Transactionswith I solation and Cooperation

Yannis Smaragdakis Anthony Kay Reimer Behrends Michal goun

Department of Computer and Information Science
University of Oregon
Eugene, OR 97403-1202

{yannis,tkay,behrends,michal} @cs.uoregon.edu

Abstract 1. Introduction and Motivation

We present the TIC (Transactions with Isolation and Co- Transactions as a programming language construct have
operation) model for concurrent programming. TIC adds to been proposed to simplify concurrent application program-
standard transactional memory the ability for atransado =~ ming and avoid programming errors. Complexity and error
observe the effects of other threads at selected points. Thi proneness in conventional concurrent programming mod-
allows transactions to cooperate, as well as to invoke non-els is a consequence of the essential non-locality of rea-
repeatable or irreversible operations, such as I/O. Ceoper soning about lock (or monitor) acquisition order and con-
ating transactions run the danger of exposing intermediatedition signaling. Transactional programming (whether-sup
state and of having other threads change the transaction'sported by a hardware transactional memory, software trans-
state. The TIC model protects against unanticipated iterf actional memory, or source-to-source translation to conve
ence by having the type system keep track of all operationstional locking code) aims to reduce the programmer’s burden
that may (transitively) violate the atomicity of a transant to a single, local design decision about which sequences of
and require the programmer to establish consistency at ap-actions should execute “as if atomic.”

propriate points. The result is a programming model that To relieve the programmer from non-local reasoning
is both general and simple. We have used the TIC model about concurrency, the programming model presented by
to re-engineer existing lock-based applications inclgdin transaction support must have certain essential propertie
substantial multi-threaded web mail server and a memory
allocator with coarse-grained locking. Our experience-con
firms the features of the TIC model: It is convenient for the
programmer, while maintaining the benefits of transactiona
memory.

e It must compose, in the sense that the decision to make
a region of code in one method transactional is indepen-
dent of whether called or calling methods are transactional
This further implies that any restrictions or special cendi
tions on enclosing a method call in a transaction should
be tracked by the type system, rather than requiring a pro-

Categoriesand Subject Descriptors C.5.0 [Computer Sys- grammer to inspect source code of other classes.

tems ImplementatignGeneral; D.1.3Programming Tech-
nique$: Concurrent Programming—parallel programming;
D.3.3 [Programming Languagé§s.anguage Constructs and
Features—concurrent programming structures

e It must be general enough that common operations can
be (transitively) enclosed in transactions, and that com-
mon concurrent programming idioms can either be used
unchanged or have suitable replacements.

General Terms Design,Languages Existing proposals for transaction support still fall shor
of these requirements. For example, atomic sections com-

Keywords transactional memory, nested transactions, monly need to roll back and undo their effects. (An op-

open-nesting, TIC, punctuation timistic concurrency control implementation needs to roll
back when it detects interference from another transaction
A pessimistic implementation needs to roll back, in order to
avoid deadlock, when it fails to acquire a lock.) Roll-back
is incompatible with operations that cannot be undone, such

B e ot oyt 85 /0. Although /O can be automatically buffered (e.gt. pu

for profit or commercial advantage and that copies bear ttismand the full citation off until the end of a transactional section) [27], this i$ ab

on the first page. To copy otherwise, to republish, to posteowess or to redistribute ways consistent with the program’s Iogic, particularly whe

to lists, requires prior specific permission and/or a fee. X . | R

OOPSLA07, October 2125, 2007, Morétal, Qébec, Canada. a read follows a write. Thus, performing irreversible opera

Copyright © 2007 ACM 978-1-59593-786-5/07/0010. .. $5.00 tions becomes a global property in transactional systems: A

transaction needs to be aware of irreversible operatioalt in section cannot block at entry until the condition of the inne
methods it calls, directly or indirectly. Past solutionghés section becomes true—the condition itself depends on the
problem have been draconian: Either irreversible oparatio execution of the firstinner atomic section. Restarting thte o
have been completely disallowed in atomic sections [29], or ermost transaction upon reaching the unsatisfied innedguar
concurrency is disabled and only a single transaction with does not work either—this would undo the effect of the first
irreversible operations can be run at a time [10, 11]. inner atomic section, making the guard unsatisfiable. lddee
A related problem is that of transaction nesting. The the wordatomicitself seems a misnomer in this case: The in-
most reasonable semanticclesed-nestingThe effects of tended behavior is that execution of the outer atomic sectio
a nested transaction are not externally visible until the ou will not be atomic, but will instead be interrupted, allow-
ermost transaction completes. However, this approachtis no ing other threads to observe its results, and itself obisgrvi
modular. Transactional code that needs to communicate itsthe results of other threads at the point of evaluation of the
results to the outside world needs to be careful to avoid be-inner atomic section’s guard. This is the essence of thread
ing used inside another transaction. This makes thread coop cooperation: We want to allow observing the results of other
eration harder. Transactional models often allow dependin threads in a controlled manner, even if the code happens to
on external conditions through guards for atomic sections be called inside an atomic section. /0O can even be viewed as
[28] or through plain use of aetry statement that restarts a special case of a cooperation pattern with the cooperating
the transaction, undoing its current effects [29]. These ap thread provided by the 1/O device.
proaches suffice only at the outermost level of nested trans- In this paper, we present a concurrent programming
actions. Harris and Fraser [28] propose evaluating alldgiar model that attempts to allow freedom in how the code is
of inner transactions at the outermost level. An altermativ structured, while handling uniformly both irreversiblesop
is to restart the outermost transaction if an inner transac- ations and thread cooperation. We call the mofé} for
tion’s guard fails. Both approaches are insufficient fooaH Transactions with Isolation and CooperatiomlC allows
ing threads to cooperate. For instance, consider the sénple temporarily suspending a transaction’s atomicity andaisol

thread coordination—a barrier: tion properties in the middle of astomic block. The type
void barrier() { system tracks all occurrences of such suspending opesation
atomic { count++; } and ensures that the user provides a way to recover from
atomic(count == NUMTHREADS) { them. For instance, our barrier example can be written as:
/* barrier reached */ void barrierTIC() {
¥ atomic {
b count++;

(We use a Harris-and-Fraser-like Java extension for this Wait(count == NUMTHREADS);
example—note the Conditional Critical Region syntax ofthe ~ }
second atomic section.) The guard of the second atomic sec+
tion will only become true whemll threads have finished The wait keyword is a TIC addition to a conventional
the first atomic section. Yet if we want gOOd Composabil- Transactional Memory (TM) programming model. It Sig_
ity properties, the barrier itself should be usable inside a njfies that transactional isolation is suspended until the
atomic section. Such use can possibly be completely acci-condition of thewait statement (in this casecéunt ==
dental, in an atomic section protecting other, unrelated da yymTHREADS") becomes true. Based on our previous discus-
from interference: sion, the interesting case is that ofi#it that does not oc-
atomic { ... barrier(); ... } cur lexically nested inside artomic section, but in a transi-
tively called routine. In this case, TIC dictates that theety
system keep track of operations that possualyt. All such
operations need to occur inside a block of code designated

For ease of exposition, we show the result of inlining the
barrier code, so that the nesting becomes syntactic:

atomic { by “expose(<methodcall>) establish <stmt>". Thus, our
o barrierTIC routine can be called inside an atomic section
atomic { count++; } as:
atomic(count == NUMTHREADS) {)
/* barrier reached */ atomic {
} ...
. expose (barrierTIC()) establish { ... } ;
} ...
}

It is hard to see what would be a reasonable semantics
for the atomic sections in this case. Clearly, the Harris and The statement block following thestablish keyword is
Fraser approach [28] of evaluating nested guards at the out+responsible for re-establishing local invariants that riest
ermost transaction’s level does not apply. The outer atomic of the atomic section expects at this point in the execution.

Importantly, the type system does not allow invocations of e We offer an optimistic implementation of the TIC model.
barrierTIC, Unless under askpose ... establish, evenif We use this implementation to evaluate the model in prac-
these invocations occur transitively. That is, if a methoél tice for realistic multi-threaded applications.

calls a methodar, andbar in turn callsbarrierTIC, then
both the call tobarrierTIC and the call taar need to be
underexpose ... establish expressions. (We discuss later

The rest of this paper is organized as follows. We first
present an overview of the TIC model (Section 2) and then
; , . . discuss our experience with implementing concurrent appli
how th's requirement is relaxed with a checked programmer cations with TIC (Section 3). We describe in more detail the
supplied type annotation.) : o :)
. TIC type system and implementation in Section 4. Section 5
The above example showcases some of the main ele- . . .
. i discusses the TIC nesting model, as well as connections be-
ments of the TIC model. Later sections define the full model :
tween TIC and open-nested transactions. We then contrast

more premsely. Note that TIC IS orthogqnal o many Per \yith related work (Section 6) and conclude (Section 7).
formance and implementation considerations. TIC is a pro-

gramming model, not an implementation technique, and is) .
intended to be compatible with a variety of different imple- 2. |solation and Cooperation

mentation technigues with different performance characte Hell is a place where people live in pairs,

istics and demands on program analysis. In order to evaluate tied back-to-back so they can’t see each other’s face.

the expressiveness and ease of use of the TIC model for real- — Eastern European popular tradition.

istic concurrent applications, we produced initial impkm

tations based on Harris and Fraser’s libstm [28] and Dice et Hell is other people.

al's TL2 [17]. . _ . — Jean-Paul Sartre.
Overall, the TIC behavior can be emulated with tradi-

tional atomic transactions, but not without significant €od We next describe in more detail the TIC programming

reorganization. A reasonable way to view the benefits of TIC model. There are two interesting cases that TIC intends
is as a way to relax the severe restrictions of existing tech- to handle similarly: transactions thaiit and transactions
niques, while maintaining the assurance that the programme that call external operations incompatible with transaml

has considered the impact of transaction suspension. Othesemantics. Such operations typically access some resource
authors (e.g., Carlstrom et al. [11]) have advocated mappin outside the control of the transactional memory system—
condition-variablevaits in lock-based code to transaction e.g., I/O—and either directly expose their results to other
suspension, but with no type system warning of this behav- transactions, or are irreversible. We begin our discussion
ior to the authors of surrounding transactions. with the case of transactions that callit.!

In short, our paper makes the following contributions:
2.1 Transactionsthat Wait

o We define the TIC concurrent programming model that ex- We discuss the TIC model in the context ofidralizedex-
tends transactions to also allow thread cooperation. TIC re tension of the Java language for simplicity of expositiome T
tains all the benefits of traditional transactions in the com same principles can be adapted to other languages and differ
mon case ohtomic Sections that do notait. Atthe same ent integration techniques. Indeed, as we describe later, o
time, it offers a single, uniform mechanism that allows actual prototype is a C++ library which hides many of the
both operations thatit and operations that perform irre- finer details but still requires manual code instrumeniatio
versible actions to be used inside transactional codegwhil ~ The syntax of a TIC transaction (using the conventions of
enabling the transaction to recover from inconsistencies. the Java Language Specification [22]) is:

¢ We demonstrate the simplicity of the model with several atomicStatement:
examples. The type system support of the TIC model was ,iomic Statement

found to be useful for TIC implementations but also for))])
detecting errors in lock-based code (e.g., locks held durin AN AtomicStatemens a Java statement and in practice
high-latency network operations). the statement that follows keywosglomic is usually a com-

. . posite statement (block):
e TIC offers a more disciplined alternative to many uses of

open-nestetransactions. For instance, a long-running op- atomic { statements}
eration can be delegated to a different thread, wile ~ Atomic sections can nest arbitrarily, both in lexical and
used for inter-thread coordination. Nevertheless, thexmai ;, dynamic scope (i.e., an atomic section can include calls

TIC features are complementary to open-nesting. Indeed,y, methods that include other atomic sections). We follow

our current formulation of TIC integrates open-nesting p default aclosed-nestingemantics, where nested trans-
ideas to cover some interesting cases. We allow nested

_tr_ansaCtions to b_e open, if they occur in a method that spec-1\we yse the term “to calWait” for convenience, althouglait is a
ifies compensating actions. statement.

actions do not truly commit until the outermost transaction
does.

the nested transactions in whose dynamic scope it occurs,
and not only its directly enclosing transaction.

