wholly implemented in
hardware, as well as operational details of the implementa-
tion. In practice, it is unlikely that a programming model can
entirely hide these design choices, at least insofar as theyim-
pact cost.

A key and troublesome interaction between a high-level
program model and the underlying implementation involves
interaction of transactions with memory accesses outside
transactions.Strong atomicity, as defined by Blundell et al.
[9], essentially treats otherwise unguarded accesses as small
transactions. Most implementations, however, can be ex-
pected to provide only some form ofweak atomicity, which
(like memory models weaker than sequential consistency)
opens a plethora of difficult questions, right down to interac-
tions between high-level transactions and the memory model
governing individual accesses. Grossman et al. [25] present a
classification and examples of isolation and ordering anoma-
lies that may or may not be allowed under varying weak
atomicity models, and provide the beginnings of an approach

to reasoning about weak atomicity and memory models with
(weak and strong) happens-before relations.

TIC inherits a weak atomicity model from the underlying
libstm and TL2 libraries [28, 17], and so can behave in un-
intuitive ways if shared variables are accessed outside trans-
actions. Despite recent reports of achieving strong atomicity
at modest cost, through extensive optimization [50], our ex-
pectation is that (as in memory consistency models) perfor-
mance considerations will continue to make weaker atom-
icity guarantees a practical necessity. The basicWait and
establish features of TIC should not introduce complica-
tions beyond those of other closed nesting transaction sys-
tems, except thatWait is only guaranteed to notice condi-
tions changed by transactions.suspending methods, on the
other hand, could be subject to ordering anomalies described
by Shpeisman et al. [50] and require special scrutiny.

Nearly all STM proposals require some form of transac-
tion roll-back, either abandoning a temporary, thread-local
record of memory writes (where conflict detection is per-
formed lazily, at commitment time), or else undoing the ef-
fects of writes to memory. Schemes that use write locks but
not read locks must re-validate reads before committing, and
may be forced to roll back memory effects. Schemes that
use both write and read locks (as in strict 2-phase locking)
may be forced to roll back by deadlock [20]. All such ap-
proaches face the basic problem of data dependencies with
I/O (read-after-write) [24]. The only approaches that can
avoid this problem are purely pessimistic approaches that
also statically prevent deadlock, rather than dynamicallyde-
tect it [41, 19, 33], but these require complex program analy-
sis which is apt to be non-modular (hence expensive) or else
rely on extensive program annotation. The safe (but some-
times inconvenient) way to perform I/O in TIC is with punc-
tuated transactions, but the back door of open nesting is ajar,
with the usual risks.

Harris has described an approach to external operations
with effects directly to the heap but isolated from other trans-
actions, and using two-phase commit and buffering to ob-
tain transactional behavior for I/O [27]. Unlike either open
nested transactions or TIC, Harris’s approach does not ex-
pose intermediate state. On the other hand, in addition to
requiring a good deal more machinery to properly wrap and
protect external operations, this approach is not sufficient for
read-after-write idioms, or for complex external operations
that both mutate state and return a value. Consider an op-
eration likesbrk in the example we saw in Section 3.sbrk

returns a value that the application needs to use, yet performs
a state change in the process. Thus, it can neither be delayed
(due to the read) nor replayed (due to the state change). Even
if the interface ofsbrk is changed to be idempotent (e.g., by
adding a version number), the problem remains: A transac-
tion that retries might not callsbrk the second time, and no
other transaction might be able to consume that memory.

Chung and colleagues’ study of common patterns in cur-
rent (locking-based) programs [16] shows that, if we sim-
ply translate current code to transactions, the average nest-
ing depth is modest and non-transactional operations are not
common. It remains to be seen whether these distributions
hold when programmers can use transactions directly, and
one may surmise that, as hierarchical composition is one of
the chief motivations for adopting a transactional style of
programming, typical nesting depth could increase in pro-
grams written directly in that form. At the very least, though,
Chung’s results imply that measures taken to accommodate
waiting and external effects in nested transactions must not
have a substantial cost for the (so far) common case of trans-
actions that are only shallowly nested and affect only mem-
ory.

