
Flexible Reference Trace Reduction for VM Simulations

Scott F. Kaplan Yannis Smaragdakis Paul R. Wilson
Amherst College Georgia Institute of Technology University of Texas at Austin

sfkaplan@cs.amherst.edu yannis@cc.gatech.edu wilson@cs.utexas.edu

Abstract

The unmanageably large size of reference traces has spurred the development of sophisticated trace reduction
techniques. In this paper we present two new algorithms for trace reduction|Safely Allowed Drop (SAD) and
Optimal LRU Reduction (OLR). Both achieve high reduction factors and guarantee exact simulations for com-
mon replacement policies and for memories larger than a user-de�ned threshold. In particular, simulation on
OLR-reduced traces is accurate for the LRU replacement algorithm, while simulation on SAD-reduced traces is
accurate for the LRU and OPT algorithms. Both policies can easily be modi�ed and extended to maintain timing
information, thus allowing for exact simulation of the Working Set and VMIN policies. OLR also satis�es an
optimality property: for a given original trace and chosen memory size, it produces the shortest possible reduced
trace that has the same LRU behavior as the original for a memory of at least the chosen size. We present a proof
of this optimality of OLR, and show that SAD, while not optimal, yields nearly optimal performance in practice.

Our approach has multiple applications, especially in simulating virtual memory systems; many page replace-
ment algorithms are similar to LRU in that more recently referenced pages are likely to be resident. For several
replacement algorithms in the literature, SAD- and OLR-reduced traces yield exact simulations. For many other
algorithms, our trace reduction eliminates information that matters little: we present extensive measurements to
show that the error for simulations of the clock and segq (segmented queue) replacement policies (the most
common LRU approximations) is under 3% for the vast majority of memory sizes. In nearly all cases, the error
is much smaller than that incurred by the well known stack deletion technique.

SAD and OLR have many desirable properties. In practice, they achieve reduction factors up to several orders
of magnitude. The reduction translates to both storage savings and simulation speedups. Both techniques require
little memory and perform a single, forward traversal of the original trace, making them suitable for on-line trace
reduction. Neither requires that the simulator be modi�ed to accept the reduced trace.

1 Introduction

Trace-driven simulation is a common approach to studying virtual memory systems. Given a reference trace|a

sequence of the virtual memory addresses that are accessed by an executing program|a simulator can imitate the

management of a virtual memory system. Thanks to reference traces, experiments on virtual memory management

policies can be reproduced in a controlled environment. Unfortunately, these traces can be extremely large, easily

exceeding the capacities of modern storage devices even for traced executions lasting only a few seconds. The size

of traces impedes both their storage and processing. Trace reduction is the compression of reference traces (either

lossless or lossy) so that they can be stored and processed eÆciently.

There are many existing methods for trace reduction. Most commonly, it is assumed that the Least Recently Used

(LRU) policy or some variant of it will be simulated using the reduced traces, as LRU and its derivatives are most

commonly used in real systems. Furthermore, it is assumed that OPT (also known as MIN) [Bel66], the optimal,

o�-line replacement policy, will also be simulated using the reduced traces as a baseline. Based on these assumptions,

many references can be identi�ed as \insigni�cant" and thus eliminated from an original reference trace.

1

However, the existing methods have undesirable characteristics for virtual memory simulation: Some discard so

much reference information that the reduced trace introduces signi�cant error into the simulation of common page

replacement policies. Other methods make it diÆcult to control how much information is discarded, and thus what

size memories can be simulated accurately. Some methods reduce the storage costs without reducing the number of

references and thus the time required to process a trace.

We present two trace reduction methods|Safely Allowed Drop (SAD) and Optimal LRU Reduction (OLR)|

that do not su�er from these de�ciencies. Both allow a user to control the degree of reduction by the speci�cation

of a reduction memory size|that is, a memory size selected at reduction time that dictates the magnitude of the

reduction, where larger reduction memory sizes imply smaller reduced traces. Roughly speaking, the smallest memory

size that will be simulated using a reduced trace will be a good choice of reduction memory size. SAD is the simpler

of the two algorithms presented: it removes references that are guaranteed not to a�ect the LRU and OPT behavior

of a trace, provided that the simulated memory sizes are no smaller than the reduction memory size. Under the same

assumption, the OLR algorithm yields the shortest possible trace that can be used for exact LRU simulations in place

of the original trace. OLR is useful both because it provides greater reduction than SAD and because its output

gives a lower bound for the length of a reduced trace. Both algorithms are eÆcient in practice, and signi�cantly

reduce storage and processing costs.

Guaranteeing accurate simulation for LRU and OPT may not seem exciting at �rst. If the trace were used

only with these policies, the simulation could be run only once and the results stored and re-used. Our approach

is e�ective, however, for simulations of many virtual memory replacement policies. Nearly all replacement policies

used or studied with real workloads are either variants or approximations of LRU in a weak sense that is suÆcient

for our trace reduction techniques. This similarity of common page replacement policies is hardly surprising|good

replacement algorithms should not evict pages that are in current use.

LRU variants (e.g., GLRU [FLW78], SEQ [GC97], FBR [RD90], EELRU [SKW99]) are policies that maintain

the most recently used pages in LRU order, but may keep the less recently used pages in some other order. More

formally, an LRU variant keeps some number k of most recently referenced pages in an m-page memory, where

(m > k). (For pure LRU, all m most recently accessed pages are kept resident.) Our approach to trace reduction is

applicable in all such cases for a reduction memory size of at most k. Even small values of k (10 to 100) are enough

to allow OLR and SAD to achieve reduction factors of up to several orders of magnitude, while guaranteeing exact

simulations.

SAD and OLR are also useful when studying LRU approximations, such as clock and segq (segmented queue|

also known as hybrid FIFO-LRU [BF83] or segmented FIFO [TL81]). These replacement policies ignore the same

2

high-frequency referencing information that nearly any replacement policy will ignore, and that SAD and OLR

discard from traces. This information is ignored not because these are LRU approximations, rather than pure LRU,

but because references to recently used pages matter only to replacement on the timescale of much smaller memories

than are managed by virtual memory systems. These high frequency references don't in
uence replacement decisions,

nor does the hardware in real systems support the eÆcient collection of such information.

We show that the error introduced by SAD and OLR for both clock and segq replacement simulations is small|

under 2% in number of faults for most cases. We also compare SAD and OLR to Stack Deletion (SD) [Smi77], which

is a commonly known technique for removing high frequency reference information from virtual memory traces. Given

reduced traces of comparable size created using all three methods, SAD and OLR introduce less error on average

into clock and segq simulations. Further, SD introduces more error (often in excess of 10%) into simulations based

on the reference traces used here than the original research on SD would indicate.

Additionally, the ability of the SAD algorithm to produce reduced traces valid for exact simulation of the OPT

policy (a.k.a. Belady's MIN) [Bel66] is a pleasant side-e�ect: it means that a single trace may be used for all

experiments in a virtual memory study. Such studies often compare a new algorithm to LRU and OPT.

Finally, SAD and OLR can easily be extended to reduce traces that contain annotations important to di�erent

kinds of simulations. The records of a reference trace may contain information such as timestamps, read/write

operation indicators, and the referenced data itself. SAD and OLR are easily extended to maintain that information,

again allowing for accurate simulations without modi�cation to the simulator. We will show how SAD and OLR can

be applied to simulations of a compressed cache [WKS99] and of a variable space allocation policy such as Working

Set (WS) [Den76].

In a shorter, earlier paper [KSW99] we presented the SAD and OLR algorithms, and provided a comparison to

SD. In this paper, we present several extra results. The main result is the proof of optimality of the OLR algorithm.

We also present the SAD2 algorithm, which is a supplement to SAD, and we show an experimental comparison of our

methods to the trace reduction algorithm used by Glass and Cao in their study on the SEQ replacement algorithm

[GC97]. Additionally, this paper contains a more detailed discussion of the use of SAD and OLR on reference traces

that contain annotations, as well as the presentation of SAD-WS, which is a variant of SAD that generates reduced

traces that can be used for exact Working Set and VMIN simulations.

Road-map: In Section 2, we discuss previous work in trace reduction, comparing our algorithms to existing ones.

In Section 3, we provide a detailed presentation of the SAD algorithm. Section 4 provides a description of the OLR

algorithm, as well as the proof of its optimality. In Section 5, we discuss the ease with which these algorithms can

3

be modi�ed for traces with di�erent annotations, and follow that with Section 6, where we present the SAD-WS

algorithm for dynamic memory management simulations. Section 7 presents experiments comparing SAD and OLR

to SD and the Glass and Cao technique. Finally, we conclude in Section 8.

2 Background and Motivation

Given the importance of trace reduction, it is not surprising that there has been a wealth of research work on

reduction techniques. Here, we will address the most critical such techniques; for a more thorough survey of existing

techniques, see [UM97]. In Section 2.1, we present an overview, and in Section 2.2, we compare our method to the

most closely related techniques.

2.1 Overview of Related Work

Like all data compression, trace reduction techniques are divided into lossless and lossy approaches. In a lossless

approach, the entire trace can be reconstructed from its reduced form, while lossy reduction does not preserve all

information in the original trace. Our technique is lossy in nature but guarantees that certain kinds of simulations

(most notably LRU and OPT simulations) are exact on the reduced traces.

2.1.1 Lossless Reduction Techniques

A straightforward approach to lossless trace reduction is to apply standard data compression techniques on a trace.

Simple Lempel-Ziv compression algorithms provide reduction factors of about 5 for typical traces [UM97]. Higher

degrees of reduction can be achieved by combining compression algorithms with di�erence encoding techniques. The

best known such instances are the Mache [Sam89] and PDATS [JH94] systems, which explore spatial locality in the

reference trace to encode it di�erentially. Subsequently, standard text compression techniques are applied and result

in further reduction of its size.

Lossless techniques can be used to reconstruct a trace accurately for all purposes. Nevertheless, the compression

ratios achieved are not as high as those possible with lossy trace reduction. More importantly, traces need to be

uncompressed before simulation is performed. Thus, the reduction gains of lossless compression do not translate into

simulation speedups. Only a reduction in the number of records in a trace will reduce the simulation time.

2.1.2 Lossy Reduction Techniques

When performing trace reduction, one usually has some knowledge of the future uses of the trace. Lossy trace

reduction techniques attempt to exploit such knowledge so that the trace size is reduced dramatically but enough

information is maintained for the intended uses.

The simplest lossy reduction technique is blocking [AH90]. Blocking replaces references to individual addresses

with references to larger blocks of address space, such as memory pages. Subsequent references to addresses within the

4

same page can then be reduced to a single reference. This reduction does not a�ect the simulation of time-independent

paging algorithms|algorithms that do not consider the exact time of each reference in making replacement decisions.

Such algorithms are LRU, OPT, etc., but not, for instance, Working Set [Den76], which must track every single

memory reference. Blocking is so widely applicable that it is practically assumed in most simulation work. For the

remainder of this paper, when we refer to an original trace, we are referring to a blocked trace.