For the most part, our idealized Java extension matches We have already seen in the Introduction an example

the decisions of the Harris and Fraser design [28]. E.qg.,

e Our transactions have exactly-once execution semantics.

e All program data can transparently participate in a trans-
action.

e All regular Java control flow (including method returns

where the use afait allows transactions to cooperatait

adds power to atomic sections, but it violates transactiona
semantics. Not only can a transaction tiraitts observe the
results of other transactions (loss isblation) but it also
exposes its own intermediate results to other threads (loss
of atomicity). This is an unavoidable consequence of sup-

and exceptions) can be used inside a transaction and resulPorting communication (through conditions) in the midst

in normal termination (i.e., commit) of the transaction.

of transactional code, as preserving isolation would preve
communication. Since we cannot avoid breaching isolation

Nevertheless, whereas Harris and Fraser implementyhere processes communicate, we must instead take mea-

Hoare’s Conditional Critical Regions (CCRs) [35] program-
ming model, we do not support conditional atomic sections,
as these are supplanted by awit concept. An atomic
block can call arait (Expression operation, with a boolean
Expressiorrepresenting the condition @kit. This has the
effect of checking the condition, and, if it is not true, com-
mitting the current transaction and suspending the thread e
ecuting it until the condition becomes tré@nce the con-
dition becomes true, the transaction restarts from the-stat
ment followingwait. For all purposes, the transaction be-
fore the execution of &ait and that after it are two sep-
arate transactions—we call them ttog and bottomtrans-
actions, relative to eactmit statement. The starting point
of the bottom transaction (e.g., for re-trying purposeshés

wait statement, no matter where this is found in the program.

We use the termsuspendingndresumingthe transaction
for committing the top transaction and beginning the bottom
one. We also use the teppunctuatinghe transaction for the
overall effects of callingait.

Clearly, having aWait operation is unnecessary if it is
unconditionally and directly called inside a single atomic
statement. For instance, a section such as

atomic {
statementBlockA
Wait (condition) ;
statementBlockB
}

can be written equivalently with a CCR:

atomic { statementBlockA}
atomic (condition) { statementBlockB}

The benefit of having an expliciit statement is that it
can be used at any point in a transaction. Thugia could

sures to make this consequent evident to the programmer,
even when thaiait appears at several removes of proce-
dure calls from the transaction that it may punctuate. The
TIC model offers type system support for keeping track of
Waiting operations (as well as other kinds of operations that
violate transactional semantics, as discussed in the pext s
tion). The programmer can then decide whether the code can
be reorganized so that the operation is performed outsale th
atomic section, or if the operation is safe inside the atomic
section with arestablish clause used to re-establish the in-
variants of the transaction after its suspension.

More specifically, we defineraiting methods to be those
that contain a call either tmit or to another waiting method
(thatis, all methods that may calit directly or indirectly).

A call to a waiting method is not legal unless it occurs
inside anexpose ... establish expression. The syntax of

theexpose ... establish expressionis

expose (Expressiol [establish Statement]

whereExpressionis a single call to a waiting method and the
return value of the method becomes the value of the entire
expose ... establish expression. Thestablish clause is
optional—omitting it is equivalent to an empty statement
following the establish keyword. If the call to the waiting
method results in the transaction being suspendedibya
then, when the transaction resumes and the method call
returns,Statements executed. Subsequently, if the bottom
transaction later aborts and re-tries, #h&ablish clause

is also always executed (on return of control flow to this
method). Nevertheless, if the transaction is never agtuall
suspended, either because its control flow does not reach
the wait statement, or because the condition of thet

is already true when first checked, th&tatements not
executed. For illustration, consider a waiting methesland

be invoked nested deeply inside a conditional statement, 5 tyansaction calling it:

or from a method called transitively from other methods
invoked inside aratomic. A Wait Statement punctuates all

2We use the same mechanism as Harris and Fraser [28] for clgeakien
a condition has possibly changed value—namely, we obselnet wpdates
get committed to locations that the waiting transactioreased. A desirable
property for the condition expression is that it be sideeffree, but we do
not currently try to enforce this automatically.

void foo() { Wait(x > 0); }
void bar() {
atomic {
y = 0;
expose(foo()) establish { y = 1; } ;
}
}

The value ofy at the end of the atomic block will de- ods are theoot suspending methods so that method type
pend on whether the transaction is ever punctuated. If thesignatures at the interface with system code are corregtly |
transaction commits as a whole by readingcareater than beled. Second, as is also common in other transactional set-
zero, which prevents theait statement from suspending the tings, a programmer is allowed to specify “undo” actions to
transaction, then thestablish block is not executed, and allow suspending methods to be safely used in transactions.

the value ofy is zero. Otherwise, the value piis 1. Finally, the behavior of retrying a transaction is slighdif

Note that, according to our requirement, methetlitself ferent in the case of suspending methods, compared to wait-
cannot be called outside afxpose ... establish State- ing methods. We discuss these points next.
ment. The reason is that the usevaf in an atomic state- An (external) operation is safe to use inside a transaction

ment can cause the suspension of the transaction with its topwithout surrounding code being aware, if both:

part (up to the call twar) committed and the rest of it ex-) .

ecuting independently and possibly being retried. Code pre 1. its effects are not exposed to other threads in a way that
ceding the call twar has to establish global invariants, in may violate application correctness

anticipation of a possible suspension. Eaeablish clause and

(and_ code following .it) i_s then us_ed tq ensure co_nsistent eX- 2 its effects can be reversed.

ecution by re-establishing local invariants. (Section f@rsf

usage examples in real scenarios and argues why this is a Some approaches (e.g., [16]) propose weakening the sec-

good approach for modularity purposes.) ond condition to “the operation idempotentRe-executing
The programmer can suppress the requirement for anit has the same effects and result as executing it once”. How-
expose ... establish around a method's calls, if the ever, this is not correct in a general programming model.

method is certain to never be used inside an atomic section.Even if an operation is idempotent, retrying a transactfen a
This is done with the annotatiaiplevel. The type system ter a change to shared data can result in the operation now
disallows calls to @aoplevel method in transactions. Forin- being outside the control-flow of the transaction, or being
stance, methosar in our example above contains a transac- called with different arguments. Establishing the idempo-
tion, but it could itself be prevented from ever being called tency of an entire transaction body after a change to shared
inside a transaction if its type signature is changed to: data is generally infeasible. Thus, neither reusing previo
results and effects of a suspending operation nor re-rgnnin

toplevel void bar() { ... /* as before */ }) . . 4
) it are generally safe in the course of retrying a transaction
In this case, calls tear no longer need to be under an In the TIC model, methods that have effects that violate
expose ... establish clause. Naturally, methods that call he requirements of the transactional memory system can
toplevel mg'ghods are also not usable in transactions—a pe |apeled using the annotatieaspending in the method
property verified by our type system. declaration. This annotation is best applied to systeratlev

It is important to realize that the requirement for an perations (e.g., native methods in Java). Any method that
expose Clause is the type system reminder to the program- c4jis a suspending method is also implicitly suspending—
mer that he/she needs to fulfill two obligations: ensure that e se the term “root suspending operations” to distinguish
atomicitycan be relaxed, so that other threads can observeihe pase methods that have #h@pending annotation. For

current results consistently, and ensure thalationcan be jnstance, a JDK implementation will likely declare method
relaxed so that the current transaction can observe theteffe

of other threads (after theit returns) without violating its
consistency properties. The first of these properties is typ Public suspending native void write(int b)
cally handled by the coderecedingthe call towait and not throws IOException;
by the code followingiait (including theestablish clause External operations that can be reversed represent the
in callers), whose purpose is to handle the second property. easy case of handling suspending methods. Following the
))) example ofopen-nestindransactional models [46, 45, 52],
2.2 Handling Suspending Operations we allow the user to specify for each “forward” operation
Waiting methods are not the only ones that require special an “undo” operation and an “on-commit” operation (collec-
treatment in transactions. Any method that violates either tively called “compensating operations”). These are desig
atomicity or isolation needs to be handled specially. Typi- nated by annotationsndo and oncommit, respectively, on
cally this is due to irreversible actions affecting extémea the forward operation. Both operations are methods on the
sources. We call all non-waiting methods that require speci same object as the forward operation. Additionally, compen
handlingsuspendingnethods. The treatment of suspending sating operations accept arguments of the same type as the
methods in TIC is almost identical to the treatment of wait- forward operation, plus extra arguments of the same type
ing methods, described previously. This uniformity is an in as the return type of the forward operation (if non-void) and
teresting feature of TIC. Nevertheless, there are some sub-any exception types the forward operation may throw. For in-
tleties. First, we need to conceptually identify which meth stance, a common pattern is that of an operatiarase as

write iN java.io.RandomAccessFile as:

the undo operation for methad1ocate (but not vice versa).
This would be specified as:

atomic {
if (!balanceUpdated()) {
bal = compute();

undo (release) expose (print ("Balance:" + bal)) establish {
Entity allocate(String name, int length); if (balanceUpdated()) // someone raced us
return;
void release(Entity e, String n, int 1); s
updateBalance(bal) ;

Every method that has aiido annotation causes the out- ¥

ermost transaction it contains to have open-nesting seman-
tics, relative to the method’s enclosing transactionatexin The transaction computes a result based on shared vari-
This means that the transaction commits at its end, indepen-ables and exposes it with an external, irreversible operati
dently of any parent transaction, thus making its results im (print). At this point, the transaction commits and a dif-
mediately visible to other threads. If the parent transacti ferent thread may have raced to fill in the needed result. In
(i.e., the transaction surrounding the method) needs to rol this case, the transaction conservatively chooses to &veid
back and retry, the system calls the method’s undo operationfinal update. If the transaction proceedsufateBalance
to reverse prior committed effects of the nested transactio and this encounters contention that causes a retry, then the
Root suspending operations in a method withusdb anno- transaction will restart from the point right after the exec
tation are also handled similarly. A root suspending opera- tion of the external operation—that is, from the statement
tion is treated as if it were an open-nested transactios. It i uUnderestablish. If the user wants to repeat the suspending
considered to commit if control flow reaches it, which causes operation in case of a transaction retry (perhaps withdiffe
(upon method completion) the undo action of the surround- ent arguments) an explicit loop should be placed around the
ing method to get registered for a possible compensating ac-code containingxpose ... establish. For instance, con-
tion in the future. sider the following example:

The TIC model for compensating actions is slightly atomic {

unconventional, in that the on-commit operation in TIC balance = compute();

is independent of nesting semantics: a method can have
an oncommit annotation either with or without having an

undo annotation and open-nested transactions in it. The on-
commit operation is registered upon return of the annotated

method. Iffiwhen the innermost open-nested transaction, or?