Checkpoints have an interesting relation to transaction
roll-back. The purpose of both is to return a system to a glob-
ally consistent state. Checkpointing does this by either main-
taining a global snapshot, or retaining a set of local snapshots
that form a “consistent cut” representing a state that the sys-
tem could have reached (even if the local snapshots were
never current at precisely the same time) [14, 18]. Recent
work developing transparent checkpoint facilities for Con-
current ML [53] is an example of maintaining enough de-
pendence information to roll back several interacting threads
to a consistent state; this is what in database terms would be
calledcascading abort. In contrast, all STM systems to our
knowledge are designed to make cascading abort unneces-
sary. For example, systems that use write locks but not read
locks may need to roll back if validation at commit time re-
veals stale read values, but the write locks (which permit
anti-dependence but not dependence between uncommitted
transactions) ensure that memory writes can be backed out
without aborting other transactions. Recall that in TIC our
establish statements are only for reestablishing local con-
sistency; global consistency is established beforeexpose.

7. Conclusions
A key goal of transactional programming is to avoid or
minimize non-local reasoning about thread interactions. To
achieve this goal, it is essential that transactions are compo-
sitional in the sense that the decision to make one method
transactional does not require “looking inside” other meth-
ods to determine whether they are also transactional. At the
same time, transaction support must be sufficiently general
that common operations can be enclosed in transactions. For
standard imperative programming patterns, external opera-
tions such as I/O cannot be poison pills that prevent using
transactions in the whole tree of calling methods. This cre-
ates a tension between isolation (to simplify reasoning) and
communication (to get work done). The TIC model mostly
retains the closed nesting model of transactions, with a small
number of careful extensions to better accommodate com-
mon programming idioms like barriers and conditional wait-

ing as well as other operations that break the standard closed
nesting semantics.

While the TIC model necessarily punctuates transactions,
sacrificing isolation for communication at controlled points,
the type system preventsunanticipatedinteraction between
threads by making the possibility of suspension visible in
method signatures, and by requiring the programmer to ac-
knowledge the potential interruption at the point of the
method call.

We have reengineered substantial existing lock-based
programs to use the TIC model, confirming that it meets our
goal of providing a more general, convenient programming
model while preserving the main benefits of transactional
memory.

Acknowledgments
This work was funded by the NSF under grant CCR-
0735267 and by LogicBlox Inc.

Earlier discussions with Tony Hannan on transactional
memory and LihChyun Shu on concurrency control helped
form the background of this paper.

We would like to thank the anonymous reviewers for
many valuable comments that helped improve the paper.

References
[1] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon,

Brian R. Murphy, Bratin Saha, and Tatiana Shpeisman. Com-
piler and runtime support for efficient software transactional
memory. InPLDI ’06: Proceedings of the 2006 ACM SIG-
PLAN conference on Programming language design and im-
plementation, pages 26–37, Ottawa, Ontario, Canada, 2006.
ACM Press.

[2] Kunal Agrawal, Charles E. Leiserson, and Jim Sukha.
Memory models for open-nested transactions. InMSPC
’06: Proceedings of the 2006 workshop on Memory system
performance and correctness, pages 70–81, San Jose,
California, 2006. ACM Press.

[3] Andrei Alexandrescu. Modern C++ Design. Addison-
Wesley, 2001.

[4] Russell Atkinson and Carl Hewitt. Synchronization in ac-
tor systems. InPOPL ’77: Proceedings of the 4th ACM
SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages, pages 267–280, Los Angeles, California,
1977. ACM Press.

[5] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe,
and Paul R. Wilson. Hoard: A scalable memory allocator for
multithreaded applications. InInternational Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-IX), pages 117–128,
Cambridge, MA, November 2000.

[6] Emery D. Berger, Benjamin G. Zorn, and Kathryn S.
McKinley. Composing high-performance memory allocators.
In SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 114–124, 2001.