Blocking is also interesting in that it is exploiting a di�erent kind of regularity than most reduction techniques.

Whereas other lossy reducers concentrate on the temporal locality of a program trace, blocking exploits spatial

locality and results in an extra signi�cant factor of reduction.

Many trace reduction methods are kinds of trace sampling or trace stripping (see [Puz85]). Both are intended

for the simulation of high-speed hardware caches; because they introduce inaccuracy into fully-associative memory

policy simulations, they are not well suited to virtual memory simulations.

The remaining types of lossy trace reduction methods are oriented towards virtual memory simulations. These

techniques address the same concerns as our algorithms and are directly comparable to them. The next section

discusses such related reduction techniques in detail. Because SAD and OPT are also lossy techniques, other work

in this area is the most relevant for comparison to our new methods.

2.2 The Value of Our Techniques

Our approach �lls a prominent gap in the spectrum of trace reduction techniques. Most existing techniques either

do not guarantee accurate simulations or do not achieve the same high reduction factors as our method. We isolate

a few approaches that stand out as particularly related to ours.

� Smith's Stack Deletion (SD) [Smi77] only keeps references that cause pages to be fetched into a k-page LRU

memory. That is, SD eliminates references to pages that would already be resident in an LRU-managed k-page

memory. SD is directly comparable to the SAD algorithm. Both techniques are very simple and have similar

preconditions: for both, the reduction memory size chosen when the trace is reduced determines the minimum

simulation memory size for which the results will be accurate. However, SAD guarantees that no error is

introduced for simulations of LRU and OPT for that simulation memory size, while SD does not guarantee

exact results for any replacement policy. For example, SD may eliminate the last reference to a page before

it would be evicted from a k-page LRU memory, thus allowing an LRU simulation based on an SD trace to

evict that page sooner than it would have been if the original trace had been used. Smith experimentally

demonstrated that the error introduced by SD is small. However, that error is small only if the reduction

memory size is much smaller than the simulated memory (typically 20% to 50% of its size). Hence, SAD

5

can use a much larger reduction memory, which will yield greater reduction, and still achieve exact results.

Additionally, we will show that SD introduces larger error than both SAD and OLR for clock and segq

simulations based on reduced traces of the same size. In conclusion, SAD and OLR are both safer (i.e.,

introduce less error) and more e�ective (i.e., yield smaller traces useful for comparable purposes) than SD.

� Co�man and Randell's technique [CR70] can be seen as an alternative to both SAD and OLR for LRU simu-

lations. Their approach consists of generating the LRU behavior sequence|the sequence of pages fetched and

evicted caused by some sequence of references|for a k-page LRU memory. These behavior sequences can then

be used to perform exact simulations of LRU memories no smaller than k pages. The behavior sequence is

typically very short, even for small values of k. The biggest drawback of this approach is that the product

of reduction is not itself a reference trace. At the least, the simulator, as well as any other tools (e.g., trace

browsers), will need to be modi�ed to accept the new format. This is a practical burden to the simulator

implementors and makes it hard to distribute traces in a compatible form. This is the main reason why this

simple technique has not become more widespread. Our OLR algorithm is complementary to the approach of

Co�man and Randell: it o�ers an eÆcient way to turn the behavior sequence format into the shortest possible

trace exhibiting this LRU behavior. Other advantages of our algorithms exist. For instance, SAD is also ap-

plicable to OPT simulations, and we will show that both SAD and OLR introduce little error for simulations

of clock and segq.

� Just like our techniques, the reduction method used by Glass and Cao [GC97] is applicable to exact virtual

memory simulations of some policies. Their technique divided execution into �xed-length segments of instruc-

tions. Roughly speaking, at the end of each segment, their method would emit a record for each page that was

referenced for the �rst time in more than one segment, and a record for each page that had no longer been

referenced in more than one segment. It was expected that these \in" and \out" records would be interpreted

by a simulator that consumed the reduction representation. Like Co�man and Randell's method, the Glass

and Cao technique su�ers from the need to modify the simulator to accept this reduced format, which is not

a reference trace. In this case, the modi�cations are substantial, and it can be hard to use the reduced trace

information for simulations of policies other than those studied in [GC97] (LRU, OPT, and SEQ|an experi-

mental replacement algorithm that itself could not be exactly simulated using Glass and Cao's own reduction

method). Another drawback of this technique is its lack of control over the interesting memory ranges. It is

not possible to specify directly the memory sizes for which the simulation should be exact. Instead, the trace

�lter allows only indirect control over the minimum memory sizes for which the simulation is valid; worse, that

6

minimum size cannot be determined until after the trace has been gathered. The method seems to be less

eÆcient than our approach, at least for LRU simulations. We did not have access to the traces used by Glass

and Cao in unreduced form, but were able to derive the OLR-reduced form of these traces (directly from the

Glass and Cao reduced traces). These OLR-reduced traces were several times shorter than the reduced form

used by Glass and Cao, both in terms of absolute size and in terms of signi�cant events. The detailed results

of this comparison will be presented in Section 7.3.

� Phalke and Gopinath developed Inter-Reference Gap (IRG) �ltering [Pha95]. For this lossy method, a working

set memory that stores those pages touched in the last � references is simulated. Any reference to a page

already in the memory (that is, in that working set) is eliminated in the reduced trace. Therefore, IRG �ltering

is analogous to SD, except that a WS memory is used instead of an LRU memory. Phalke and Gopinath

demonstrate that this method yields signi�cant reductions in trace size. However, IRG �ltered traces have

severe limitations. For WS and VMIN [PF76], IRG �ltered traces yield fully accurate results only for the

number of misses.1 However, full simulations of these policies|simulations in which the order of fetches and

evictions is correct|cannot accurately be performed using IRG �ltered traces. As a result, information such

as the space-time product, commonly used for WS simulations, cannot be obtained. For other policies, such

as LRU, IRG �ltered traces introduce greater inaccuracy than SD for traces reduced to comparable sizes. We

will show that SAD can easily be modi�ed to allow for exact WS and VMIN simulations, just as standard SAD

allows for exact LRU and OPT simulations.

Other applications of our algorithms are possible. Because of its optimality properties, OLR is ideal for the

purposes of trace analysis. It provides an estimate of the amount of reordering done inside an LRU memory. This is

useful for evaluating whether a trace will behave similarly under LRU and under LRU approximations (e.g., clock

or segq implementations). Another possible application of OLR is in trace synthesis. Given any exact sequence of

fetched and evicted pages from an LRU memory, OLR can produce a minimum length trace that will cause the same

fetches and evictions. This could provide an alternative to statistical trace synthesis techniques (e.g., [Bab81]).

Finally, our techniques are complementary to lossy reduction algorithms that exploit di�erent principles. Since the

output of either of our algorithms is itself a trace, other trace reduction techniques can be applied (e.g., [JH94, AH90]).

Furthermore, lossless techniques, including simple �le compressors like gzip, can be applied to our reduced traces to

yield much smaller �les.

1They also note that, with one additional integer for the reduced trace, mean memory sizes can be accurately calculated for WS and

VMIN.

7

3 Safely Allowed Drop (SAD)

Full traces commonly contain a large number of references that are ignored by virtual memory replacement policies.

These references account for the majority of space required to store a trace, and consume the majority of time

required to perform a virtual memory simulation. Safely Allowed Drop (SAD) removes references from a trace that

do not a�ect the order of fetches into and evictions from an LRU memory of some user-speci�ed size.

We will show that SAD allows for exact simulations not only of LRU, but also of OPT. We will also show, in

Section 7, that it introduces very little error into the simulation of LRU approximations such as clock and segq.

Finally, we will show, in Section 6, that SAD can be adapted to provide exact results for other policies, like Working

Set.

3.1 Finding References to Drop

For any two references to the same page in a trace, we can de�ne the LRU distance between them as the number

of other pages referenced between the two references to the same page.2 The idea behind SAD is simple: For any

three references to the same page in a trace, if the LRU distance between the �rst and third references is less than k,

then removing the middle reference does not a�ect the outcome of LRU and OPT simulations on memories of size

no greater than k. Section 3.4 describes why the elimination of these middle references has no e�ect on LRU and

OPT.

SAD is an application of this observation. The user speci�es a reduction memory size k. SAD searches the trace

from left to right in search of triplets of the above form|references to the same page, such that the LRU distance

between the �rst and third reference is less than k. All middle references of such triplets are eliminated.

Afirst

... A B C A D E A...

Asecond Athird

Figure 1: Asecond can be eliminated because the LRU distance between Afirst and Athird is less than the reduction

memory size of �ve pages.

Figure 1 shows three references to page A. The LRU distance between the �rst reference Afirst and the third

reference Athird is 4, as there are four distinct pages (B, C, D, and E) that are referenced between Afirst and Athird.

If the memory size chosen for reduction is at least 5, then we can safely drop Asecond without a�ecting the results of

an LRU or OPT simulation.

2In other words, the LRU distance between two references to the same page is the LRU queue position in which the page would be

found when the second reference occurred, assuming that the page is not referenced at all between those two references.

8

Nearly all programs frequently reference pages that were recently used. Due to this temporal locality, references

eliminated by SAD constitute the vast majority of references in usual program traces, even for small reduction

memories.

3.2 SAD Algorithm Implementation

SAD needs only to determine LRU distances between pairs of references to the same page in order to �nd middle

references that can be eliminated. The search proceeds from left to right, allowing reduction to be performed in a

single forward traversal of the original trace.

As the trace is processed, the algorithm maintains an LRU queue of the requested, reduction memory size. It

also stores some of the most recently input references from the original trace. By keeping both the LRU queue and

a recent history of references, the algorithm can �nd groups of three references to the same page where the LRU

distance between the �rst and third references is less than the reduction memory size. Therefore, this information is

enough to �nd middle references that can be eliminated.

Although it is necessary to store recent references to �nd these triplets, the number of references stored can be

bounded. It is only necessary to store at most 2k+1 of the most recent references in order to �nd the LRU distance

between �rst and third most recent references to a page. Speci�cally, the implementation needs to store at most the

two most recent references for those pages in k-page LRU queue, plus a third reference to one of those pages as a

triplet is found. If a triplet is found, the middle reference is eliminated, and again only two recent references for that

page are stored. Triplets could not possibly be found for other pages, so their recent references need not be stored.

Given something like a hash table to help �nd recent references to pages, performing this reduction is little more

than an augmented LRU queue simulation; it can be executed eÆciently. For more details, we refer you to our

implementation of SAD at [Kap].

3.3 Improvements in Reference Elimination: SAD2

Ideally, we would like a trace reduction algorithm that eliminates every possible reference from a given trace without

a�ecting its LRU behavior on a memory of no fewer than k pages. In other words, an optimal reference eliminating

algorithm is one that would remove exactly those references that do not a�ect the LRU behavior of a k-page memory,

such that the removal of any remaining reference would a�ect the behavior.