(if all transactions are closed-nested) the outermoss#en

print("Your balance is " + balance);
bet = input("How much will you wager?");
if (bet <= balance)

register(bet);

If print andinput are irreversible operations, then this is

tion surrounding the method validates its reads and is readynot valid TIC code—expose ... establish clauses needto

to commit, the system calls the on-commit operation of the be used. Nevertheless, this example represents a “hopeless

method. case. There is no way to re-establish the transaction’siinva
We later give a more precise description of the TIC nest- ants with anexpose ... establish clause if the external

ing model, as well as a comparison with traditional open- world (human user) observes a balance that is no longer cor-

nesting (Section 5). Until then, we focus more on TIC's rect. The only reasonable recovery in this case is to retry th
transaction punctuating features and compare the model towhole transaction. The user’s input is based on prior output

standard closed-nested transactions.

and, hence, needs to be obtained again. We can do this with

The interesting case of external operations concerns thosean explicit loop:

that are not called under a method with an undo operation.
Such suspending operations are treated much like waiting
ones. A transaction can call a suspending operation only un-
der anexpose ... establish clause. The transaction will
again be punctuated: It will commit immediately before the
root suspending operation call, just as it commits before
blocking on await. The establish Sstatement is expected
to re-establish the transaction’s invariants after thpend-

ing call and the resulting loss of isolation. There is a subtl
difference, however. In case of a transaction retry, thé roo
suspending method call is not repeated. Instead, executio
resumes from the return point of the root suspending oper-
ation, making the correspondirgtablish clause the first
statement executed. For instance, consider a transaction:

atomic {

while (true) {
balance = compute();
expose(print ("Your balance is " + balance)) ;
bet = expose(input("How much will you wager?"))
establish
{ if (balance

compute()) break; };
}
if (bet <= balance)

register(bet);

This creates the obligation to handle transaction sus-

pension in all possible transactions surrounding the cur-
rent code. For this example, since no recovery of any kind

is meaningful and we need to repeat the entire transac-tinct data than the above transaction) often needs to call
tion, we have an alternative that places a lower burden onmethodWithTransaction (and may even do so inside a loop):
clients: We can use thendo annotation to prevent transac- atomic {
tion punctuation and remove the obligation of usiagose ... methodWithTransaction():
. establish clauses in all surrounding transactions. An 4
empty undo action causes the suspending operations to be-
have as if they are perfectly reversible. In this way we also
avoid the explicit loop, in favor of the natural looping beha
ior of transaction retry. For instance, we wrap thent and
input methods:
undo (doNothingString) void myprint(String s) {
print(s);

Now the external operation suddenly finds itself exe-
cuted as part of a transaction, and possibly (erroneously) r
peated when the transaction retries. The operation needs to
be moved again, this time outside the atomic section in the
caller method. This may require significant code restructur
ing: Functional abstraction may need to be violated, trans-

} actions may need to be split, etc. The unfortunate conclu-
undo (doNothingintString) int myinput(String s) { sion is that transactions do not compose well. A transaction
return input(s); can be oblivious to the synchronization strategies of natho
} it calls, but it cannot be oblivious to suspending operation

Using the wrapped methods in place of the originals @n these methods. In shoit) transactional code, perform-

achieves the desired effect without a need for a loop or ING @n irreversible operation is a global propertjust as,
in lock-based code, holding locks is a global property. Sus-

pending operations have the potential to render incordect a
3. Applicationsand Experience transactions under whose dynamic scope they execute, and
not just the immediately surrounding transaction.

The problem of transactional code not composing in the
presence of waiting or suspending operations is unavoid-
able and TIC offers no magical solution. What the model
does is expose to the programmer the points where extra
3.1 Shortcomingsof Traditional Modelsand TIC “glue” needs to be applied and enable him/her to handle the
composition of transactional code, by restoring olugal
invariants every time. The programmer always has the op-
tion to revert to standard techniques for handling suspend-
ing/waiting in transactional programs, such as moving code
outside transactions. In many cases, however, using TIC re-
sults in significantly simpler and more modular code, in ad-
dition to helping avoid bugs. We give some specific exam-

expose ... establish.

We next discuss examples of the applicability and benefits
of TIC relative to existing transactional programming mod-

els. We use C, C++, and Java realizations of TIC in our
examples—see Section 4 for an implementation discussion.

TIC arose from our experience in implementing multi-
threaded applications and trying to express them or restruc
ture them to work with transactional memory mechanisms.
Despite assertions regarding the composability of transac
tions in comparison to locking [28, 29], we have found trans-
actions to not compose well because of the presence of non
transactional operations. We saw an example in the Introduc
tion, involving a barrier pattern. In practice, many common ples from actual code.
patterns have to do with system-level suspending opesation
and not with the need to cooperate with other threfads.) i _
A general pattern that we observed several times in prac- e reengineered the version of the Kingsley memory allo-
tice is the following: An atomic section would normally have ~C€ator supplied with the Heap Layers suite [6] to work with
a suspending operation inside it. With some code restructur transactions, as opposed to fine grained locking. The patter

ing and minor bookkeeping, the operation may be movable We present, however, is typical of multiple memory alloca-
outside the transaction: tors. Itis a good example for the TIC model, because it ex-

poses complexity without being overwhelming.
The Kingsley allocator is one of the fastest general-
purpose memory allocators [6]. The allocator divides free

3.2 Recovering from Suspending Operations

void methodWithTransaction() {
atomic {
. <set bookkeeping data> ...

} blocks into power-of-two size classes. A fragment of the
<use bookkeeping data to perform external op> code in the main allocation routine (using transactions but
} notusing the TIC model) is shown in Figure 1. The code uses

Nevertheless, this has rarely been sufficient. Other code@n atomic section to consistently access a shared data struc

using a transaction (possibly to protect some entirely dis- ture- In the middle of multiple accesses to shared data, the
code calls operatioiiorecore to get more memory from the

81t is_unrealistic_to expect tha_lt eventually all system-le_maerations will operating system if the appropriate free list is empty. Func
acquire transactional semantics. Even though transattioemory alloca- — jnn 1o core, however, callsbrk, which is an irreversible
tors or transactional file systems already exist, transaatinetwork 1/0, . . .

or user I/O is nearly infeasible. In general, much of the meworld is SY_Stem 0perat|0_n- (Even if the operating system allows |0W'
deeply not transactional, as effects cannot be undone. ering thebrk pointer, another thread could have moved it

void *kmalloc(int sz) {
.../* determine which free list to use, based
on size, see if free blocks are available */
atomic {
if ((op = nextf[bucket]) == NULL) {
morecore (bucket) ;
if ((op = nextf[bucket]) == NULL) {
return (NULL);
}
}

/* remove from linked list */

static void morecore(int bucket) {
register union overhead *op;
register long sz; /* size of desired block */

long amt; /* amount to allocate */
int nblks; /* how many blocks we get */
sz = 1 << (bucket + 3);
if (sz <= 0)
return;

if (sz < pagesz) {
amt = pagesz;

nextf [bucket] = op->ov_next; nblks = amt / sz;
op->ov_magic = MAGIC; } else {
op->ov_index = bucket; amt = sz + pagesz;
. nblks = 1;
} }
op = (union overhead *)sbrk(amt);
} /* no more room! */
if ((long)op == -1)

return;
/*
* Add new memory allocated to that on
* free list for this hash bucket.
*/
nextf [bucket] = op;
while (--nblks > 0) {
op->ov_next = (union overhead *)((caddr_t)op + sz);
op = (union overhead *) ((caddr_t)op + sz);

Figure 1. The main structure of the Kingsley allocator’s
malloc routine.

by that time.) Thus, if the transaction naively retriesrk
will be called twice, leaking OS resources. The code for
morecore IS shown (only very slightly simplified) in Fig-
ure 2. The purpose of showing this code is to demonstrate
where suspending cadbrk is in the program logic, as well
as to show accesses to the shared data structure (rooted at ar
ray next£) which depend on the result of tkerk, yet need ~ Figure 2. The routine to get more system memory inside
to be under the surrounding atomic. the Kingsley allocator. Moving thebrk call outside the en-
Consider the code reorganization required to remzeye closing transaction (in the calling routinesalloc) requires
from inside transactional code. This would require bregkin major code reorganization.
morecore in two parts, top and bottom, and movirgrk

into the body ofmalloc. Since the top and bottom parts of emptyestab1ish clause is sufficient. The resultis correct re-

morecore Need to communicate data, their interfaces need to yarqjess of whether the data structure was concurrently mod
include extra arguments (e.gblks, op). The modularity of ified by another thread:

the original code is lostimalloc Now needs to be directly
aware of the functionality that used to be insi@eecore.

For this example, one can also envision a solution with
a pair of unstructureteginAtomic/endAtomic primitives,
instead of a block structuredomic section. Yet this would
be a very error prone programming model. Furthermore,
note that (unlike with locks) a programmer cannot use a
block structurechtomic to build unstructured primitives.

The TIC approach solves the problem cleanly. The trans-
action is committed before callingrk and the call tasbrk b
is never repeated, even if the rest of the transaction re- ©op->ov_next = nextf [bucket];
tries. The potential consistency problem with suspending = Rextf[bucket] = fst;
the transaction at the point of callingrk is that a differ-
ent thread can race and may happen to replenish the same Similarly, thekmalloc routine is easily fixed to be unaf-
bucket. The original code overwrites the link to such up- fected by the transaction suspension causesdbby inside
dated entries in the bucket, as it assumestd&ats [bucket] morecore. AN emptyestablish clause would be sufficient,
is NULL. An easy rewrite of the part aforecore following but note that the suspending operatieiecore Will cause
the call tosbrk is enough to ensure that the resultsbtk the punctuation of any user-level transactions that happen
is consistently added to the data structure, even if anotherusekmalloc. Even though the depth of transaction nesting
thread has changed the bucket. The new code does not ass expected to be low in typical applications [16], we still
sume that the bucket is still empty after the potentially sus would not want to impose on users the burden of handling
pendingsbrk call. Indeed, with the rewritten code, even an punctuation at every level of their transactions every time

static void morecore(int bucket) {

union overhead *fst = NULL;

. // as before
op = expose ((union overhead *)sbrk(amt));
fst = op;
while (--nblks > 0) {

op->ov_next =

(union overhead *)((caddr_t)op + sz);
op = (union overhead *) ((caddr_t)op + sz);

they callkmalloc. Instead, it is easy to supply an undo rou- Public static void ‘ . .
tine for kmalloc (a wrapper aroundfree) so that its atomic setConnectionProvider (ConnectionProvider provider) {