[7] Stephen Blackburn and John N. Zigman. Concurrency
- the fly in the ointment? InProceedings of the 8th
International Workshop on Persistent Object Systems (POS8)
and Proceedings of the 3rd International Workshop on
Persistence and Java (PJW3), pages 250–258, San Francisco,
CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[8] Colin Blundell, Joe Devietti, E. Christopher Lewis, and
Milo M. K. Martin. Making the fast case common and the
uncommon case simple in unbounded transactional memory.
In ISCA ’07: Proceedings of the 34th Annual International
Symposium on Computer architecture, pages 24–34, San
Diego, California, USA, 2007. ACM Press.

[9] Colin Blundell, E. Christopher Lewis, and Milo M. Martin.
Subtleties of transactional memory atomicity semantics.
IEEE Comput. Archit. Lett., 5(2):17, 2006.

[10] Colin Blundell, E Christopher Lewis, and Milo M. K. Martin.
Unrestricted transactional memory: Supporting I/O and
system calls within transactions. Technical Report CIS-
06-09, Department of Computer and Information Science,
University of Pennsylvania, Apr 2006.

[11] Brian D. Carlstrom, JaeWoong Chung, Hassan Chafi,
Austen McDonald, Chi Cao Minh, Lance Hammond,
Christos Kozyrakis, and Kunle and Olukotun. Transactional
execution of java programs. InOOPSLA 2005 Workshop
on Synchronization and Concurrency in Object-Oriented
Languages (SCOOL). Oct 2005.

[12] Brian D. Carlstrom, JaeWoong Chung, Hassan Chafi,
Austen McDonald, Chi Cao Minh, Lance Hammond,
Christos Kozyrakis, and Kunle Olukotun. Executing Java
programs with transactional memory.Science of Computer
Programming, 63:111–129, 2006.

[13] Brian D. Carlstrom, Austen McDonald, Michael Carbin,
Christos Kozyrakis, and Kunle Olukotun. Transactional
collection classes. InPPoPP ’07: Proceedings of the 12th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 56–67, San Jose, California,
USA, 2007. ACM Press.

[14] K. Mani Chandy and Leslie Lamport. Distributed snapshots:
determining global states of distributed systems.ACM Trans.
Comput. Syst., 3(1):63–75, 1985.

[15] Weihaw Chuang, Satish Narayanasamy, Ganesh Venkatesh,
Jack Sampson, Michael Van Biesbrouck, Gilles Pokam,
Brad Calder, and Osvaldo Colavin. Unbounded page-based
transactional memory. InASPLOS-XII: Proceedings of the
12th International conference on Architectural support for
programming languages and operating systems, pages 347–
358, San Jose, California, USA, 2006. ACM Press.

[16] JaeWoong Chung, Hassan Chafi, Chi Cao Minh, Austen
McDonald, Brian D. Carlstrom, Christos Kozyrakis, and
Kunle Olukotun. The common case transactional behavior
of multithreaded programs. InProceedings of the Twelfth
International Symposium on High-Performance Computer
Architecture. Feb 2006.

[17] David Dice, Ori Shalev, and Nir Shavit. Transactional locking
II. In Shlomi Dolev, editor,Distributed Computing, 20th
International Symposium (DISC), volume 4167 ofLecture

Notes in Computer Science. Springer, 2006.

[18] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and
David B. Johnson. A survey of rollback-recovery protocols in
message-passing systems.ACM Comput. Surv., 34(3):375–
408, 2002.

[19] Michael Emmi, Jeffrey S. Fischer, Ranjit Jhala, and Rupak
Majumdar. Lock allocation. InPOPL ’07: Symposium
on Principles of Programming Languages, pages 291–296.
ACM Press, 2007.

[20] Robert Ennals. Software transactional memory should not be
lock free. Technical Report IRC-TR-06-052, Intel Research
Cambridge, 2006. Available fromhttp://berkeley.
intel-research.net/rennals/.