SAD is not an optimal reference eliminating algorithm. To see that it is not, consider the following reference

sequence:

A B C B C B A

Applying SAD with a reduction memory of 2 pages will yield the following reduced reference sequence:

9

A B C C B A

The middle reference to page B was dropped, making adjacent two references to page C. Ideally, these two references

to C should be collapsed into one, but SAD does not perform this particular reduction. Although SAD could be

augmented to identify this case, there is a more general technique we can use to eliminate even more references.

The SAD2 algorithm. Within a reference sequence (even after it is reduced by SAD), there may be a pair of

temporally local references to some page where no other reference between those two would cause a fault. The �rst

of those two references is not needed, as the second reference can ensure that the page is fetched before the next

page fault, and because the second reference will dictate the LRU queue position of that page when that next fault

occurs.

SAD2 is the application of this observation, where given such a pair of references, the �rst is dropped. More

speci�cally, SAD2 examines a trace from left to right, searching for pairs of references to the same page such that:

1. The �rst reference to the page would require that the page be fetched into a k-page LRU memory, and

2. No reference between the �rst and the second causes a page fault.

When such a pair has been found, the �rst reference is dropped, thus forcing the second reference to become

one that will cause the page to be fetched into the k-page LRU memory. To illustrate this algorithm, consider the

following reference sequence that, given a reduction memory size of 3 pages, SAD cannot reduce:

A B C B A C D A B D

Notice that there are two references to page C. The �rst one will cause a fault, as C would not yet be resident in

a k-page LRU memory. However, between the �rst and second references to C, there are references to pages A and

B|both pages that would be resident, and would not cause page faults. Therefore, the �rst reference to C can be

dropped, leaving the second C to cause the fault, leaving the following, reduced sequence:

A B B A C D A B D

Note, however, that while this sequence is shorter than the original, it still contains other references that can

safely be dropped. The elimination of the �rst reference to C has revealed that there is a pair of references to B, one

of which is super
uous. Reapplication of SAD2 yields the following reference sequence:

A B A C D A B D

Note that in the original reference sequence, we could not safely remove the �rst reference to B because between

the �rst and second references to that page was a reference to C|a reference that would cause a page fault. However,

the �rst application of SAD2 delayed the �rst reference to C and its corresponding fault. Thus, with the intervening,

10

faulting reference eliminated, the two references to B could be safely collapsed. In general, an application of SAD2

may reveal opportunities for further application of either SAD or SAD2. For best results both algorithms can be

applied repeatedly until they reach a �xpoint.

Limitations of SAD2. While SAD2 is the application of a simple rule, its computational requirements are greater

than those of SAD. As we have seen, SAD2 may have to be re-applied multiple times, as each application may reveal

opportunities for further reduction. Therefore, SAD2 cannot easily be used as an online algorithm to eliminate as

many references as possible.

Because of this limitation with SAD2, we will not evaluate it further in this paper. We present it to demon-

strate that SAD does not eliminate all possible references, and that the further elimination of references requires

substantially more computation. We do not even claim that SAD and SAD2, when combined, constitute an optimal

reference eliminating algorithm. We will see, in Section 7, that SAD alone realizes nearly all of the possible reduction

as determined by OLR, which itself can exceed the reduction of an optimal reference eliminating algorithm. If a

simple, easily modi�able algorithm is needed, then SAD is an excellent choice. If further reduction is of critical

importance, then OLR, which can synthesize the shortest trace possible and be applied online, is a better choice

than using both SAD and SAD2.

3.4 Exact Simulation of LRU and OPT

If SAD reduces a trace using a k-page reduction memory, then that reduced trace can be used for the exact simulation

of both LRU and OPT memories that are at least k pages. We will provide arguments for the exactness under both

of these policies.

Exact LRU simulation. First, recall the de�nition of LRU distance: Given two references to the same page,

the LRU distance between them is the number of other, distinct pages referenced between those two references.

Therefore, if the LRU distance between two references to a page is less than k, then that page will not be evicted

from an LRU memory of at least k pages.

Consider an LRU queue of unbounded length and its contents for both the unreduced and the reduced trace.

By dropping references, SAD allows pages to drift further away from the front of the LRU queue, as each page is

referenced less often. These pages, however, are guaranteed to be in the �rst k positions of the queue; each eliminated

reference is followed by another reference to the same page that is an LRU distance less than k from the previous

reference.

Other pages are not adversely a�ected by removing a reference. Their position in the LRU queue can only be

closer to the top for the reduced trace than it would have been for the original one. The only positions in the

11

queue that may have di�erent contents for reduced traces are the ones from 1 to k. Therefore, the results of LRU

simulations for memories of size k or larger will be identical for the reduced and the unreduced trace.

We illustrate this argument by examining Figure 1. For a memory of size 5 or larger, A will remain in memory

between Afirst and Athird. The middle reference Asecond has no e�ect on LRU replacement and if it is dropped, the

reference Athird will ensure that A is not incorrectly evicted.

Exact OPT simulation. SAD-reduced traces also yield exact simulations for OPT memories of at least k pages.

Consider again the three references in Figure 1. When OPT must choose a page for eviction, it selects the resident

page �rst referenced furthest in the future. We can show, case by case, how the removal of Asecond does not a�ect

the replacement decisions made by OPT:

� If OPT is processing references before Afirst, then the removal of Asecond will not a�ect its eviction choices,

as Afirst is the reference that OPT will use to determine whether A is evicted.

� If OPT is processing references between Afirst and Athird, then we already know that fewer than k distinct

pages are referenced between those two references to A. Note also that the page currently being referenced is

not already in memory (since it caused a replacement) and cannot be a candidate for eviction, making the

number of other distinct referenced pages preceding Athird less than k � 1. Therefore, if the memory size is

at least k, page A cannot be the one �rst referenced furthest into the future because of reference Athird. The

absence of Asecond does not a�ect the replacement decision.

� If OPT is processing references that follow Athird, then none of these three references to page A will a�ect

decisions. OPT examines future references to make its decisions, so the missing reference Asecond will have no

e�ect.

That SAD is applicable to OPT is no surprise: OPT could be described as the Least Soon Used (LSU) policy that

keeps a queue of pages ordered from most to least soon used, just as LRU keeps an queue of pages ordered from most

to least recently used. LSU distance could be de�ned just as LRU distance is. LSU is simply the forward-looking

variant of LRU, and the elimination of inconsequential references obeys the same rules.

4 Optimal LRU Reduction (OLR)

The SAD algorithm obtains signi�cant reduction factors for actual traces. Nevertheless, SAD is a reference elimi-

nation algorithm, and reduced traces from such algorithms may not be the smallest for which either LRU or OPT

simulations are exact. For instance, consider the reference sequence:

12

A B C B A C D A B D (1)

For an LRU memory of k = 3 pages, the behavior of this sequence is:

hA; NF i ; hB; NF i ; hC; NF i ; hD; Bi ; hB; Ci ;Last (2)

The above behavior sequence consists of pairs of elements hx; yi, where x is being fetched into the memory, and

y is being evicted from the memory. The special value Last signals the end of the sequence, while NF denotes that

the LRU memory is not full and, hence, the insertion of one element does not cause the eviction of another.

SAD would not be able to eliminate references from sequence 1 with a 3-block memory.3 Although repeated

application of SAD and SAD2 would eliminate some references, in this section we are interested in an optimal

solution. More speci�cally, we de�ne the LRU trace reduction problem as follows: Given a reference sequence, �nd a

shortest sequence that yields identical behavior for a k-block LRU memory. Re-stated, the problem becomes: given

a behavior sequence, �nd a shortest reference sequence that has that behavior.

Note that the reference sequence needs to be at least as long as the behavior sequence (as it contains all references

that cause interesting behavior to take place), and typically it is signi�cantly longer. For instance, in our above

example (sequence 2) it is not enough to take the �rst part of each element of the behavior sequence:

A B C D B (3)

The reason is that the above sequence does not have the desired behavior: when block D is referenced, block A is

evicted from memory instead of block B. Thus, we need extra reference(s) that will re-organize the memory blocks

without causing evictions. It is easy to con�rm that the following sequence has the behavior of sequence 2 when

k � 3: (Indeed this sequence is a solution to the LRU trace reduction problem for sequence 2 and k = 3.)

A B C A D B (4)

We designed and implemented OLR: an algorithm that produces solutions to the LRU trace reduction problem.

In this section, we will analyze the problem, introduce OLR, and prove that it solves the LRU trace reduction

problem. We need to warn the reader that despite our best e�orts, the description and proof of optimality of OLR

3We use the terms block and page as synonyms|a page de�nes the block size of interest for virtual memory studies.

13

remain rather tedious. (Nonetheless, the description in this article is much simpler than that of our previous, more

formal algorithm statement and proof [Sma98].)

4.1 Background and Observations

Before we present an algorithm for the LRU trace reduction problem, we will examine some characteristics of traces

that will help us understand the algorithm later. The concepts introduced here require careful attention, as it is

diÆcult to understand OLR or its proof otherwise.

For a given reference trace and a queue size k, the annotated LRU trace consists of a complete description of the

results of applying the reference trace to an LRU queue of size k. For instance, for the reference sequence 1 (seen

earlier) and k = 3, the corresponding annotated LRU trace is:

0 1 2 3 4 5 6 7 8 9 10

hA; NF i hB; NF i hC; NF i hB; nonei hA; nonei hC; nonei hD; Bi hA; nonei hB; Ci hD; nonei Last

We will call the entries of an annotated trace LRU events. Each entry has the form hx; yi, where x is the referenced

page, and y is the page evicted from the k-page LRU queue or the special value none. If y is none, then x must have

already been in the LRU queue, and so no eviction was necessary. If the LRU events where y is none are removed

from an annotated trace, we get the LRU behavior sequence for the reference trace.

Solving the LRU trace reduction problem means computing the smallest set of LRU events to add to a given

behavior sequence to yield a valid annotated LRU trace. The behavior sequence can be generated by basic LRU

simulation from an original reference trace, and the annotated trace can be translated back into a reference trace by

keeping only the �rst element from each pair that composes an event.

Consider a sequence of LRU events. We will use the term interval for any of its consecutive subsequences. Two

concepts that are important for our later development are those of a run and a tight run:

De�nition 1 (run) A fetch-evict run (or just run) is an interval in an LRU event sequence, such that:

1. It begins with a pair hx; yi and ends either with a pair hz; xi or with Last.

2. No other LRU event in the run has block x as its �rst element.

Intuitively, a run describes the behavior of an LRU queue between the point where an element is last referenced

before it will be evicted, and the point where the element is evicted. We will describe intervals (and runs) using the

starting and �nishing indices in the sequence where they occur. A run (s0; f0) (that is, a run starting at index s0

and �nishing at index f0) will be said to contain another run (s1; f1) i� s0 < s1 and f1 < f0.
4

4Note that the strict inequality in the de�nition implies that runs that are terminated by Last do not contain one another.

14

De�nition 2 (tight run) A tight fetch-evict run (or just tight run) is a run that contains no other runs.