. L X atomic {
section commits independently of any surrounding transac- if (connectionProvider !'= null) {
tions, and has its results reversed if the surrounding @#i@ns ConnectionProvider old = connectionProvider;
tion retries. The changes are shown below. expose(connectionProvider.destroy()) establish {
if (connectionProvider != old) return;

undo (myKfree) void *kmalloc(int sz) { } b

// as before connectionProvider = provider;

expose (morecore(bucket)); expose(connectionProvider.start()) establish {

if (connectionProvider != provider) return;

} Y

// Now, get a connection to determine meta data.
Connection con = null;
con = expose(connectionProvider.getConnection())

3.3 Cooperating Threads establish {

. . , if (tionProvider != ider)
The TIC ability towait inside a transaction enables thread ' rezziﬁfc roRtrovader T provider
cooperation without disrupting transactional coding pat- Y

terns. Barrier patterns, such as the one shown in the Intro- ~ setletabata(con);

duction are a simple case of applicability for TIC. TIC makes - // multiple other uses of con
expressing barriers easy by allowingat statementto cir- 3

cumvent atomicity by exposing results, and to disable iso-

lation so that effects of other threads can be observed. ThisPublic Connection getConnection() {
means that a barrier call requires special handling in all en Gonnectioniirapper con = null;

closing transactions, with asixpose ... establish clause. while(true) {
It should be noted that the semanticswafit in TIC atomic {
is consistent with prior experience in re-engineering mult // it shutting down, don’t create connections

if (shutdownStarted) return null;

threaded applications. Chung et al. [16, 12] rewrote 35-ock Wait(connectionAvailable)
based applications to use transactions. They note that the con = getCon();
most reasonable simulation of condition variabtats in if(con != null) {

. . « . con.checkedout = true;
the transactional world is to “magait to an END marker con.lockTine = System.currentTimeMillis();

(end previous transaction) and a BEGIN marker (start new return con:

transaction) pair” [16]. This is directly analogous to our } // else someone got it before us, try again
treatment ofwait. In a different study, the same authors by

write: “we have never seen a benchmark or system that ex-

hibits a problem treatingait as commit” [12]. Neverthe-

less, they also note that “if we treadit as a commit, itis Figyre 3. getConnection is a waiting method. Calling it
easy to come up with contrived programs that will not match requires arexpose ... establish clause, which is quite

the previous semantics”. The TIC ability to identify these easy to writeconnectionProvider is a shared variable.
cases and recover with aftpose ... establish clause is
unique, to our knowledge.

For an actual example where recovery is easy but routine can just return if any other thread has raced to over-
necessary, Figure 3 shows two methods, rewritten in a write theconnectionProvider Shared variable.
transactional form, from the code of the Zimbra Col- L L
laboration Suite. (The routines are slightly simplified— 34 Temporary Violationsof Atomicity
intermediary methods were removed, as was the code forLong-running operations in the middle of a transaction in-
throwing and handling some database exceptions.) Therecrease the probability of the transaction aborting due v co
are two atomic sections, one in each method. Method tention. TIC allows a long-running computation to move to
setConnectionProvider has a transaction that may be anindependentthread and the transactions to coordinate us
suspended at various points. There are thigese ... ingwait. In the easiest case, the long-running operation only
establish clauses shown in the code. Two of these are for needs to signal its completion to the main transaction. TIC
suspending operations, such &stroy or start. One of then also allows labeling the operation @spending, in
the calls is tazetConnection, which is a waiting method. If ~ which case the transaction will commit just before perform-
a connection is not available in a shared pool, the thredd wil ing it and a new transaction will start after it.
wait until another thread returns a connection to the pool. | The latter also corresponds to a common lock-based pro-
all cases, the transaction only needs to worry about its own gramming pattern: releasing a lock only to reacquire itrafte
invariants in case of suspension. Recovery is quite easy: Th an operation. We counted at least 8 instances of this pattern

for different tasks in AOLserver, all for long-running oper which shuts down acpstream, which contains the offend-
ations. (AOLserver is an open-source web server, originall ing operations. This is a standard case where our type sys-
by America Online. See http://www.aolserver.com .) For in- tem warns of suspending operations, similarly to other ex-
stance, AOLserver uses code of the following form in its in- amples we discussed earlier. Although the operations are
terface to the Tcl interpreter. deeply nested, aBxpose ... establish clause is needed

at every level to allow them to be used in a transaction. In-

Lock(L); terestingly, however, the above sequence was also a serious
do { ... bug in an earlier lock-based version of AlphaMail. The code
unlock(1); is holding a lock while the connection is being closed, which
... // call Tcl interpreter with script arg prevents concurrency during a long-running operatiorhén t
lock(1); worst case, the connection to the IMAP folder is experienc-
} while(cond); ing network problems, making hundreds of other users hang
e until the network connection times out.
unlock(1l);

. o 3.6 On-Commit Operations
In the TIC model, this corresponds to committing a trans-

action and starting a new one after the Tcl interpreter invo-
cation, without any need for establishing consistencytTha
is, the Tcl invocation operation is labeledspending, and
called under arxpose call with noestablish clause.

Often we can postpone suspending operations until the sur-
rounding transaction can commit. This can be done with
an on-commit operation. We consider an example from Al-
phaMail [38]. AlphaMail is written in C++ and is linked
against a non-transactional memory allocator. (Although
35 Type System Warnings memory allocation can be built so that it integrates seam-
lessly with transactions [37], there may be performance
reasons to prefer a multithreaded allocator utilizing fine-
grained locking, e.g., [5]. Furthermore, there are always |
level libraries that use their own allocation routines (e.g
OpenSSL'sSSL_CTX new/delete). It is not reasonable to ex-
pect a close integration for all such libraries.)

The interface of an application with a memory allocator
is narrow, consisting only of operatoisw anddelete (Or
malloc andfree). Therefore, it is reasonable to expect that
combining a transactionally implemented application vaith
fine-grained locking allocator should be easy. Yet, altioug
it is relatively easy to write an undo routine fasw (using
delete) it is not similarly easy to write a satisfactory undo
routine fordelete. (Reversing a@elete is not possible even
if the allocator internals are known: once the object hasbee

In the TIC model, the type system does not guarantee trans-
action safety, but serves as a reminder to ensure that the pro
grammer has not overlooked waiting or suspending opera-
tions. This is often sufficient for detecting serious fuanti

ality or performance errors. We encountered a represeatati
example in our rewrite of the AlphaMail server [38], which
we re-engineered to use transactions.

AlphaMail's functionality of interest is an IMAP web
cache: a middleware system that facilitates communica-
tion between the web server software and an IMAP server.
AlphaMail uses a cache data structure that holds data
about recently accessed IMAP data folders, including a per-
sistent connection to the network folder. This is a C++
map<string,shared ptr<IMAPFolder> > data structure: an
associative map.from strings t_o reference-counteq p_cnnter reclaimed, some other thread could have raced and reused
to IMAPFolder Objects. A cleaning thread runs periodically

)) the space.jlelete is also quite hard to handle since it is a
over the data structure to remove entries corresponding to P Jlelete d

. . ightweight enough operation that it is likely to be used in
folders not accessed .recently. This traversal is a standardlmany transactions (unlike I/O operations that have high la-
data structure removal:

tency and will likely need to be moved outside of critical

atomic { sections). One of the usesdflete in AlphaMail is in a ref-
e erence counted shared pointer class. As commonly expected,
for(i=cache_map.begin(); i!=cache map.end(); i++) the assignment operator of a shared pointer decrements the
if (getIdleTime(i->second) > timeout) reference count of the object that the pointer used to point t

cache_map.delete (i->first); and callsielete on it if the count is zero. It is relatively easy

to move the call t@elete outside the atomic section, by in-
The seemingly innocuous code results in undesirable in- troducing variables to remember whether the object should
teractions with synchronization code. Thelete call re- be deallocated and doing so later. The relevant code frag-
moves the item from the map, and, if this was the last ref- mentis shown in Figure 4. (The code is slightly simplified—
erence to the item in the program, then #h@red ptr de- notably it does not include the common intrusive reference
structor deletes theMAPFolder Object itself. Irreversible op- counting optimization [3, ch.7].)
erations (network flush and close) can then occur through Nevertheless, this hardly fixes the problem. Shared point-
a complex chain: Destroying theMAPFolder destroys an ers are used in several places in the application insids-tran
iostream Object, which destroys atreambuffer oObject, actions. Consider a seemingly innocuous statement such as:

template<class T> class shared_ptr { template<class S>

T oncommit (free_item<S>) void release_item(S *c) {
public:

shared_ptr<T> &operator=(const shared_ptr<T> &b) { // mo-op. Tramsaction system records params
bool delete_old_object = false; }
int *old_count;
T *old_obj; template<class S>
void free_item(S *paraml) {
atomic { delete(paraml);
old_count = shared_count; }

old_obj = obj;
The above on-commit operation does not need any con-

obj = b.obj; . .
shared_count = b.shared_count; currency control,. as it accesses no shgred date_m. An importan
(*#shared_count)++; point, however, is that the on-commit operation can con-
(*0ld_count)--; tain transactions, which execute open-nested in the durren
if (*old_count == 0) context. Thus, it can roll back and retry, which renders sus-
delete_old_object = true;
} pending operations problematic. Therefore, on-commit op-
erations themselves can have the same need as regular code
if(delete_old_object) { to include expose ... establish clauses, in order to re-
e ‘;ij—;g}‘f‘t’ cover from transaction punctuation. The exact nesting mode
3 - of TIC, as well as the interactions between nested transac-
} tions, compensating actions, and transaction punctuaten
private: discussed in detail in Section 5.
T *obj;
int *shared_count; i
}; 4. Type System and I mplementation
Discussion

Figure 4. A shared pointer class that makes sure the deal-
location is performed outside thetomic section, since
delete is not transaction-safe.

We next discuss more precisely some aspects of the TIC
design, as well as our prototype implementations.

4.1 Language Summary and Type System

atomic { To summarize the previous sections, the elements of the TIC
e P programming model are:

}

For p of type shared ptr<int>, the assignment calls Theatomic keyword to designate transactions.

shared_ptr<int>::operator= Which contains the call to e Thewait keyword to explicitly suspend transactions until

delete. If the transaction retriegelete will be called twice. a condition is satisfied.

Fixing this problem by moving code requires destroying the o Thetop1evel method annotation, which makes a method

encapsulation of the shared pointer class and moving some | ;nusable inside a transaction.

of its functionality outside all transactional code. Thtlss

is the standard problem we discussed in Section 3.1: Calling

delete is a property visible to all clients of the operator. In

e Theexpose ... establish syntax for calling waiting or
suspending methods.

this case, we can postpone the results ofithete call until e The suspending method annotation designating a root
the end of the transaction. This is easy to do by just creating suspending method.
an on-commit operation fofhared ptr<int>: :operator=. e The undo and oncomnit method annotations that specify

The transaction code is then free (_)f suspending operations, compensating actions for the method and (in the case of
but makes a record of deleted objects available to the on- ,;4,) cause a method to commit its transactions indepen-

commit operation. In the current formulation, the easiest ygntly of external nesting.

way for the two routines to share data is through arguments

and return values. (In the future, one can imagine adding Note that many of these do not have run-time semantics,
richer support for sharing data with compensating actions— but only static semantics. That is, they exist purely fortyp
this is an aspect orthogonal to TIC’s main features.) Thus, ing purposes. They enable the type system to keep track of
we can make an intermediate routin€ ease_item, which code that requires special handling in transactions, ierord
operator= calls with the objects to delete as arguments. The to remind the programmer appropriately. Overall, our type
on-commit operationfree_item is attached to this routine. system is straightforward, as itfgopositional It only adds

The system stores the arguments and makes them availabl¢hree true/false flags to program methods. The first flag de-
to the on-commit operation, which performs the deletion: notes waiting operations, the second denotes suspending op

erations, while the third denotes operations guarantebd to
unusable inside transactions. The flags propagate as &llow

e A Wait statement sets flagraiting for the method that
contains it, unless the method also hasg@evelflag.