[21] Kapali P. Eswaran, Jim N. Gray, Raymond A. Lorie, and
Irving L. Traiger. The notions of consistency and predicate
locks in a database system.Commun. ACM, 19(11):624–633,
1976.

[22] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.The
Java Language Specification, Third Edition. Prentice Hall,
2005.

[23] Jim Gray and Andreas Reuter.Transaction Processing:
Concepts and Techniques. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1992.

[24] Dan Grossman. The transactional memory / garbage
collection analogy. InACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, Essays
Track. ACM SIGPLAN, October 2007.

[25] Dan Grossman, Jeremy Manson, and William Pugh. What
do high-level memory models mean for transactions? In
MSPC ’06: Proceedings of the 2006 workshop on Memory
system performance and correctness, pages 62–69, San Jose,
California, 2006. ACM Press.

[26] Lance Hammond, Vicky Wong, Mike Chen, Brian D.
Carlstrom, John D. Davis, Ben Hertzberg, Manohar K.
Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle
Olukotun. Transactional memory coherence and consistency.
In Proceedings of the 31st Annual International Symposium
on Computer Architecture, page 102. IEEE Computer
Society, Jun 2004.

[27] Tim Harris. Exceptions and side-effects in atomic blocks.
Science of Computer Programming, 58(3):325–343, 2005.

[28] Tim Harris and Keir Fraser. Language support for lightweight
transactions. InOOPSLA ’03: Proceedings of the 18th
Annual ACM SIGPLAN Conference on Object-oriented
Programing, Systems, Languages, and Applications, pages
388–402, Anaheim, California, USA, 2003. ACM Press.

[29] Tim Harris, Maurice Herlihy, Simon Marlow, and Simon
Peyton-Jones. Composable memory transactions. In
Proceedings of the ACM Symposium on Principles and
Practice of Parallel Programming, Jun 2005.

[30] Tim Harris, Mark Plesko, Avraham Shinnar, and David
Tarditi. Optimizing memory transactions. InPLDI ’06:
Proceedings of the 2006 ACM SIGPLAN Conference on
Programming language design and implementation, pages
14–25, Ottawa, Ontario, Canada, 2006. ACM Press.

[31] Maurice Herlihy, Victor Luchangco, and Mark Moir. A
flexible framework for implementing software transactional
memory. InOOPSLA ’06: Proceedings of the 21st Annual
ACM SIGPLAN Conference on Object-oriented programming
systems, languages, and applications, pages 253–262,
Portland, Oregon, USA, 2006. ACM Press.

[32] Maurice Herlihy and J. Eliot B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the 20th Annual International Symposium
on Computer Architecture, pages 289–300. May 1993.

[33] Michael Hicks, Jeffrey S. Foster, and Polyvios Prattikakis.
Lock inference for atomic sections. InProceedings of the
First ACM SIGPLAN Workshop on Languages, Compilers,
and Hardware Support for Transactional Computing. Jun
2006.

[34] Benjamin Hindman and Dan Grossman. Atomicity via
source-to-source translation. InMSPC ’06: Proceedings
of the 2006 workshop on Memory system performance and
correctness, pages 82–91, San Jose, California, 2006. ACM
Press.

[35] C. A. R. Hoare. Towards a theory of parallel programming.
In International Seminar on Operating System Techniques,
1971.

[36] C. A. R. Hoare. Monitors: An operating system structuring
concept.Commun. ACM, 17(10):549–557, 1974.

[37] Richard L. Hudson, Bratin Saha, Ali-Reza Adl-Tabatabai,
and Benjamin C. Hertzberg. Mcrt-malloc: A scalable
transactional memory allocator. InISMM ’06: Proceedings of
the 2006 international symposium on Memory management,
pages 74–83, Ottawa, Ontario, Canada, 2006. ACM Press.

[38] Anthony Kay. AlphaMail. http://sourceforge.net/
projects/alphamail, January 2007.

[39] Butler W. Lampson and David D. Redell. Experience with
processes and monitors in Mesa.Commun. ACM, 23(2):105–
117, 1980.