In our previous annotated trace example, there are �ve runs: (3; 6), (5; 8), (7; 10), (8; 10), and (9; 10). All �ve

runs are tight, and this is not a coincidence|otherwise this would not re
ect a legal LRU execution: a block would

have to be evicted without being the least recently used one for a run not to be tight.

Lemma 1 All runs in an annotated LRU trace are tight. Any sequence of event pairs such that all its runs are tight

is an LRU annotated trace.

Proof: Immediate from the de�nition of LRU and the de�nition of a run. 2

Continuing our example, now consider the behavior sequence (2) from Section 4 (reproduced below with indices):

0 1 2 3 4 5

hA; NF i hB; NF i hC; NF i hD; Bi hB; Ci Last
(5)

Not all runs in this sequence are tight: for instance, run (0; 5) contains both runs (1; 3) and (2; 4). To derive an

annotated trace from a behavior sequence, we need to add \extra" references to ensure that all runs are tight. In

particular, if one run contains another run, then it must be the case that the block corresponding to the outer run

must be referenced during the inner run. The following lemma captures this relationship between outer and inner

runs:

Lemma 2 If a run (s0; f0) of a behavior sequence contains another run (s1; f1), then, in order to produce an

annotated trace, a reference to the page referenced at s0) needs to be added between the references in positions s1 and

f1 of the behavior sequence.

Proof: From Lemma 1 and inspection of the possibilities: The containment of a run in another can change only if

the outer run shrinks, and the outer run will shrink only if the \last reference before eviction" for the corresponding

block moves closer to the eviction event. 2

We will call this process of adding a reference to tighten an outer run clipping the outer run. Clipping a run

produces a new run that is a suÆx of the original.

In the example of sequence 5, run (0; 5) contains runs (1; 3) and (2; 4). Lemma 2 tells us that there needs to be

a reference to the page referenced at index 0 (that is, A) between indices 1 and 3, as well as between 2 and 4. A

reference to A after position 2 satis�es both constraints, as seen in sequence 4. The corresponding annotated trace

is:

15

0 1 2 3 4 5 6

hA; NF i hB; NF i hC; NF i hA; nonei hD; Bi hB; Ci Last
(6)

Lemma 2 is important because it gives us constraints for the extra references needed to turn a behavior sequence

into an annotated trace. The constraints of a block b can be described as intervals (s; f), meaning that a reference

to b must exist in the OLR output between the references in positions s and f of the input. OLR e�ectively provides

a minimal set of references that satisfy these constraints.

4.2 The OLR Policy and Algorithm

As we just saw, the LRU trace reduction problem is equivalent to �nding the smallest number of extra references

that, if added to a behavior sequence, will make all runs tight|that is, they will turn the behavior sequence into an

annotated trace. We propose that the following policy yields such an optimal solution:

OLR: Examine in order each fetch-evict event, e, in the behavior sequence. At each one, apply the following rules:

1. Late clipping step: Clip every run that contains the one ending at e by adding an event hx; nonei before

e (where x is the block corresponding to the outer run). For each outer run that must be clipped, the events

added before e can be placed in any order.

2. Early clipping step: If the event e is the beginning of a tight run, clip all runs ending after the end of that

tight run and before the end of the next tight run (or at the end of input, if the end of the next tight run is

the end of the input), in the order that they end. The clip is accomplished by inserting for each such run an

event hx; nonei after e.

(Note that the late clipping step adds references before the event examined, while the early clipping step adds

references after the event. Thus the two steps do not con
ict|they can be applied in any order.) Let us see the

application of the two steps in examples.

First we will examine a scenario where the early clipping step is necessary for optimality. The early clipping step

is applied at the beginning of a run (speci�cally a tight run), and exists to eagerly clip sequences as early as possible

so that the clipping will not cause a previously tight run to become non-tight. As an example, consider the following

behavior sequence:

0 1 2 3 4 5 6

hA; NF i hB; NF i hC; NF i hD; Bi hE; Ai hB; Ci Last
(7)

16

Here, the tight run (1; 3) is contained by the non-tight run (0; 4). Also notice that there is another tight run in

this sequence, (2; 5). Now consider what will happen if, instead of using the early clipping step, we clip (0; 4) by

applying the late clipping step at event 3, thus forming the new sequence:

0 1 2 3 4 5 6 7

hA; NF i hB; NF i hC; NF i hA; nonei hD; Bi hE; Ai hB; Ci Last
(8)

With the new event 3 in this sequence, there is now a run (3; 5) corresponding to block A. However, this run

is now contained by the run (2; 6) on block C, which had previously been tight in behavior sequence 7. While we

could now clip this non-tight run by applying the late clipping step again, we would have inserted two new events.

Alternatively, if the early clipping rule is applied to behavior sequence 7 at event 1, which is the beginning of the

contained run on block B, then no previously tight run is made non-tight; the sequence is made into an annotated

LRU trace by adding only one event:

0 1 2 3 4 5 6 7

hA; NF i hB; NF i hA; nonei hC; NF i hD; Bi hE; Ai hB; Ci Last
(9)

Intuitively, the early clipping step is applied exactly to ensure that the newly clipped runs are as long as possible

(since they are clipped as early as possible) so that we avoid having them contained in previously tight runs (which

would then themselves require clipping).

The late clipping step, on the other hand, ensures that long sequences (ones that do not end before the end of

the next tight run) are clipped as late as possible so that the clipped runs do not end up containing other runs. For

a scenario where the late clipping step is necessary for optimality, consider the following behavior sequence for a

3-page memory.

0 1 2 3 4 5 6

hA; NF i hB; NF i hC; NF i hD; Bi hE; Ci hF; Ei Last
(10)

This sequence has two non-tight runs: (0; 6) and (3; 6). The (0; 6) run contains three di�erent tight runs: (1; 3),

(2; 4), and (4; 5). The (3; 6) run contains only the (4; 5) tight run. Applying OLR to all events in forward order

results into an application of the late clipping step on event 3. This means that an event hA; nonei needs to be added

before event 3 of the above sequence. (Two more events hA; nonei and hD;nonei will be added by the early clipping

step after position 4 of sequence 10.) The intuitive reason why we need to clip run (0; 6) late (at position 3) and not

earlier (at position 1) is that in this way, the resulting clipped run does not end up containing run (2; 4).

The end result of applying OLR on sequence 10 is:

0 1 2 3 4 5 6 7 8 9

hA; NF i hB; NF i hC; NF i hA; nonei hD; Bi hE; Ci hA; nonei hD; nonei hF; Ei Last
(11)

17

Note that the late clipping step of the OLR policy ensures that the output has the same behavior as the input:

all non-tight runs are tightened at the point right before their contained run ends.

Before we analyze why the OLR policy is optimal, let us note that it can be implemented by an eÆcient algorithm.

The algorithm simulates an LRU queue on which the reduced trace is being applied. To detect the condition of the

late clipping step (runs containing the one ending at the current event, e = hx; yi) the queue needs to return the set

of blocks that are less recently accessed than y. If the queue (of size k) is implemented as an annotated self-balancing

tree, the complexity of this operation is O(log k+s), where s is the size of the returned set. Similarly, testing whether

an event is the beginning of a tight run is an O(log k) complexity operation, since it can be reduced to testing set

membership of the evicted block in the set of blocks fetched since the beginning of the previous tight run. In total, an

algorithm based on these ideas has a running time of O(l � logk+n), where l is the size of the input behavior sequence,

and where n the size of the output reduced trace. (Note that the inequality l � n � l �k holds.) Considering that the

LRU simulation (required to produce the behavior sequence from the original trace) has a complexity of
(n � logk),

the running time of OLR is negligible.

Finally, an algorithm implementing OLR needs only O(k) space. All data structures used have at most k elements,

and although the algorithm needs to \look ahead" in the input, it needs to do so only until the end of the next tight

run, which will always be at most 2k events from the current event. This modest storage requirement makes the

algorithm ideal for online implementations (i.e., reduction can take place while a trace is being produced).

4.3 Optimality of the OLR Clipping Policy

To show that the OLR policy outlined previously indeed yields the smallest number of extra references, we will �rst

develop a lower bound on these extra references. The bound will be algorithmic|that is, we will show an algorithm

to compute a lower bound on the extra references required to tighten a given behavior sequence. Then we will prove

that the OLR policy adds references with a one-to-one correspondence to the extra references prescribed by the lower

bound.

A Lower Bound: As seen earlier, Lemma 2 can be applied to all pairs of runs contained within one another to give

a set of constraints for the necessary extra references. The constraints have an interval form: a constraint (s; f) on

block b means that a reference to b must exist in the OLR output between the references in positions s and f of the

input.

We can compute the least number of references that can satisfy all constraints for a single block with a greedy

algorithm. More generally, the problem is: Given intervals (s0; f0); : : : ; (sj ; fj), compute a smallest set of points S,

such that for each (si; fi), there exists p 2 S with si < p < fi. This problem is almost identical to the classic activity-

18

selection problem, as stated in [CLR89], p.330: Given activities represented as intervals, compute the maximum-size

set of non-overlapping activities.

A reference satis�es constraints (s0; f0); : : : ; (sj ; fj) i� it belongs in their intersection, i.e., the interval

(maxfs0; : : : ; sjg;minff0; : : : ; fjg). (That is, the reference will fall within all of the given intervals if it is between

the latest starting point and the earlier ending point of those intervals.) A greedy algorithm (henceforth called the

lower bound algorithm) computes the minimum set of references required to satisfy these constraints:

� Considering the constraints in increasing starting index order, compute maximal intersection intervals|i.e.,

the intersections of the next j constraints such that they that have a non-empty common intersection, but no

common intersection exists for the next j + 1 constraints.

All of the constraints in an intersection interval computed by the algorithm can be satis�ed by a single reference.

The proof that this greedy algorithm computes the minimum set of extra references is by simple induction. It is

essentially identical to Theorem 17.1 in [CLR89].

For our purposes, this algorithm yields a lower bound on the number of extra events that need to be added to

tighten all non-tight runs involving the same block in a behavior sequence (i.e., to solve the LRU trace reduction

problem). In fact, we will show that OLR matches the lower bound exactly.

To see why the OLR algorithm and proof is more complex than just applying the above greedy algorithm, consider

that there is no guarantee that all necessary extra references can be added without introducing new runs that cause

new constraints that a�ect the outcome of the lower bound algorithm. Avoiding interference by newly introduced

events is the essence of the OLR algorithm, and especially of its early clipping step.

Our next observation is that the outcome of the lower bound algorithm does not depend on constraints between

non-tight runs.

Lemma 3 The intersection intervals computed by the lower bound algorithm, if constraints between non-tight runs

are removed from its input, are also a valid solution for the original input.

Proof: If a run r1 contains a non-tight run r2, there must be a tight run, r3 contained by r2, and, hence, also

by r1. Any reference satisfying the constraint between r1 and r3 will also satisfy the constraint between r1 and r2.