¢ A suspending method annotation sets flagspendindor
the method. A method with suspending annotation can-
not also have atindo annotation or aoplevel annotation.

e A toplevel method annotation sets flagplevelfor the
method.

e On a method call, if the callee hassaspendindlag, the

4.2 TIC Prototypes

We described our language extensions in an idealized gettin
(as new keywords with full language support). As is stan-
dard practice, however, we approximate these features with
simpler extensions that offer an easier transition patmfro
existing languages. Our original prototype was a back-end C
library, based on Harris and Fraser’s libstm back-endtibra
[28]—a fully optimistic concurrency implementation, with
read and write logging. Our changes to the library implement
the main back-end features of TIC—namely, the full contin-
uation support, explained next, and the TIC nesting model
(including open nesting support) described in Section & Th

toplevelflag or anundo annotation.

e On a method call, if the callee hasvaiting flag, the same
flag is set on the caller, unless the caller hasttpevel
flag.

e On a method call, if the callee has ttaplevelflag, the
same flag is set on the caller, unless the caller hasén
annotation.

(Note that we phrased the rules as inferences with
negation—e.g., “has ... unless the caller has...”. In gadner
this might lead to ambiguity. The reader can verify that rega

tion is stratified, however, hence we can get a consistent flag

assignment by letting the rules run to fixpoint.)

As discussed earlier, the consequences of these flags ar

straightforward. A method flaggedplevelcannot be used in
a transaction. A method flaggeaiting or suspendingeeds
to be under arxpose ... establish clause when used in
a transaction.

The above rules assume a known caller-callee graph. In
an object-oriented language our type system needs to be
conservative, in order to support dynamic dispatch and an
unknown set of subclasses: Overriding methods are only

allowed to be more broadly applicable than the methods
they override. Then we need to introduce an explicit method
annotationvaiting and some additional rules:

e A waiting method annotation sets flagaiting for the
method, unless the method also hdsgevelflag.

e A method with thesuspendingwaiting, or toplevelflag
cannot override one without the same flags.

o A method with amindo annotation cannot be overridden
by one without it.

Note that the last two amot propagation rules. The rules
do not cause the overridden/overriding method’s flag to be

set. Instead they dictate that if the flag is not set under the

propagation rules, the overriding is illegal.
These rules are safe, but restrictive. E.g., they forceyever
client of an interface method to make a call undeeggose

type quickly. Nevertheless, it was not ideal for practicséu
mainly because of its lazy validation policy: Since thedityr
does not detect inconsistent data reads until explicilaali
tion time, client programs needed to be hardened in multiple
ways (typically using signal handlers, but also by ensuring
no infinite loops occur) to avoid anomalies from reading in-
valid data. For a more practical library, our current wogkin
prototype is based on TL2 [17]: an optimistic concurrency
implementation with eager read validation.

To experiment with our library in actual applications,
we created a C++ wrapper library, containing macros (for
atomic, expose, establish), and a set of classes to support
threads, semi-automatic nesting, and compensating action
él'he user still needs to carefully ensure that the desired-mem
ory actions are performed through the transaction system,
but the C++ wrapper offers rudimentary syntactic sugar and
safety checks. (As for other C libraries, the biggest cingle
for seamless use in C++ is that the user needs to explicitly
compensate for the implicit semantics of C++ operations—
e.g., destructors—that are not preserved by our runtime ma-
nipulations.) We have not yet created a mature implementa-
tion for Java (currently the user needs to directly call the C
back-end) but it is straightforward to employ the standgrd a
proach of Java 5 method-level annotations [22, section 9.7]
for syntax extension and bytecode transformation for agldin
semantics, without needing to change the source compiler.
Our propositional type system easily translates to exjstin
constructs in the Java type system (e.g., requirexafse

. establish clause through Java's static check for excep-
tion catching). The recent literature is rich with mecharss
applicable in our context for translating transactiondaeax
sions down to regular Java [1, 30, 31, 34, 40, 46]. There-
fore, this aspect of the implementation is well-understood
and we concentrate next on elements unique to TIC that are
currently captured by our back-end library.

4.3

The TIC model has slightly higher implementation require-
ments than a standard transactional programming model.

Implementation Discussion

. establish if even one implementation of the method is This is due to the need for full continuations when a transac-

suspending.

tion needs to retry after it is suspended. Consider ourezarli

example ofkmalloc with an atomic section that contains a
call tomorecore, Which contains a suspending operation.

undo (myKfree) void *kmalloc(int sz) {
. atomic {... expose(morecore(bucket));...} ...

}

void morecore(int bucket) {
register union overhead *op;
register long sz; /* size of desired block */
long amt; /* amount to allocate */
int nblks; /* how many blocks we get */
union overhead *fst = NULL;

op = expose ((union overhead *)sbrk(amt));

Just before the call tabrk, the transaction consisting
of all program actions from the beginning of theomic
block up until thesbrk statement commits. A new transac-
tion is started, immediately after the call. If that new 8an
action encounters contention and needs to retry, its isgarti
point is immediately after thebrk call even though func-
tion morecore has returnedThis means that the transaction

Our implementation specifics (modulo open-nesting, de-
scribed in the next section) are fairly straightforwardaBe
and write operations to global and heap locations are imple-
mented with calls to the underlying library’s word-levehce
and write primitives. Entry to and exit from an outermost
atomic section results in the beginning and attempt to com-
mit, respectively, of a TL2 transaction. Innermost (i.eqt)
suspending operations attempt to commit the transaction. |
the transaction successfully commits, the suspending oper
ation is executed and a new transaction begins immediately
after it. In case of ajait, we first test thevait condition
and attempt to commit the transaction if it is false. The new
transaction begins with an evaluation of that condition.

We had to enhance the base TL2 library to include a block-
ing primitive, which was modeled aftermMwait in libstm.

When a conflict is discovered, the commit operation can-
not complete, and the current transaction must be rollekl bac
to its initial state. The base library takes care of restprin
global variables and heap data; to restore the state of any lo
cal variables and the program counter we use our own imple-
mentation of continuations. This is architecture spedifi,
straightforward, as we are not concerned with heap space.
The implementation saves continuations when transactions

system needs to have captured the full continuation corre-are punctuated (via thexpose andestablish macros). The

sponding to the state right after thierk call. This should in-
clude the state of stack variables, suckAasucket, op, etc.

management of continuations is handled behind the scenes
by calling semi-portable routines, suchmascpy (to copy

(We assume a conventional stack/heap state split, althoughhe stack)set jup, andlongjmp. As discussed, continuations
clearly a runtime system may choose any alternative imple- are created only when @it statement is reached and its

mentation.)

condition is false or a call is made to a root suspending op-

The requirement for full continuations is only a modest eration.

increase from the bookkeeping required in standard (non-

Our measurements show that the cost of saving/restoring

punctuating) transactional models. The heap portion of a fyll continuations is modest, and becomes negligible if one
program’s state, as well as the state of the topmost stackconsiders how rarely it is incurred (only on actual suspen-
frame, need to be tracked by conventional transaction mech-sjon). For oukmalloc example, we measured a cost of 230

anisms anyway. For instance, consider the above routinecycles for saving the registers and stack frames for a ful co
kmalloc With a standard block-structured atomic section. On tinuation (all numbers are for single-threaded execution o

a transaction retry, the implementation still needs to be ab
to restore the stack state mfalloc as of the beginning of
theatomic block. However, a conventional implementation

a 2.16GHz Intel Core 2 Duo and report the median of seven
runs, each averaged over 30,000+ iterations). However, the
overhead oket jmp is already incurred by TL2 on all trans-

does not need to track the stack state of suspending methodgctions as part of setup for possible transaction retrigis T

called bykmalioc.

means that the cost of a continuation is reduced to the cost

~ This modest cost of creating and using full continuations of amencpy for the current thread’s active stack frames. For
is actually incurred rarely. Full continuations are needed example, a transaction containing no function calls and two

only in atomic sections that have ampose clause or a

writes takes 900 cycles. The same code with the transaction

wait operation, and only if transaction suspension actually punctuated between the two writes takes 1650 cycles, which

occurs—that is, if the condition of theait operation is

is almost identical to two separate single-write transadi

false, or an innermost suspending operation is indeed exe-at 1640 cycles.

cuted.

Our implementation relies on the existing TL2 mecha-
nisms for handling conflicts when concurrent atomic sec- N
tions access global or heap data and to discover when a trans—5' Nestingin TIC
action needs to be aborted. Changes were necessary onlyVe next discuss topics concerning TIC and transaction nest-
to handle saving and restoring local state (i.e., registeds ing. We first examine the relationship of TIC to the idea of
stack frames) when a transaction commences and aborts, reepen-nesting in general. Then, we describe in more detail
spectively. the TIC nesting model. We also discuss the safe use of open-

nesting transactional systems in general, and interesting
teractions of transaction punctuation with open-nesting.

5.1 Relation to Open-Nesting

The main feature of the TIC model is transaction punctuation
through waiting or suspending operations. Nevertheld€s, T
also integrates open-nesting features, such as opendransa
tions and compensating (undo and on-commit) actions. It is
interesting, therefore, to ask how TIC compares with open-
nested programming models. The answer is twofold:

e TIC has distinctly different goals than open nesting:
Rather than addressing scalability and performance con-
cerns, TIC aims to support thread communication and irre-
versible operations, while maintaining the high-levelggro
erties of transactions. Nevertheless, TIC can sometimes be

actions that caused the open-nested transaction’s execu-
tion.

Additionally, with open-nesting there is no guarantee
(again, without explicit user intervention) that compos-
ing individually atomic operations in a single atomic sec-
tion will yield an atomic operation. The excellent Agrawal
et al. example [2] is illustrative: An open-nested transac-
tion can be checking some shared memory locatian,
and storing the result in a local variable,thus affecting
the control (or data) flow of its parent transaction. Nev-
ertheless, the transactional system is not aware dhat
invalidated whenm'’s contents change. The problem af-
fects all (closed-nested) transactions that contain tiea-op
nested one, making the operation containing the open-
nested transaction non-composable with others. TIC punc-
tuation raises similar issues, but, unlike in open-nesting

used to address performance concerns, as an alternative to the programmer does not need to look inside the composed

open-nesting. Consider the example of a fairly independent
but long-running operation that needs to be executed in the
middle of a transaction. (We saw such examples in Sec-
tion 3.4.) Open-nesting allows long-running operations to
commit independently, in an open transaction. TIC allows
them to move to a different thread and have the two threads
coordinate usingiait statements. Alternatively, TIC al-
lows the programmer to label the long-running operation
with a suspending annotation, which punctuates the main
transaction and returns to it on completion.