[40] Jeremy Manson, Jason Baker, Antonio Cunei, Suresh
Jagannathan, Marek Prochazka, Bin Xin, and Jan Vitek.
Preemptible atomic regions for real-time java.rtss, 0:62–71,
2005.

[41] Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer.
Autolocker: Synchronization inference for atomic sections.
In POPL ’06: Conference Record of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, pages 346–358, Charleston, South Carolina, USA,
2006. ACM Press.

[42] Chi Cao Minh, Martin Trautmann, JaeWoong Chung,
Austen McDonald, Nathan Bronson, Jared Casper, Christos
Kozyrakis, and Kunle Olukotun. An effective hybrid trans-
actional memory system with strong isolation guarantees. In
ISCA ’07: Proceedings of the 34th Annual International Sym-
posium on Computer architecture, pages 69–80, San Diego,
California, USA, 2007. ACM Press.

[43] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan,
Mark D. Hill, and David A. Wood. LogTM: Log-based trans-
actional memory. InProceedings of the 12th International

Symposium on High-Performance Computer Architecture,
pages 254–265. Feb 2006.

[44] Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore,
Luke Yen, Mark D. Hill, Ben Liblit, Michael M. Swift,
and David A. Wood. Supporting nested transactional
memory in logTM. InASPLOS-XII: Proceedings of the
12th international conference on Architectural support for
programming languages and operating systems, pages 359–
370, San Jose, California, USA, 2006. ACM Press.

[45] J. Eliot B. Moss and Antony L. Hosking. Nested transactional
memory: Model and architecture sketches.Science of
Computer Programming, 63(2):186–201, Dec 2006.

[46] Yang Ni, Vijay Menon, Ali-Reza Adl-Tabatabai, Antony L.
Hosking, Richard L. Hudson, J. Eliot B. Moss, Bratin
Saha, and Tatiana Shpeisman. Open nesting in software
transactional memory. InProceedings of the Symposium on
Principles and Practice of Parallel Processing, San Jose,
California, March 2007.

[47] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualiz-
ing transactional memory. InISCA ’05: Proceedings of the
32nd Annual International Symposium on Computer Archi-
tecture, pages 494–505, Washington, DC, USA, 2005. IEEE
Computer Society.

[48] Andreas Reuter and Friedemann Schwenkreis. Contracts— a
low-level mechanism for building general-purpose workflow
management-systems.Bulletin of the Technical Committee
on Data Engineering, 18(1), 1995.

[49] Bratin Saha, Ali-Reza Adl-Tabatabai, and Quinn Jacobson.
Architectural support for software transactional memory.In
MICRO ’06: Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 185–
196, Washington, DC, USA, 2006. IEEE Computer Society.

[50] Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-Tabatabai,
Steven Balensiefer, Dan Grossman, Richard L. Hudson,
Katherine F. Moore, and Bratin Saha. Enforcing isolation
and ordering in STM. InPLDI ’07: Proceedings of the
2007 ACM SIGPLAN Conference on Programming Language
Design Implementation, pages 78–88, San Diego, California,
USA, 2007. ACM Press.

[51] Arrvindh Shriraman, Michael F. Spear, Hemayet Hossain,
Virendra J. Marathe, Sandhya Dwarkadas, and Michael L.
Scott. An integrated hardware-software approach to flexible
transactional memory. InISCA ’07: Proceedings of the 34th
Annual International Symposium on Computer architecture,
pages 104–115, San Diego, California, USA, 2007. ACM
Press.

[52] Gerhard Weikum and Hans-Jorg Schek. Concepts and
applications of multilevel transactions and open nested
transactions. InDatabase Transaction Models for Advanced
Applications, pages 515–553. 1992.

[53] Lukasz Ziarek, Philip Schatz, and Suresh Jagannathan.Sta-
bilizers: a modular checkpointing abstraction for concur-
rent functional programs. InICFP ’06: Proceedings of the
Eleventh ACM SIGPLAN International Conference on Func-
tional programming, pages 136–147, Portland, Oregon, USA,
2006. ACM Press.