Additionally, since we are only removing constraints of the input and the algorithm computes maximal intersection

intervals, the output cannot contain more intersection intervals, and thus is a minimal solution for the original prob-

lem, as well. 2

19

Similarly, we can show that the OLR policy only adds references at the beginning or end of tight runs. This

property is part of the de�nition of the \early clipping step" of OLR, but it is also true of the \late clipping step".

Lemma 4 The OLR policy's late clipping step is only applied when the current event is the end of a tight run.

Proof: Let us call r1 the run ending at the current event, and r2 the run that the late clipping step is used to clip

(r2 contains r1). If r1 is not tight, it contains a tight run, r3. In that case, r2 also contains r3. But then r2 would

have been clipped at the end of r3 by the late clipping step. That point is within r1, which means that r2 does not

contain r1, which is a contradiction. Therefore, r1 must be tight. 2

OLR Optimality: We can now show how the OLR policy is linked to the outcome of the lower bound algorithm.

First it is useful to describe informally some insights on the behavior of OLR. The early clipping step looks ahead

and detects when a run r contains the current tight run but not the next one. In this case, according to the lower

bound algorithm, r can be clipped anywhere within the current tight run. The early clipping step clips r right after

the beginning of the current tight run because otherwise the run resulting from the clipping may be small enough

to be contained by another run and thus change the existing constraints. Also, all other runs that, like r, contain

the current tight run but not the next one are clipped in an order that guarantees that they are tight (i.e., they do

not contain one another). The late clipping step is used to match the \greediness" of the lower bound algorithm we

examined. It only clips runs at the very last instant (right at the end of their contained tight run) so that the same

reference can satisfy as many constraints as possible.

Consider the constraints induced by non-tight runs in a behavior sequence. The proof that OLR matches the

output of the lower bound algorithm consists of two parts. First, we show that OLR adds events to the behavior

sequence in such a way that newly introduced constraints are already covered by existing constraints (i.e. satisfying

the existing constraints will also satisfy the new ones). Then, we show that every event added by OLR corresponds

to exactly one intersection interval in the current form of the trace (with the extra events already added by OLR),

as computed by the lower bound algorithm. Since the additions of events by OLR do not a�ect the intersection

intervals, the extra events of OLR also correspond one-to-one to the original intersection intervals, thus matching

the lower bound.

Theorem 1 Imagine applying the lower bound algorithm every time OLR processes an event of the input sequence.

If OLR adds an event that introduces a new constraint then the references (computed by the lower bound algorithm)

to satisfy the pre-existing constraints will also satisfy the newly introduced one.

20

Proof: Consider �rst the case of events added by the early clipping step. Since the runs are clipped by this

step in the order that they end, no new constraint can be created between two newly clipped runs. (That is, no

newly clipped runs can contain each other since they begin in the same order as they end.) The only change in the

input of the lower bound algorithm is that the clipped runs may now be contained in other runs, hence yielding new

constraints. Nevertheless, every run r1 clipped by the early clipping step has to end between the end of the current

tight run, r2, and the next tight run. Thus, if r1 is contained in another run, then so is r2. Since r1 is clipped

immediately after the beginning of r2, the output of the lower bound algorithm does not change: the intersection of

intervals will remain the same, since the new constraint contains an existing one.

Now consider the case of events added by the late clipping step. An interesting observation is that the late

clipping step only clips non-tight runs that will remain non-tight after clipping them! Let us call r1 the run ending

at the current event (which is tight according to Lemma 4), and r2 the �rst tight run starting after the current event.

Every new run r created by using the late clipping step has to contain r2|otherwise it would have been clipped

by application of the early clipping step at the beginning of some earlier tight run. (Here is this last argument in

more detail: Recall that the early clipping step clips all the runs ending between the ends of the next two tight

runs. Since r1 is a tight run, every run containing r1 and ending before the end of r2 will be clipped inside r1 by the

early clipping step|either at the beginning of r1 or at the beginning of a tight run between r1 and r2, so the late

clipping step can only be applied to runs ending after the end of r2. Hence, every run clipped by the late clipping

step contains r2, and since r2 begins after the clipping point, the newly created run r will also contain it.) Thus, r

is not tight and constraints caused because r is contained in another run do not change the outcome of the lower

bound algorithm (according to Lemma 3). 2

Now we are ready to �nish the proof of optimality for the OLR policy by showing that each extra reference it

adds corresponds to a di�erent intersection interval computed by the lower bound algorithm.

Theorem 2 The extra references added by OLR correspond one-to-one to the intersection intervals computed by the

lower bound algorithm.

Proof: Consider three subsequent tight runs (when all tight runs are ordered by starting point), r1, r2, and r3.

At the beginning of r1, OLR clips all runs containing r1 but not r2 using the early clipping step. All runs containing

both r1 and r2 are clipped either at the beginning of r2 by a similar application of the early clipping step or at the

end of r1 by the late clipping step. The former is the case if r1 and r2 have a non-empty intersection (i.e., r2 begins

before r1 ends) and the containing run does not contain r3. Otherwise the latter happens. Both cases conform to the

21

approach of the lower bound algorithm: a containing run is clipped inside the latest tight run possible, in order to

satisfy as many constraints as possible with a single reference. Additionally, no two extra references could correspond

to the same intersection interval, as the algorithm clips runs on a need-basis: if the containing run has already been

clipped, it is not clipped again. 2

This concludes the proof of optimality of OLR. The policy matches the lower bound in terms of extra references

added, and, thus, produces a smallest set of extra references that can be added to a behavior sequence to turn it

into an annotated LRU trace. The annotated LRU trace corresponds to the reduced trace that solves the LRU trace

reduction problem.

5 Modi�cation for Annotations and Re-Blocking

For a trace reduction algorithm to be useful in practice, several realistic concerns have to be addressed. These may

have to do with maintaining additional event information (e.g., how can the algorithm maintain page dirtiness when

the only dirtying reference is the one that is being removed?), with stability under re-blocking (e.g., is the reduced

trace safe for simulations with a twice as large page size? Is the reduced trace optimally small in that case?), etc.

These concerns can be addressed easily with SAD and OLR. The algorithms require at most modest modi�cations

to deal with dirtiness information, timings, page images, etc. We have implemented versions of SAD and OLR for

several of these scenarios and used them extensively in our own virtual memory experiments. This section discusses

some of the issues in more detail.5

5.1 Re-blocking

As discussed in Section 2.1.2, most reference traces are blocked to exploit spatial locality. Not all simulations are

performed on memories that use the same block size. Often, a trace will be blocked using the smallest block size

that the researchers anticipate they will need. Later, those traces will be re-blocked on a larger block size, where the

larger size is a multiple of the smaller size. This situation is common for virtual memory systems, where pages can

be as small as 512 bytes, and as large as 16 KBytes.

A reduced trace produced with a reduction memory of size k can be re-blocked for a larger page size and

simulations will continue to be accurate for memories of size k or larger. It is important to note, however, that the

memory size k refers to the number of pages, and not the number of bytes in the memory. The actual minimum

memory size in bytes for which simulations are exact is larger after the re-blocking. The ability to re-block a reduced

5We concentrate on the SAD algorithm more thoroughly in this section because its simplicity allows for easier modi�cation. We

also describe how OLR can be analogously modi�ed, even though we do not show in as much detail how those modi�cations would be

performed in the cases presented.

22

trace of this kind is a consequence of the stack algorithm [MGST70] properties of LRU and OPT. Note also that no

optimality guarantees are preserved after re-blocking: an OLR-reduced version of a trace derived with a certain page

size does not remain optimally short for a larger page size.

5.2 Maintaining Annotations Needed at Eviction

In our discussion of SAD and OLR, we have assumed the most simple form of a reference trace|one for which

each record contains only the address information for the referenced page. Real trace formats may need to contain

additional information in each record, such as the operation that required a reference (i.e. an instruction, read, or

write operation), the exact instruction causing that operation, the program counter (or any timer information), etc.

For some trace-driven simulations, this information becomes relevant only at the moment that a page is evicted

from the simulated memory. Until an eviction occurs, the information provided by such annotations must simply be

carried along with associated pages. Upon eviction, the simulator acts on the information it has maintained. Here

we will provide examples of this kind of information, and describe how both SAD and OLR can easily be made to

maintain that information for fully accurate simulation of evictions.

Dirtiness: Many virtual memory studies measure the cost of writing dirty pages to a backing store upon eviction.

Such studies require traces in which each reference is marked as a read or write operation. Both SAD and OLR

can be augmented to maintain these annotations such that the simulated number of evicted pages that are dirty is

una�ected by the reduction.

In order to maintain the dirtiness information about each page in reduced traces, the reduction methods must

notice which pages would be modi�ed by a write operation while in a k-page LRU memory. Since both methods

maintain such a memory during reduction, an implementation can record whether a page is dirtied while in that

memory. If a page is dirtied while in the reduction memory, then the last reference to that page before it is evicted

is marked as a write operation. A simulation based on the reduced trace will mark the page as dirty before it is

evicted from a k-page or larger memory.

For SAD, performing this task can be described in terms of the triplets identi�ed by the algorithm (as described

in Section 3). Assume that each record in the trace has a read/write annotation. For each triplet found within a

given k page reduction window, if the middle reference is annotated as a write operation, then the last reference

must be annotated as a write operation. The middle reference would have dirtied the page while it was in the k-page

memory; since that reference is being dropped, the last reference must become a dirtying reference, thus ensuring

that the page will be dirty before it is evicted.

Implementing this modi�cation for SAD requires only that the annotations be read and written, that space

23

be made to store the annotations for each record, and that the \forwarding" of annotations from dropped, middle

references to last references be performed. As a point of reference, we performed these changes to our implementation

of SAD within a few hours of work.

Page images for compressed caching: In a compressed caching virtual memory system [Wil91, Dou93, WKS99,

Kap99], main memory is divided into two distinct levels. The �rst level contains pages in their normal, uncompressed

form, which the second level contains pages that have been compressed. Pages are evicted from the uncompressed

level into the compressed level, and then from the compressed level to the backing store.

Simulation of compressed caching includes the compression of pages as they are evicted from the uncompressed

cache, and then the decompression of pages as they are fetched into the uncompressed cache. In order to accurately

simulate the cost and e�ectiveness of the compression, the simulator must be able to compress and decompress the

data contained in those pages. Therefore, reference traces for compressed caching contain actual images of the page

data in every trace record.

Just as with dirtiness information, these page image annotations are used when a page is evicted. For both SAD

and OLR, we need to associate each page in memory with its most recently read page image. When a page is evicted

from memory, its page image at the time of eviction is the page image annotation that should appear in the reduced

trace with the last reference to that page, preceding its eviction. Therefore, when a simulation is performed with the

reduced trace, the last reference prior to an eviction will be accompanied by the correct page image.

Under SAD, keeping this annotation updated is trivial. When a triplet is found and a middle reference dropped,

the annotation with that reference can safely be dropped as well. The last reference in that triplet will already

contain the correct page image annotation. As a point of reference, we added support for page images to a SAD

implementation within an hour.