In principle, open-nesting could also be used for some
of the main TIC tasks of thread communication and irre-
versible operations. Yet open-nesting offerowaer-level
programming model, delegating to the user the responsibil-
ity for establishing higher level properties using (regulia
abstract) locks [13, 45]Without user intervention, the de-
fault semantic guarantees of open-nesting are much weaker
than those of TIC. Agrawal et al. [2] offer examples where
open-nesting violates fundamental properties of transac-
tional memory, such as serializability and composability.
The difference between TIC and open-nestingadsin the
violation of serializability, however. Transaction pumct
ation also violates serializability for a punctuated atomi
section as a whole, guaranteeing instead serializabdity f
individual transaction parts. The difference is that open-
nesting also violateprogram order(i.e., the logical or-
der of operations in a single thread). For instance, when
an open-nested transaction commits memory changes, the
preceding changes in parent transaction data remain un-
committed. In this way, the effects of an open-nested trans-
action may appear to take plabeforeparent transaction

4Note that, originally, in the database setting, the tepan-nestedeferred

to “the ‘anarchic’ version of multi-level transactions”"3R which have no
semantic restrictions between parent and child transatice., no seman-
tic locking). Some authors follow this distinction in tharisactional mem-
ory literature [13] but most, like us, use the term to inclakie possibility

of locks for expressing high-level constraints [44, 45,.46]

operations to determine that they may cause violations of
atomicity: The type system warns when this is the case and
requires the user to suppdypose. . .establish clauses.

In a sense, open-nestipgincturesa transaction instead
of punctuatingt. Open-nesting exposes results both to and
from the parent transaction, which can violate isolatioth an
atomicity, respectively. We believe that a disciplined ap-
proach calls for transaction punctuation when this occurs.
Nevertheless, this forces on the user the obligation taewrit
correctexpose. . .establish clauses at every nesting level.
This may be undesirable, even though each level's reason-
ing is local (i.e., deals only with that level’s invariants)

e There are elements that TIC just inherits from open-

nesting models, since the main TIC feature (punctuation) is
largely orthogonal to open-nesting. We profitably used TIC
open-nesting features in our examples to stop propagation
of the need forexpose ... establish clauses in caller
methods. This is the main use of open-nesting in TIC:
When an externally visible operation can be reversed (with
an undo action, possibly combined with an on-commit ac-
tion to postpone some effects) the operation can be safely
used in transactions without punctuating them and forcing
the programmer to re-establish invariants. (For this to be
valid, the possibility of other threads observing the exter
nal effects should not affect application-level corresme

as discussed in Section 2. This is a strict condition, which
could be relaxed by adding locks to the model to let the
user prevent operations that might conflict.) We believe
that this is a modest, but desirable, use of open-nesting,
which is well-aligned with the principles of correct open-
nesting usage [45]: The open-nested transaction is at a sep-
arate, lower level of abstraction than its parent transacti

The TIC open-nesting model is currently limited. For in-
stance, our set of compensating actions only contains on-
abort (i.e., undo), and on-commit actions. More handlers
(on-validate, on-top-commit) may offer extra power to

open-nesting models, especially in conjunction with lock- e open+ open: No change. Code in the inner context re-

ing support (which brings out the need to distinguish val-
idation from commitment) and with more advanced data
sharing between forward and compensating actions. We

mains non-transactional, the recorded parent transattion
context remains the same.

e open+ atomic: The atomic section starts a new transac-

have not found the current limitations to be seriously con-

straining, since transaction punctuation can replace many
uses of open-nesting. In the future, the TIC open-nesting
features can be enriched without affecting the main ele-

ments of the model.

tion, open-nested in the current parent transactional con-
text. If theopencontext corresponds to a method with an
undo annotation, the undo action at the point of method
call return is enabled for execution during the parent trans
action roll-back process.

52 TheTIC Nesting Model Most of our treatment of open-nesting and compensat-
We next describe more precisely the current TIC nesting se-ing actions follows standard conventions. E.g., undo astio
mantics. This allows us to answer questions such as “whatare called in the reverse order they are registered, an outer
is the execution context and concurrency model of an undoundo action prevents inner ones from being executed, etc.
operation?” and “what happens when a suspending operationFor issues of read-write and write-write conflicts between
occurs inside an open-nested transaction?” This also egpos an open-nested transaction and its parent, we follow an ap-
in more detail the current open-nesting support of TIC. We proach similar to Ni et al. [46] (e.g., updating the parent’s
believe that this behavior can largely be tuned withoutciffe ~ log). Nevertheless, some elements require clarificaticarer

ing the main features of the model, but the current specifica- unconventional. These are listed next:

tion fits well with our notion of correct open-nesting usage,
as we will demonstrate. We make an effort to distinguish the
description of the nesting behavior from our current imple-
mentation, so we avoid referring to implementation artgac
(e.g., locks or read/write logs) except when explicitly eom
paring implementation techniques.

Let us first define how language constructs affect open- e All open-nested transactions roll back to their beginning
or closed-nesting. There are two kinds of relevant scoping point and never cause the parent transaction to abort. Re-
language constructs, which nest dynamically. The first is call that, per our previous definitions, open-nested trensa
methods with arundo annotation, as well as undo and on- tions are started at the top-level atomic section of a method
commit actions themselves—we call their scopecgen with an undo operation, as well as a method that is itself
context. The second is atomic sections and root suspending called as an undo or on-commit action.
operations—a®atomiccontext. That is, we treat transactions
inside an undo or on-commit action as open-nested (as Ni
et al. [46] do), and we treat root suspending operations as if
designating a separate transaction for the purposes afigest
behavior. The behavior of the system in each context is
determined by the contexts surrounding it in dynamic scope:
we process contexts from outer to inner, or caller to callee.
The rules are simple: (We writecbntextl+ context2 to
mean that the rule applies for code whose immediate context
is context2when context2is dynamically nested directly
insidecontextlwith no other context between.)

e Transaction punctuation affects only the current real
transaction—i.e., all atomic sections up to the innermost
open-nesting boundary, or up to the top-level atomic sec-
tion (if no open-nesting has taken place). This is also con-
sistent with our type system definitions of Section 4.

e Open-nested transactions can see the local (i.e., non-
shared memory) effects of their parent transaction, as well
as a consistent view of shared memory. This permits mul-
tiple implementations: A consistent view of shared mem-
ory can be the current committed state, or the state that
would result if the parent transaction were to commit at this
point—in case, of course, its actions are still valid. (Ar ex
plicit validation call is required for an implementationttvi
lazy validation.)

To see the rationale for the above behavior, we next con-
sider some examples.

It is a general requirement in open-nested transactions
that on-abort actions (i.e., our undo operations) should be
able to abort and commit independently (i.e., restart from
e atomic + open: The code in theopen context is out- their beginning when retrying, instead of restarting the pa

side the control of the transactional system. (If such code ent transaction). The requirement comes from the use of
needs concurrency control, it should contain atomic sec- undo operations: it makes no sense for an undo to cause a
tions, thus creating amtomiccontext.) The parent transac- parent abort, since it was the parent abort that necessitate
tional context is recorded for possible later use. Ifapen the undo in the first place.

context is a method with amdo annotation, the undo ac- In TIC, it is natural to extend the above requirement from
tion is registered at the method’s point of invocation. The just undo actions to all kinds of open-nested transactiens b
action is not enabled, however. (It will not be unless the cause of the possibility of transaction punctuation. Caesi
method includes aatomiccontext.) the following example: (We try to keep the examples concise

e atomic + atomic : The inner atomic section is closed-
nested (more precisel§lat-nested[2]) in the outer one,
forming a single transaction, for all intents.

by using pseudo-keywords. We usgpénatomic” in place
of a separate method with ando annotation and an atomic
section in it, and iindo” for an undo method with an atomic
sectionin it.)

atomic { ...
openatomic {
... p = expose(sbrk());
}undo { ... }
}

The top part of the open-nested transaction can commit
independently at the point of suspension (caliiex—used
just as an example of a suspending operation). If, however,
the bottom part of the open-nested transaction (i.e., after
the sbrk) needs to abort and retry, it cannot restart at the
top of its parent transaction (since this would repeat the

top part of the open-nested transaction, as well, and the
suspending operation has already committed its results to

memory). Instead, the punctuated open-nested transactio
commits and aborts independently of its parent.

As stated above, open-nested transactions see a cons
tent view of shared memory (i.e., cannot see partial trans-

action results, unless these come from the parent transac

tion and have not been invalidated). Typical implementa-
tions of open-nesting are pessimistic/lock-based witbdo
logging Information is kept to allow undoing shared mem-

ory effects. In this case, shared memory already reflects the

uncommitted effects of the parent transaction, so it is rea-
sonable for the open-nested transaction to access them. Al
optimistic implementation, however, will typically stotiee
parent transaction’s effects in a log until the parent cotemi
(redo logging. In this case, it may not be reasonable to al-

low the open-nested transaction to see the uncommitted ef-
fects of its parent. For instance, in the case of an undo oper-

ation, the parent transaction’s state is not a valid staitee (

undo operation is called exactly because the parent transac

tion encountered interference and abordéter performing
operations that may be invalid.) Furthermore, the possibil

of exposing state that only exists in the parent’s log makes
the programming model awkward. Consider the following
example: (Interestingly, a very similar example was shown
independently in [44].)

// n originally O
atomic {
n 1;
openatomic {
n++;

} undo { n--; }

The decrement operation is not a correct undo action
for the increment. Incrementing the shared memory variable
inadvertently exposes the effects of the parent trangactio
A correct undo requires reverting to the original value of

n

user a richer set of values than just the parent transastion’
view of a variable. (Other alternatives include enabling th
above code to execute correctly by causing cascading aborts
for all transactions that happen to read exposed data. Jhis i
complex and suffers from heavy overheads, however.)

To circumvent the above problems, in our optimistic im-
plementation we do not allow an open-nested transaction to
observe the uncommitted shared memory effects of its par-
ent transaction. Instead, the open-nested transactigrobnl
serves the latest committed values to shared memory. This
is somewhat counter-intuitive, but in line with correct use
of open-nesting. Moravan et al. [44] proposed the follow-
ing discipline condition for open-nested transactions: An
open-nested transaction should not write any data writyen b
the parent transaction. Indeed, we believe that the camditi
should be even strongekn open-nested transaction should
never perform a write that is (control- or data-)dependent
on shared data written by its parent transactioiithout

The stronger condition, it is easy to violate global invari-

ise}nts (that depend only on shared data, and which all trans-

actions would respect if they were isolated) by having an
open-nested transaction expose uncommitted state. (Wéith t
stronger condition, an open-nested transaction can imadve
tently only violate invariants that involve both global and
local data.) An easy way for the programmer to ensure the
condition is to not allow an open-nested transaction to ac-
cess any shared data written by the parent. In this case, our
requirement for a “consistent view of shared memory” in an
open-nested transaction is sufficient to make the code-obliv
ious to implementation specifics, such as whether the parent
transaction’s uncommitted writes are visible.