Maintaining Timing Information: Timing information can be critical to some simulations, such as those that

simulate the dynamic memory management of multiple processes whose execution is interleaved by a scheduler. This

timing information is critical for simulating the behavior of the scheduler itself. Timestamps may represent wall-clock

time, CPU cycle time, instruction time, and reference time, for instance. SAD and OLR can be modi�ed to maintain

these timestamp annotations.

Timing information is trivial to maintain for SAD, since the algorithm only removes references from the original

trace. The records that are not dropped still contain their same timestamps, ensuring the references causing fetches or

evictions are marked with the appropriate timing information. For OLR, where references are synthesized, timestamps

from the original trace can be maintained and attached to the synthesized records that correspond to fetch-evict

24

events (i.e., page faults). Since fetches and evictions are guaranteed to occur in the correct order when processing

the reduced trace, the timestamps for each fetch will be correct.

6 Exchanging Reference Distance for LRU Distance: SAD-WS

So far we have concentrated on simulations of replacement (or demand-paging) policies. Such policies evict a page to

disk only when memory is full and a new page needs to be fetched. Nevertheless, some memory management policies

evict pages spontaneously, e.g., by responding to the passage of time between fetches and evictions. Working Set

(WS) is such a policy, as it evicts pages as reference time passes, regardless of whether or not any of those references

have caused a fetch to occur. For these policies, more signi�cant changes to the trace reduction method are needed.

Here, we will describe modi�cations to SAD that allow for exact WS simulations. We will call the modi�ed algorithm

SAD-WS. We will also address the VMIN policy, which is the forward-looking, o�ine counterpart to WS. We will

show that, just as OPT simulations are exact for standard SAD, so too are VMIN simulations with SAD-WS.

Recall that SAD simulates a k-page LRU memory, and detects triplets of references to the same page that all

fall within an LRU distance of k of one another. This principle does not apply to WS, because WS does not base its

eviction decision on the LRU distance between subsequent references to a page. Instead, WS evicts a page based on

the reference distance between subsequence references to a page. SAD-WS correctly detects these reference distances,

and �nds references that can be dropped.

The WS policy is simply stated as follows: Those pages referenced within the last � references are kept resident.

As with standard SAD, the references that are safe to drop are those that merely re-order the resident pages, and

have no e�ect on the fetch or eviction order. Thus, we will �rst address the problem of �nding those references in a

trace that can safely be dropped.

Reduced traces are needed for WS and VMIN simulations at least as much as they are for LRU and LRU-like

policies. If the only result needed were the total number of faults for a given trace and given value of � , then

there would be no need for reduction|the simulation could be performed once and the results stored for future

use. However, simulations of dynamic memory management depend not only on the management of memory for

a single process, but also the interactions between the many processes and the scheduler.6 For these kinds of

simulations, previously computed total fault counts for processes managed in isolation are insuÆcient to gather

the desired results about the multiprogrammed system. With SAD-WS, we can codify our assumptions about the

simulation environment (namely, that � has at least a certain value) and obtain signi�cantly shorter traces, valid for

any subsequent simulations for which the assumption holds.

6Consider, for example, that WS requires that some process be deactivated if the working sets of all active processes do not �t in

main memory. Whether or not the sum of the working set sizes exceeds the main memory capacity at any given moment depends on the

scheduled interleaving of process execution.

25

Finding references to drop: In order to �nd the references that can safely be eliminated, we need only simulate

a WS memory where the user chooses a � reference reduction window. Thus, by scanning the original trace and

keeping a history of the last � references, we can again detect triplets of references to the same page, among the last

� references.

If a triplet is found, then it must be the case that not enough reference time would pass between the �rst and

third references for the page to be evicted, even if the second reference were dropped. Just as with standard SAD,

we can identify these middle references as ones that do not a�ect the sequence of fetches and evictions of WS with

a � element reference window.

Nevertheless, we cannot simply drop these references in order to form a reduced trace. Because the WS policy

relies on the passage of reference time, and because reference time is normally inferred from the number of references

present in the trace (as opposed to there being explicit timestamps on each reference), the dropping of a reference

will incorrectly change the amount of reference time that passes. As a result, evictions of other pages will occur at

the wrong time.

Modifying the trace format: Given this characteristic of WS, it seems that the dropping of any reference would

alter the results. This limitation is applicable to any trace reduction method, including blocking: Any reduction

method that eliminates references will yield incorrect results for simulations of WS if the reduced trace does not

somehow account for the eliminated references. Therefore, any reduced trace that can be used with WS must contain

annotations that provide reference timing information. While it is undesirable that we must change any simulator

to understand this annotated trace format, the change is minimal, and would be required for any trace reduction

method.

We can add a single integer annotation, which we will call the time passed �eld, to each record of a reference

trace. This �eld can be interpreted as the amount of reference time that passed between the previous record and the

current record. An original reference trace can easily be pre-processed to conform to this format: For each record in

the original trace, add the time passed �eld with a value of 0, as no extra reference time passes between any two

records of an original, unreduced trace.

Given this new annotation, SAD-WS can drop references without eliminating the needed reference time infor-

mation. Speci�cally, for any reference that can be dropped, increment the time passed �eld of the next record.

Although a record has been eliminated, its contribution to the passage of reference time has been preserved.

Any WS simulator that can process a trace with this annotation needs simply to advance the reference time clock

according to the time passed �eld of each record before processing the reference indicated in that record. Provided

26

that the � chosen for simulation is no smaller than the � chosen for reduction, all fetches and evictions will occur in

the correct order, and at the correct reference time.

The modi�cations required to transform SAD into SAD-WS are straightforward. For instance, changing our

implementation to track reference distance instead of LRU distance required the modi�cation of only a few lines of

code.

Applicability to VMIN: The VMIN policy is an o�ine policy that can also be easily described: After a reference

to a page, that page is kept resident if it will be referenced again within the next � references, and evicted otherwise.

This policy is the forward-looking analog to WS; if the forward reference distance between two references to a page

is greater than � , then the page is evicted.

Our argument that traces reduced by SAD-WS are applicable to VMIN simulation is analogous to the argument

that traces reduced by SAD are applicable to OPT, as described in Section 3.4. SAD-WS drops references only if

the reference distance between two other references to the same page are close enough to ensure the page's residency.

Whether the reference distance is examined in the backwards (WS) or forwards (VMIN) direction, the calculation of

distance will be identical. Therefore, SAD-WS reduced traces will yield fully correct results for VMIN simulations

provided that the � chosen for simulation is at least as large as the reduction � .

7 Experimental Results

We applied our trace reduction methods to traces collected both on Windows NT and UNIX platforms. The

nine Windows NT traces include the full set of the commercially distributed traces gathered using the utility Etch

[LCB+98]. These include well-known Windows NT applications (Acrobat Reader, Netscape, Photoshop, Powerpoint,

Word) as well as various other programs (CC, Compress, Go, Vortex). The six UNIX traces (Espresso, GCC,

Grobner, Ghostscript, Lindsay, P2C) were gathered using VMTrace,7 our portable tracing tool based on user level

page protection; these traces are freely available on our web site. The Windows NT traces were blocked for 4

KByte pages so that they would be appropriate for virtual memory simulations. The UNIX traces were generated

as references to 4 KByte pages.

In this section, we show the reduction factors achieved over a range of reduction memory sizes. We also used

reduced traces to simulate both the clock and segq replacement policies. These two policies cannot be simulated

exactly using reduced traces, but we show that the error introduced into their simulation is small in practice. We

also show that the error introduced is signi�cantly less than with stack deletion [Smi77], a well known reduction

method. We chose to simulate clock and segq because they are the two replacement policies most used in real

7These applications, original traces, and trace gathering tool are available at [Kap].

27

systems. As approximations of LRU, they are similar to many replacement policies that discard information about

references to the most recently used pages.

7.1 Reduction Results

Each of the traces was reduced using both SAD and OLR over a range of reduction memory sizes. Recall that the

original traces are blocked on 4 KByte pages, and yet are hundreds of MBytes to a few GBytes each. We measured

the number of bytes required to store the original trace and each of the reduced traces. Because each reference in

these traces is a text representation of the virtual memory page number in hexadecimal, each record composes at

most (and usually exactly) �ve bytes. Thus, there is a direct correspondence between the number of bytes and the

number of records in a trace.

The plots in Figure 2 show the reductions achieved by SAD and OLR on six of the �fteen original traces. The

curves shown plot the reduction ratio achieved as a function of increasing reduction memory size. We chose to show

the reduction results from three of the original traces per platform due to space limitations. The remaining programs

show similar increase in reduction with memory size, as well as equally high reduction factors.

Note that the reduction factors increase quickly as the memory size grows. The reduction achieved for a particular

reduction memory size is a direct result of the locality exhibited by the traced program. Since the vast majority of

references are to pages that have been recently used, a small reduction memory can yield large bene�ts. Note that

the size of the OLR-reduced trace is a good measure of program locality: it is the smallest trace that has the same

LRU behavior as the original for a memory at least as large as the reduction memory.

Since many virtual memory systems simulate hundreds or even thousands of pages, traces can be made hundreds

of times smaller while still being appropriate for experimental studies. Using a reduced trace can allow a researcher

to perform simulations that much more quickly, as the simulation time is usually proportional to the length of the

input trace.

Also note that SAD achieves reduction factors close to those of OLR. Although SAD is a much simpler algorithm,

it provides nearly optimal reduction, while still allowing for exact OPT simulation as well as exact LRU simulation.

It is hard to tell from our plots if high reduction ratios can be achieved for small reduction memory sizes. As

we show in Table 1, both SAD and OLR perform very well even for very small reduction memories (20 pages for

the Windows NT plots and 5 pages for the Unix plots, as the Windows NT programs have much larger footprints).

These sizes were chosen to show that signi�cant reduction can be achieved even with a reduction memory that is

likely much smaller than the smallest desired simulation memory.

It is worth noting that our reduced traces can be further compressed by applying lossless trace reduction techniques

28

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90 100

F
ac

to
r

of
 r

ed
uc

tio
n

(o
rig

in
al

 /
re

du
ce

d)

Reduction memory size (pages)

gcc reduction

SAD
OLR

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80 90 100

F
ac

to
r

of
 r

ed
uc

tio
n

(o
rig

in
al

 /
re

du
ce

d)

Reduction memory size (pages)

ghostscript reduction

SAD
OLR

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

F
ac

to
r

of
 r

ed
uc

tio
n

(o
rig

in
al

 /
re

du
ce

d)

Reduction memory size (pages)

lindsay reduction

SAD
OLR

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300

F
ac

to
r

of
 r

ed
uc

tio
n

(o
rig

in
al

 /
re

du
ce

d)

Reduction memory size (pages)

Acrobat Reader reduction

SAD
OLR

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300

F
ac

to
r

of
 r

ed
uc

tio
n

(o
rig

in
al

 /
re

du
ce

d)

Reduction memory size (pages)

Netscape reduction

SAD
OLR

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 50 100 150 200 250 300

F
ac

to
r

of
 r

ed
uc

tio
n

(o
rig

in
al

 /
re

du
ce

d)

Reduction memory size (pages)

Word reduction

SAD
OLR

Figure 2: SAD and OLR reduction factors as a function of reduction memory size for six of the �fteen traces. The

reduction factors for the traces not shown grow similarly with the reduction memory size. Note that the range for

each y-axis is di�erent.

29

Trace Reduction Reduction

memory ratio

size (SAD) (OLR)

acroread 20 62.01 75.72

cc1 20 16.12 19.52

compress 20 7.32 8.11

go 20 5.16 6.34

netscape 20 16.76 20.24

photoshop 20 61.06 72.76

powerpoint 20 10.81 12.66

vortex 20 7.04 8.68

winword 20 14.62 18.01

espresso 5 29.03 43.44

gcc 5 3.39 4.31

grobner 5 8.17 10.78

ghostscript 5 9.97 12.26

lindsay 5 8.66 10.82

p2c 5 5.39 6.91

Table 1: Even for small reduction memories, signi�cant reduction factors can be achieved.

(for instance, [JH94, Sam89]). Even though we did not experiment with any such methods, we found that SAD and

OLR reduced traces are highly compressible using standard text compression tools. Table 2 shows the compression

factors achieved by the gzip utility on our reduced traces (the ratios shown are reduced trace size divided by

compressed reduced trace size).

The results below are not representative of all reduction memory sizes. As reduction memories become larger (and

reduced traces become dramatically smaller), compression factors shrink. Eventually, compression ratios approach a

ratio of 3:1, which is largely an artifact of representing each reference as text. These traces, however, are thousands

of times smaller than the originals, and their storage requirements are negligible.

7.2 CLOCK and SEGQ Simulations

We simulated both the clock and segq replacement policies using traces reduced by SAD, OLR, and Smith's SD

method. The results of these simulations were compared with simulations based on the original, unreduced traces.

We chose these two policies not only because they are so common, but also because they are similar to any page

replacement policy likely to be used in practice. Pure LRU is not used in real systems because of the overhead

required to track the order of use of every page. However, recency tends to be an excellent predictor of future

reference patterns, and so approximations of LRU are desirable. clock and segq avoid the overhead of pure LRU

by discarding information about references to the most recently referenced pages, yet they successfully approximate

the order of last reference among the less recently used pages in memory. Processors that provide hardware reference

30

Trace Reduction gzip compression

memory ratio

size (SAD) (OLR)

acroread 20 31.21 25.48

cc1 20 19.3 18.59

compress 20 17.55 14.46

go 20 13.77 12.25

netscape 20 26.48 21.52

photoshop 20 74.76 64.11

powerpoint 20 30.73 25.08

vortex 20 40.52 42.12

winword 20 38.5 32.74

espresso 5 13.74 14.03

gcc 5 13.6 11.67

grobner 5 11.58 10.36

ghostscript 5 22.2 20.55

lindsay 5 6.8 5.36

p2c 5 9.71 8.69

Table 2: Reduced traces are often highly compressible with standard text-compression utilities.

bits|a per-page bit that indicates whether or a given page has been referenced|typically use the clock algorithm,

while those without reference bits rely on algorithms like segq.

Our clock simulator simulates a single-hand, two-reference-bit implementation. When a resident page is ref-

erenced, its primary reference bit is set. If a non-resident page is referenced, some other page must be chosen for

eviction. If we imagine the resident pages to be arranged circularly (as though on the face of a clock), a clock hand

sweeps around that circle. If the hand encounters a page with either of its two reference bits set, it shifts the contents

of the primary reference bit into the secondary, and then clears the primary. The hand then examines the next page.

When the clock hand encounters a page whose reference bits are both clear, that page is chosen for eviction. This

mechanism is designed so that clock selects a page that has not been referenced recently. Any recently referenced

page is likely to have at least one of its reference bits set.

We also simulated the segq replacement policy (segmented queue|also known as two level replacement, hybrid

FIFO-LRU [BF83], or segmented FIFO [TL81]) with the original and reduced traces. This replacement policy orders

resident pages in two segments. The �rst segment is a FIFO queue that holds some �xed number of the most recently

referenced pages. Pages evicted from the �rst level are inserted at the front of the second level, an LRU queue. Pages

evicted from the LRU queue are evicted from memory.

While SAD and OLR cannot be used to perform exact simulations of clock and segq, we show that little error

is introduced into the simulation if the ratio of simulation memory size to reduction memory size is suÆciently large.

31

7.2.1 Results and Comparison to Stack Deletion

An often referenced form of trace reduction is Smith's stack deletion (SD) [Smi77]. It is interesting to compare SD

to our reduction techniques because its value has been demonstrated only empirically: SD does not guarantee exact

simulations, but has been shown to introduce small error into the simulation of replacement policies (namely, LRU,

OPT, and clock). We compared SAD and OLR to SD with our suite of �fteen traces and found that our techniques,

particularly SAD, consistently yield smaller error. (The error is de�ned as the absolute value of the di�erence in the

number of page faults incurred using the unreduced and reduced traces.)

Error introduced for �xed-size traces. We performed clock and segq simulations using each reduced trace.

For each reduction method, we chose a reduction memory size that would yield a reduced trace that was 100 times

smaller than the original (that is, the traces for all three methods were approximately the same size). We could have

used the same reduction memory size for each method, but that approach would have been unfair for SD since it

keeps less information for a given reduction memory size than either OLR or SAD.

Subsets of the results are shown in Figure 3 (for the clock replacement algorithm) and Figure 4 (for segq).

These plots show the percent error (i.e., absolute di�erence in number of page faults) introduced by SAD and SD.

Note that the plots do not show the results for OLR because its inclusion makes these noisy plots diÆcult to read.

OLR performed similarly to SAD for segq simulations and between SAD and SD for clock simulations. For each

replacement algorithm we selectively show results for six of the �fteen traces we studied. Nevertheless, we selected

these traces to be representative of the results on all traces obtained for the algorithm in question. We statistically

analyze the error for all �fteen traces later in this section.

For the clock plots of Figure 3, we see that SAD exhibits smaller error than SD at almost every memory size.

Although not shown, on average OLR introduces more error than SAD but less than SD. Note that the leftmost

portion of each plot contains large error, as simulations of memories comparable to the reduction memory size are

inaccurate. For all of the plots, the error drops signi�cantly around a ratio of 2:1 of simulated memory size to

reduction memory size. However, there are speci�c cases in which each of the methods yields unacceptably large

error values given small simulated-to-reduction memory size ratios. For example, SD introduces more than 30% error

into the simulation of grobner at a ratio of 4:1. It also introduces more than 35% error into go at a ratio of about

3.5:1. SAD and OLR also su�er unacceptably large error at these ratios in isolated cases.

For the segq simulations of Figure 4, the size of the FIFO segment is �xed (at approximately twice the reduction

size for SAD), and the percent error is shown for increasing LRU segment sizes. The results were similar to those for

clock, although less error was introduced on average for all reduction methods. Note that the error introduced is

32

0

5

10

15

20

25

30

35

10 20 30 40 50 60

P
er

ce
nt

 e
rr

or
 (

nu
m

be
r

of
 fa

ul
ts

)

Simulated memory size (pages)

grobner under clock

Stack deletion (8 pages)
SAD (14 pages)

0

5

10

15

20

25

30

35

40

60 80 100 120 140 160 180 200 220

P
er

ce
nt

 e
rr

or
 (

nu
m

be
r

of
 fa

ul
ts

)

Simulated memory size (pages)

go under clock

Stack deletion (41 pages)
SAD (56 pages)

0

1

2

3

4

5

50 100 150 200 250 300 350

P
er

ce
nt

 e
rr

or
 (

nu
m

be
r

of
 fa

ul
ts

)

Simulated memory size (pages)

gcc under clock

Stack deletion (23 pages)
SAD (43 pages)

0

0.5

1

1.5

2

100 200 300 400 500

P
er

ce
nt

 e
rr

or
 (

nu
m

be
r

of
 fa

ul
ts

)

Simulated memory size (pages)

ghostscript under clock

Stack deletion (14 pages)
SAD (26 pages)

0

0.5

1

1.5

2

2.5

200 400 600 800 1000 1200 1400 1600 1800

P
er

ce
nt

 e
rr

or
 (

nu
m

be
r

of
 fa

ul
ts

)

Simulated memory size (pages)

acrobat reader under clock

Stack deletion (17 pages)
SAD (30 pages)

0

1

2

3

4

5

6

100 200 300 400 500 600 700 800 900 1000

P
er

ce
nt

 e
rr

or
 (

nu
m

be
r

of
 fa

ul
ts

)

Simulated memory size (pages)

netscape under clock

Stack deletion (39 pages)
SAD (75 pages)

Figure 3: The absolute percent error (by number of faults) introduced into clock simulations by reduced traces

from SAD and SD. Notice that reduction memory sizes, shown in parentheses in each plot, were chosen so that each

reduced trace was approximately 100 times smaller than its original.

33

0

0.5

1

1.5

2

200 400 600 800 1000 1200 1400

P
er

ce
nt

 e
rr

or
 (

nu
m

be
r

of
 fa

ul
ts

)

Simulated memory size (pages)

acrobat reader under segmented queue

Stack deletion (17 pages)
SAD (30 pages)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

100 150 200 250 300 350 400

P
er

ce
nt

 e
rr

or
 (

nu
m

be
r

of
 fa

ul
ts

)

Simulated memory size (pages)

gcc under segmented queue

Stack deletion (23 pages)
SAD (43 pages)

0

5

10

15

20

25

30

35

40

120 130 140 150 160 170

P
er

ce
nt

 e
rr

or
 (

nu
m

be
r

of
 fa

ul
ts

)

Simulated memory size (pages)

go under segmented queue

Stack deletion (41 pages)
SAD (56 pages)

0

1

2

3

4

5

100 150 200 250 300 350 400 450

P
er

ce
nt

 e
rr

or
 (

nu
m

be
r

of
 fa

ul
ts

)

Simulated memory size (pages)

ghostscript under segmented queue

Stack deletion (14 pages)
SAD (26 pages)

0

1

2

3

4

5

6

200 300 400 500 600 700 800 900

P
er

ce
nt

 e
rr

or
 (

nu
m

be
r

of
 fa

ul
ts

)

Simulated memory size (pages)

powerpoint under segmented queue

Stack deletion (40 pages)
SAD (72 pages)

0

1

2

3

4

5

6

200 300 400 500 600

P
er

ce
nt

 e
rr

or
 (

nu
m

be
r

of
 fa

ul
ts

)

Simulated memory size (pages)

word under segmented queue

Stack deletion (38 pages)
SAD (63 pages)

Figure 4: The absolute percent error (by number of faults) introduced into segq simulations by reduced traces from

SAD and SD. Again, the reduction memory sizes (given in parentheses as part of each legend) were chosen so that

each trace was reduced by a factor of 100. For each plot, the FIFO segment size is �xed, and the total memory size

re
ects the combination of the FIFO and LRU segments.