The above principle also covers well our intended use of
open-nesting in TIC: We employ open-nesting to hide op-
erations that are reversible at the application level. For a
operation to be reversible, it should not be exposing its par
ent transaction’s data to other threads (which is a potgntia
irreversible effect) in a way that affects application eaotr
ness. Thus, it is a good property for an open-nested trans-
action to never access shared data from its parent. This fol-
lows the conventional wisdom about strict abstraction sep-
aration of open-nested actions: Quoting Moss [45], “in the
open nesting case the parent and child exeatiifferent
levels of abstractiof Our kmalloc example of Section 3 is
exactly such a case.

6. Related Work

Modularity is a central recurring theme in the development
of models and mechanisms for concurrent programming,
from supplanting raw semaphores with conditional critical

regions [35] and then monitors [36], through refinement

of monitor and condition variable semantics to reduce the
fragility of process coordination [39], through introdiact

of the transaction concept [21] to decouple maintenance of

the variable. This is not possible unless we expose to theconsistency from definition of individual data structureg,

to more recent work on programming language support for to reasoning about weak atomicity and memory models with
transactions. (weak and strong) happens-before relations.

The TIC model draws inspiration and ideas from several TIC inherits a weak atomicity model from the underlying
earlier models, both transactional and monitor-based. Thelibstm and TL2 libraries [28, 17], and so can behave in un-
programmer requirement to reestablish the global invarian intuitive ways if shared variables are accessed outsids-tra
justbeforewait () and to reestablish local invariants juat actions. Despite recent reports of achieving strong atiynic
ter follows directly from the correctness reasoning already at modest cost, through extensive optimization [50], our ex
established in the earliest definitions of monitors [36]rOu pectation is that (as in memory consistency models) perfor-
approach to transaction suspension is somewhat analogousnance considerations will continue to make weaker atom-
to mechanisms that punctuate atomicity in monitors in a con- icity guarantees a practical necessity. The basic and
trolled way (e.g.serializerd4]). Punctuated transactions are establish features of TIC should not introduce complica-
also somewhat analogous¢hbain transactionsn database tions beyond those of other closed nesting transaction sys-
systems [23] and their variants for persistent programming tems, except thatait is only guaranteed to notice condi-
[7] and workflow systems [48], but after the first part of a tions changed by transactionsispending methods, on the
punctuated transaction commitseapose, it is independent other hand, could be subject to ordering anomalies destribe
of subsequent parts, exposes its results, and can never bby Shpeisman et al. [50] and require special scrutiny.
rolled back. Our type system handling of suspending opera- Nearly all STM proposals require some form of transac-
tions is close to conventions for monads in Haskell, and the tion roll-back, either abandoning a temporary, threaddoc
Haskell type system has been used before for the purpose ofecord of memory writes (where conflict detection is per-
identifying non-transactional operations [29]. formed lazily, at commitment time), or else undoing the ef-

Herlihy and Moss proposed transactional memory sys- fects of writes to memory. Schemes that use write locks but
tems more than a decade ago [32], and design of hardwarenot read locks must re-validate reads before committind, an
support has accelerated in response to the widespread availmay be forced to roll back memory effects. Schemes that
ability of multi-core computer hardware. Several hardware use both write and read locks (as in strict 2-phase locking)
transactional memory projects, including logTM [43], TCC may be forced to roll back by deadlock [20]. All such ap-
[26, 12, 42] and others [32, 47, 15, 49, 8, 51] are explor- proaches face the basic problem of data dependencies with
ing the design space for hardware support for transactionall/O (read-after-write) [24]. The only approaches that can
memory. Proposals vary regarding whether conflicts are de-avoid this problem are purely pessimistic approaches that
tected eagerly or lazily, whether changes are made directlyalso statically prevent deadlock, rather than dynamiaigly
to memory (with old values stored elsewhere in case a trans-tect it [41, 19, 33], but these require complex program analy
action is aborted) or written only when committing (making sis which is apt to be non-modular (hence expensive) or else
abort cheap but commit more expensive), how external or rely on extensive program annotation. The safe (but some-
non-transactional actions are treated (e.g., whether awd h times inconvenient) way to perform 1/O in TIC is with punc-
to support open nesting), etc. In principle, a programming tuated transactions, but the back door of open nestingris aja
model should hide from the programmer whether the un- with the usual risks.
derlying mechanisms are partly or wholly implemented in Harris has described an approach to external operations
hardware, as well as operational details of the implementa-with effects directly to the heap but isolated from othensra
tion. In practice, it is unlikely that a programming modehca actions, and using two-phase commit and buffering to ob-
entirely hide these design choices, at least insofar adiiiey tain transactional behavior for I/O [27]. Unlike either ope
pact cost. nested transactions or TIC, Harris’s approach does not ex-

A key and troublesome interaction between a high-level pose intermediate state. On the other hand, in addition to
program model and the underlying implementation involves requiring a good deal more machinery to properly wrap and
interaction of transactions with memory accesses outsideprotect external operations, this approach is not suffi¢an
transactionsStrong atomicityas defined by Blundell et al. read-after-write idioms, or for complex external openasio
[9], essentially treats otherwise unguarded accessesabk sm that both mutate state and return a value. Consider an op-
transactions. Most implementations, however, can be ex-eration likesbrk in the example we saw in Section shrk
pected to provide only some form wfeak atomicitywhich returns a value that the application needs to use, yet pesfor
(like memory models weaker than sequential consistency) a state change in the process. Thus, it can neither be delayed
opens a plethora of difficult questions, right down to intera (due to the read) nor replayed (due to the state change). Even
tions between high-level transactions and the memory modelif the interface okbrk is changed to be idempotent (e.g., by
governing individual accesses. Grossman et al. [25] ptesen adding a version number), the problem remains: A transac-
classification and examples of isolation and ordering anoma tion that retries might not ca#brk the second time, and no
lies that may or may not be allowed under varying weak other transaction might be able to consume that memory.
atomicity models, and provide the beginnings of an approach

Chung and colleagues’ study of common patterns in cur- ing as well as other operations that break the standarddtlose
rent (locking-based) programs [16] shows that, if we sim- nesting semantics.
ply translate current code to transactions, the average nes While the TIC model necessarily punctuates transactions,
ing depth is modest and non-transactional operations dre nosacrificing isolation for communication at controlled pisin
common. It remains to be seen whether these distributionsthe type system preventsmanticipatedinteraction between
hold when programmers can use transactions directly, andthreads by making the possibility of suspension visible in
one may surmise that, as hierarchical composition is one of method signatures, and by requiring the programmer to ac-
the chief motivations for adopting a transactional style of knowledge the potential interruption at the point of the
programming, typical nesting depth could increase in pro- method call.
grams written directly in that form. At the very least, thbug We have reengineered substantial existing lock-based
Chung's results imply that measures taken to accommodateprograms to use the TIC model, confirming that it meets our
waiting and external effects in nested transactions must no goal of providing a more general, convenient programming
have a substantial cost for the (so far) common case of trans-model while preserving the main benefits of transactional
actions that are only shallowly nested and affect only mem- memory.
ory.

Checkpoints have an mtergstlng relation to transaction Acknowledgments
roll-back. The purpose of both is to return a system to a glob-
ally consistent state. Checkpointing does this by eithénma This work was funded by the NSF under grant CCR-
taining a global snapshot, or retaining a set of local snaggsh 0735267 and by LogicBlox Inc.
that form a “Consistent cut” representing a state that tlse Sy Earlier diSCUSSionS W|th Tony Hannan on transactional
tem could have reached (even if the local snapshots werememory and LihChyun Shu on concurrency control helped
never current at precisely the same time) [14, 18]. Recentform the background of this paper.
work developing transparent checkpoint facilities for con ~ We would like to thank the anonymous reviewers for
current ML [53] is an example of maintaining enough de- Many valuable comments that helped improve the paper.
pendence information to roll back several interactingdbse
to a consistent state; this is what in database terms would beRefer ences
calledcascading abortin contrast, all STM systems to our
knowledge are designed to make casc_ading abort unneces- Brian R. Murphy, Bratin Saha, and Tatiana Shpeisman. Com-
sary. For example, systems _that _use_wrlte locks bUt not read piler and runtime support for efficient software transatio
locks may need to roll back if validation at commit time re- memory. InPLDI '06: Proceedings of the 2006 ACM SIG-
Veals Stale read ValueS, but the Wl’ite |OCkS (Wh|Ch pel‘mit PLAN conference on Programming |anguage design and im-
anti-dependence but not dependence between uncommitted plementationpages 26-37, Ottawa, Ontario, Canada, 2006.
transactions) ensure that memory writes can be backed out ~ ACM Press.
without aborting other transactions. Recall that in TIC our 5] kunal Agrawal, Charles E. Leiserson, and Jim Sukha.
establish Statements are only for reestablishing local con- Memory models for open-nested transactions. MBPC
sistency; global consistency is established beéapese. '06: Proceedings of the 2006 workshop on Memory system
performance and correctngspages 70-81, San Jose,
. California, 2006. ACM Press.
7. Conclusions

. .) . [3] Andrei Alexandrescu. Modern C++ Design Addison-

A key goal of transactional programming is to avoid or Wesley, 2001.
minimize non-local reasoning about thread interactioms. T
a_c_hieve_this goal, it is essential that_ transactions argpoem tor systems. IPOPL "77: Proceedings of the 4th ACM
sitional in the sense that th_e deC|S|Qn tp make one method SIGACT-SIGPLAN Symposium on Principles of Program-
transactional does not require “looking inside” other meth ming Languagespages 267—280, Los Angeles, California,
ods to determine whether they are also transactional. At the 1977. ACM Press.
same time, transaction support must be sufficiently general
that common operations can be enclosed in transactions. For

[1] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon,

[4] Russell Atkinson and Carl Hewitt. Synchronization in ac

[5] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe,
and Paul R. Wilson. Hoard: A scalable memory allocator for

standard imperative programming patterns, external epera multithreaded applications. Imternational Conference
tionS SUCh as I/O cannot be pOiSOﬂ p|”S that prevent Using on Architectural Suppor’[for Programming Languages
transactions in the whole tree of calling methods. This cre- and Operating Systems (ASPLOS;I¥ages 117128,

ates a tension between isolation (to simplify reasoning) an Cambridge, MA, November 2000.

communication (to get work done). The TIC model mostly 6] Emery D. Berger, Benjamin G. Zom, and Kathryn S.
retains the closed nesting model of transactions, with dlsma McKinley. Composing high-performance memory allocators.
number of careful extensions to better accommodate com- In SIGPLAN Conference on Programming Language Design

mon programming idioms like barriers and conditional wait- and Implementation (PLD)pages 114-124, 2001.

[7] Stephen Blackburn and John N. Zigman. Concurrency
- the fly in the ointment? IrProceedings of the 8th
International Workshop on Persistent Object Systems (POS8
and Proceedings of the 3rd International Workshop on
Persistence and Java (PJW3®pges 250—258, San Francisco,
CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[8] Colin Blundell, Joe Devietti, E. Christopher Lewis, and
Milo M. K. Martin. Making the fast case common and the
uncommon case simple in unbounded transactional memory.
In ISCA ’07: Proceedings of the 34th Annual International
Symposium on Computer architectupages 24-34, San
Diego, California, USA, 2007. ACM Press.

[9] Colin Blundell, E. Christopher Lewis, and Milo M. Martin
Subtleties of transactional memory atomicity semantics.
IEEE Comput. Archit. Lett5(2):17, 2006.

[10] Colin Blundell, E Christopher Lewis, and Milo M. K. Mant
Unrestricted transactional memory: Supporting 1/0 and
system calls within transactions. Technical Report CIS-
06-09, Department of Computer and Information Science,
University of Pennsylvania, Apr 2006.

[11] Brian D. Carlstrom, JaeWoong Chung, Hassan Chafi,
Austen McDonald, Chi Cao Minh, Lance Hammond,
Christos Kozyrakis, and Kunle and Olukotun. Transactional
execution of java programs. IBOPSLA 2005 Workshop
on Synchronization and Concurrency in Object-Oriented

Languages (SCOOLPct 2005.

Brian D. Carlstrom, JaeWoong Chung, Hassan Chafi,
Austen McDonald, Chi Cao Minh, Lance Hammond,
Christos Kozyrakis, and Kunle Olukotun. Executing Java
programs with transactional memorgcience of Computer
Programming 63:111-129, 2006.

Brian D. Carlstrom, Austen McDonald, Michael Carbin,
Christos Kozyrakis, and Kunle Olukotun. Transactional
collection classes. IRPoPP '07: Proceedings of the 12th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming pages 56—67, San Jose, California,
USA, 2007. ACM Press.

[14] K. Mani Chandy and Leslie Lamport. Distributed snagsho
determining global states of distributed syste®&M Trans.
Comput. Syst3(1):63-75, 1985.

[15] Weihaw Chuang, Satish Narayanasamy, Ganesh Venkatesh
Jack Sampson, Michael Van Biesbrouck, Gilles Pokam,
Brad Calder, and Osvaldo Colavin. Unbounded page-based
transactional memory. IASPLOS-XII: Proceedings of the
12th International conference on Architectural support fo
programming languages and operating systepages 347—
358, San Jose, California, USA, 2006. ACM Press.

[16] JaeWoong Chung, Hassan Chafi, Chi Cao Minh, Austen
McDonald, Brian D. Carlstrom, Christos Kozyrakis, and
Kunle Olukotun. The common case transactional behavior
of multithreaded programs. IRroceedings of the Twelfth
International Symposium on High-Performance Computer
Architecture Feb 2006.

[17] David Dice, Ori Shalev, and Nir Shavit. Transactiortalking
II. In Shlomi Dolev, editor,Distributed Computing, 20th
International Symposium (DISC)yolume 4167 of_ecture

[12]

[13]

Notes in Computer Sciencgpringer, 2006.

[18] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wangnéd
David B. Johnson. A survey of rollback-recovery protocals i
message-passing systemsCM Comput. Sury.34(3):375—
408, 2002.

[19] Michael Emmi, Jeffrey S. Fischer, Ranjit Jhala, and &up
Majumdar. Lock allocation. IFPPOPL '07: Symposium
on Principles of Programming Languaggsages 291-296.
ACM Press, 2007.

[20] Robert Ennals. Software transactional memory shoatde
lock free. Technical Report IRC-TR-06-052, Intel Research
Cambridge, 2006. Available fromttp://berkeley.
intel-research.net/rennals/.

[21] Kapali P. Eswaran, Jim N. Gray, Raymond A. Lorie, and
Irving L. Traiger. The notions of consistency and predicate
locks in a database syste@ommun. ACM19(11):624-633,
1976.

[22] James Gosling, Bill Joy, Guy Steele, and Gilad Brachae
Java Language Specification, Third EditioRrentice Hall,
2005.

[23] Jim Gray and Andreas ReuteiTransaction Processing:
Concepts and TechniquedMorgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1992.

Dan Grossman. The transactional memory / garbage
collection analogy. IlPACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, Essays
Track ACM SIGPLAN, October 2007.

Dan Grossman, Jeremy Manson, and William Pugh. What
do high-level memory models mean for transactions? In
MSPC '06: Proceedings of the 2006 workshop on Memory
system performance and correctngsages 62—-69, San Jose,
California, 2006. ACM Press.

Lance Hammond, Vicky Wong, Mike Chen, Brian D.
Carlstrom, John D. Davis, Ben Hertzberg, Manohar K.
Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle
Olukotun. Transactional memory coherence and consistency
In Proceedings of the 31st Annual International Symposium
on Computer Architecturepage 102. IEEE Computer
Society, Jun 2004.

[27] Tim Harris. Exceptions and side-effects in atomic l&c
Science of Computer Programmiri(3):325-343, 2005.

[28] Tim Harris and Keir Fraser. Language support for ligbityit
transactions. IMOOPSLA '03: Proceedings of the 18th
Annual ACM SIGPLAN Conference on Object-oriented
Programing, Systems, Languages, and Applicatipages
388-402, Anaheim, California, USA, 2003. ACM Press.

[29] Tim Harris, Maurice Herlihy, Simon Marlow, and Simon
Peyton-Jones. Composable memory transactions. In
Proceedings of the ACM Symposium on Principles and
Practice of Parallel Programminglun 2005.

[30] Tim Harris, Mark Plesko, Avraham Shinnar, and David
Tarditi. Optimizing memory transactions. PLDI '06:
Proceedings of the 2006 ACM SIGPLAN Conference on
Programming language design and implementatioages
14-25, Ottawa, Ontario, Canada, 2006. ACM Press.

(24]

(25]

(26]

[31] Maurice Herlihy, Victor Luchangco, and Mark Moir. A
flexible framework for implementing software transactiona
memory. INOOPSLA '06: Proceedings of the 21st Annual
ACM SIGPLAN Conference on Object-oriented programming
systems, languages, and applicatippages 253-262,
Portland, Oregon, USA, 2006. ACM Press.

Maurice Herlihy and J. Eliot B. Moss. Transactional nozgn
Architectural support for lock-free data structures. In
Proceedings of the 20th Annual International Symposium
on Computer Architecturgpages 289-300. May 1993.

Michael Hicks, Jeffrey S. Foster, and Polyvios Pratkiis.
Lock inference for atomic sections. Rroceedings of the
First ACM SIGPLAN Workshop on Languages, Compilers,
and Hardware Support for Transactional Computirdgin
2006.

Benjamin Hindman and Dan Grossman. Atomicity via
source-to-source translation. MSPC '06: Proceedings

of the 2006 workshop on Memory system performance and
correctnesspages 82-91, San Jose, California, 2006. ACM
Press.

[32]

[33]

[34]

[35] C. A. R. Hoare. Towards a theory of parallel programming
In International Seminar on Operating System Techniques
1971.

[36] C. A. R. Hoare. Monitors: An operating system struatgri
concept.Commun. ACM17(10):549-557, 1974.

[37] Richard L. Hudson, Bratin Saha, Ali-Reza Adl-Tabataba
and Benjamin C. Hertzberg. Mcrt-malloc: A scalable
transactional memory allocator. IBMM '06: Proceedings of
the 2006 international symposium on Memory management
pages 74-83, Ottawa, Ontario, Canada, 2006. ACM Press.

[38] Anthony Kay. AlphaMail. http://sourceforge.net/
projects/alphamail, January 2007.

[39] Butler W. Lampson and David D. Redell. Experience with
processes and monitors in Me€2ommun. ACM23(2):105—
117, 1980.

[40] Jeremy Manson, Jason Baker, Antonio Cunei, Suresh
Jagannathan, Marek Prochazka, Bin Xin, and Jan Vitek.
Preemptible atomic regions for real-time javess 0:62—71,
2005.

[41] Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer.
Autolocker: Synchronization inference for atomic secsion
In POPL '06: Conference Record of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages pages 346—358, Charleston, South Carolina, USA,
2006. ACM Press.

[42] Chi Cao Minh, Martin Trautmann, JaeWoong Chung,
Austen McDonald, Nathan Bronson, Jared Casper, Christos
Kozyrakis, and Kunle Olukotun. An effective hybrid trans-
actional memory system with strong isolation guarantees. |
ISCA '07: Proceedings of the 34th Annual International Sym-
posium on Computer architectyrpages 69—80, San Diego,
California, USA, 2007. ACM Press.

[43] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan,
Mark D. Hill, and David A. Wood. LogTM: Log-based trans-
actional memory. IrProceedings of the 12th International

Symposium on High-Performance Computer Architecture
pages 254-265. Feb 2006.

[44] Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore,
Luke Yen, Mark D. Hill, Ben Liblit, Michael M. Swift,
and David A. Wood. Supporting nested transactional
memory in logTM. InASPLOS-XII: Proceedings of the
12th international conference on Architectural support fo
programming languages and operating systepages 359—
370, San Jose, California, USA, 2006. ACM Press.

[45] J. Eliot B. Moss and Antony L. Hosking. Nested transamdil
memory: Model and architecture sketche&cience of
Computer Programming3(2):186—201, Dec 2006.

[46] Yang Ni, Vijay Menon, Ali-Reza Adl-Tabatabai, Antony. L
Hosking, Richard L. Hudson, J. Eliot B. Moss, Bratin
Saha, and Tatiana Shpeisman. Open nesting in software
transactional memory. IRroceedings of the Symposium on
Principles and Practice of Parallel Processing§an Jose,
California, March 2007.

[47] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtuzdi
ing transactional memory. [I8CA '05: Proceedings of the
32nd Annual International Symposium on Computer Archi-
tecture pages 494-505, Washington, DC, USA, 2005. IEEE
Computer Society.

[48] Andreas Reuter and Friedemann Schwenkreis. Contraets
low-level mechanism for building general-purpose workflow
management-system®&ulletin of the Technical Committee
on Data Engineeringl8(1), 1995.

[49] Bratin Saha, Ali-Reza Adl-Tabatabai, and Quinn Jacobs
Architectural support for software transactional memary.
MICRO '06: Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitectugages 185—
196, Washington, DC, USA, 2006. IEEE Computer Society.

[50] Tatiana Shpeisman, Vijay Menon, Ali-Reza AdI-Tabati&b
Steven Balensiefer, Dan Grossman, Richard L. Hudson,
Katherine F. Moore, and Bratin Saha. Enforcing isolation
and ordering in STM. IrPLDI '07: Proceedings of the
2007 ACM SIGPLAN Conference on Programming Language
Design Implementatiqmpages 78-88, San Diego, California,
USA, 2007. ACM Press.

[51] Arrvindh Shriraman, Michael F. Spear, Hemayet Hossain
Virendra J. Marathe, Sandhya Dwarkadas, and Michael L.
Scott. An integrated hardware-software approach to flexibl
transactional memory. IF'8CA '07: Proceedings of the 34th
Annual International Symposium on Computer architegture
pages 104-115, San Diego, California, USA, 2007. ACM
Press.

[52] Gerhard Weikum and Hans-Jorg Schek. Concepts and
applications of multilevel transactions and open nested
transactions. Iatabase Transaction Models for Advanced
Applications pages 515-553. 1992.

[53] Lukasz Ziarek, Philip Schatz, and Suresh JagannatStas.
bilizers: a modular checkpointing abstraction for concur-
rent functional programs. IFCFP '06: Proceedings of the
Eleventh ACM SIGPLAN International Conference on Func-
tional programmingpages 136-147, Portland, Oregon, USA,
2006. ACM Press.