34

5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

Simulated/reduced memory sizes vs. Median error for CLOCK

Simulated memory size / Reduction memory size

M
ed

ia
n

%
 e

rr
or

5 10 15 20

0
2

4
6

8
10

Simulated/reduced memory sizes vs. Maximum error for CLOCK

Simulated memory size / Reduction memory size

M
ax

im
um

 %
 e

rr
or

SAD
OLR
SD

Figure 5: Under CLOCK, the median and maximum error percentages as a function of simulated-to-reduction

memory size ratio. For all three methods, there is less than 1% median error, even for a simulated memory size that

equals the reduction memory size. However, the maximum error values reveal that larger simulated-to-reduction

memory size ratios are required to ensure small error.

irregular; the behavior of segq is dominated by FIFO, which is not a stack algorithm and can produce unpredictably

di�erent results with slightly di�erent memory sizes. SAD introduces less error than SD for most (but not all) memory

sizes. Although not shown, OLR performed even better for segq than it did for clock, and its performance was

comparable to SAD's. For many of these traces, the error introduced by either method is not signi�cant.

Finally, we should point out that the reduced traces sometimes caused too many misses, and sometimes too few.

Nevertheless, we observed no pattern or bias for reduction or increase in miss numbers.

Statistical analysis and reduction size guidelines. In Figures 5 and 6 we show the median and maximum per-

cent error values as a function of the simulated-to-reduction memory size ratio for the clock and segq replacement

algorithms, respectively. These results were computed for all �fteen of the traces and all of the simulated memory

sizes.8 These statistics are important not so much for direct comparison between SAD, OLR, and SD (this was

covered earlier) but for providing guidelines on choosing a reduction size for a given error tolerance and desired

simulation size.

For clock (Figure 5), the median error is less than 1% for all three reduction methods, even for a simulated

memory size equal to the reduction memory size. Nevertheless, the maximum error values reveal that larger simulated-

to-reduction memory size ratios are needed to ensure small error. SAD requires a ratio of 5:1 to achieve 2% error

in the worst instance, while OLR requires an 8:1 ratio. Smith claimed that a ratio of 2:1 would be suÆcient for

8We did exclude memory sizes for which the total number of faults was less than 100. So few faults are insigni�cant, but the raw

di�erences between such small numbers would yield large percentage di�erences, thus skewing the results.

35

5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

Simulated/reduced memory sizes vs. Median error for SEGQ

Simulated memory size / Reduction memory size

M
ed

ia
n

%
 e

rr
or

5 10 15 20

0
2

4
6

8
10

Simulated/reduced memory sizes vs. Maximum error for SEGQ

Simulated memory size / Reduction memory size

M
ax

im
um

 %
 e

rr
or

SAD
OLR
SD

Figure 6: Under SEGQ, the median and maximum error percentages as a function of simulated-to-reduction memory

size ratio. As with CLOCK, the median error is less than 1% at all ratios, but larger ratios are required to ensure

acceptably small maximum error values.

experimentation with SD, but we see here that a ratio of 17:1 is needed to ensure smaller error.

For segq (Figure 6), the median error is particularly low at all ratios at less than 0.5%. As with CLOCK, however,

the maximum error percentages dictate the choice of memory size ratio. SAD nears 2% error at 7:1, and OLR at

8:1, with the maximum error decreasing gradually at larger ratios. SD requires an 18:1 ratio before approaching 2%

error; at any smaller ratio, SD yields more than 5% error.

We should note that, although not directly shown, these results favor OLR and SAD over SD. For instance, if

we want to limit the maximum clock error to 2%, we need to choose a simulated-to-reduction memory size ratio of

17:1 for SD, 5:1 for SAD and 8:1 for OLR. Even though SD keeps less information than SAD or OLR for the same

reduction size, the di�erence in ratios is so big as to favor SAD and OLR. For all reasonable simulation memory size

ranges and all programs examined, the SD trace for a 17:1 ratio will be larger than the SAD trace for the 5:1 ratio

and than the OLR trace for the 8:1 ratio.

7.2.2 Conclusions on CLOCK and SEGQ Error

The two main conclusions from our clock and segq experiments are:

� SAD and OLR introduce little error for clock and segq simulations. For the vast majority of memory sizes,

less than 2% error was observed for both reduction methods. More importantly, we can limit the maximum

error by choosing an appropriate reduction memory size for the desired simulation size.

� SAD and OLR would be preferable to SD in practice. While all three introduce small error into simulations,

SD introduces slightly more on average, and SAD consistently introduces the least. In addition, SAD and OLR

36

Program Min. simulatable Trace size Ratio

mem. size (KB) (events) (GlCa:OLR)

LRU OPT GlCa OLR

applu 2432 972 267863 149803 1.79

blizzard 5332 4772 989866 79775 12.41

coral 7084 6780 2126367 575291 3.7

gcc 1900 1052 410761 37844 10.85

gnuplot 1552 476 111488 52860 2.11

ijpeg 1112 748 947219 409392 2.31

m88ksim 1964 328 246135 124568 1.98

murphi 2132 1472 231993 156036 1.49

perl 9636 8428 3239741 705598 4.59

swim 6932 6216 180782 101881 1.77

trygtsl 2444 1400 118262 69384 1.7

turb3d 7720 6360 1964495 417783 4.7

vortex 3024 2028 374378 59473 6.29

wave5 3652 1708 159454 59830 2.67

Table 3: Reduction of the traces from [GC97]. Ratios of the number of events in traces reduced by OLR and the

reduction technique of Glass and Cao (GlCa) are shown. A ratio of x means that the GlCa trace is x times larger.

both allow for the exact simulation of LRU (and LRU variants like GLRU [FLW78], SEQ [GC97], FBR [RD90],

EELRU [SKW99]), and SAD allows for the exact simulation of OPT.

Most virtual memory studies are of simulated memories with sizes in the hundreds or thousands of pages. We

have shown that large reduction factors can be achieved with reduction memories whose sizes are in the tens of

pages. It should therefore be possible to produce signi�cantly reduced traces with a ratio of at least 10:1 to allow

for acceptably accurate simulations.

7.3 Comparison to the Glass and Cao Technique

A limited comparison of our reduction technique to the method of Glass and Cao is presented here. As we had no

access to the unreduced form of the traces used in [GC97] it was not possible to reduce them using SAD, which

requires an original reference sequence in order to reduce it. We were able, however, to obtain a behavior sequence

from the reduced Glass and Cao traces, and from those behavior sequences we produced OLR-reduced traces. Both

the Glass and Cao- and OLR-reduced traces are valid only for the simulation of suÆciently large memory sizes, where

the smallest such size was determined by the reduction of the Glass and Cao technique.

As mentioned in Section 2.2, the reduction technique of Glass and Cao does not allow the user to select the

memory range for which simulations should be exact. Instead, the CPU-time granularity of sampling for reduction

is chosen by the user, and this value determines a minimum memory size for which LRU and OPT simulations are

37

Program Min. simulatable Trace size Ratio

mem. size (KB) (KB) (GlCa:OLR)

LRU OPT GlCa OLR

applu 2432 972 4443 1074 4.14

blizzard 5332 4772 16417 543 30.21

coral 7084 6780 35268 3996 8.83

gcc 1900 1052 6766 251 26.96

gnuplot 1552 476 1832 398 4.6

ijpeg 1112 748 15558 3148 4.94

m88ksim 1964 328 4048 843 4.8

murphi 2132 1472 3847 1053 3.65

perl 9636 8428 53711 5270 10.19

swim 6932 6216 3000 691 4.34

trygtsl 2444 1400 1962 526 3.73

turb3d 7720 6360 32543 3105 10.48

vortex 3024 2028 6205 400 15.53

wave5 3652 1708 2632 442 5.95

Table 4: Reduction of the traces from [GC97]. Ratios of the trace �le size from traces reduced by OLR and the

reduction technique of Glass and Cao (GlCa) are shown. A ratio of x means that the GlCa trace is x times larger.

Program Min. simulatable Trace size Ratio

mem. size (KB) gzipped (KB) (GlCa:OLR)

LRU OPT GlCa OLR

applu 2432 972 1964 259 7.59

blizzard 5332 4772 7107 88 80.84

coral 7084 6780 15455 999 15.47

gcc 1900 1052 2963 38 77.92

gnuplot 1552 476 732 108 6.78

ijpeg 1112 748 6838 494 13.83

m88ksim 1964 328 1904 249 7.66

murphi 2132 1472 1673 234 7.15

perl 9636 8428 23066 1396 16.53

swim 6932 6216 1176 181 6.49

trygtsl 2444 1400 642 142 4.51

turb3d 7720 6360 11527 837 13.77

vortex 3024 2028 2733 78 35.05

wave5 3652 1708 1154 127 9.06

Table 5: Reduction of the traces from [GC97]. Ratios of the compressed trace �le size from traces reduced by

OLR and the reduction technique of Glass and Cao (GlCa) are shown. A ratio of x means that the GlCa trace is x

times larger.

38

possible (see any of Tables 3 to 5). Critically, the resulting minimum memory size cannot be determined until after

reduction has occurred, and controlling that minimum memory size by changing the sampling granularity may be

diÆcult.

We obtained OLR-reduced traces for the minimum LRU simulatable size (or any size greater than that) by

performing a simple (2 source-line) change to the LRU simulator of Glass and Cao. This modi�cation caused the

behavior sequence of the LRU memory to be output. OLR was then used to construct the smallest trace exhibiting

this behavior for the given memory size.

Tables 3, 4, and 5 compare the size of the OLR-reduced trace (for a reduction memory size equal to the minimum

simulatable LRU size) with the reduced trace of Glass and Cao. Since the traces are in a di�erent format (our

implementation of OLR uses a simple text format, while the traces of Glass and Cao are memory images) there are

many possible ways to compare them.

The �rst metric, shown in Table 3, presented is events-per-trace. This is as close as possible to an \apples-to-

apples" comparison. Any possible error would be in favor of the Glass and Cao technique, as OLR events are strictly

smaller than events in the Glass and Cao representation, which contains at least the reference information of OLR

as well as extra ordering information.

The second metric, used for Table 4, shows the size of each reduced trace �le in KBytes. While it is useful

to see that traces reduced by OLR are smaller in a raw, uncompressed representation, this metric is probably the

least informative. The choice of representation can have a signi�cant e�ect on �le size, and these two reduced trace

formats di�er signi�cantly in that respect.

In order to reduce the e�ect of di�ering representations, we compressed each of the reduced trace �les with

the gzip utility. The results of these compressions are shown in Table 5. Given a compressed encoding for which

redundant information has been largely removed, OLR has removed more information from the trace while still

providing for the same exacting simulations.

8 Conclusions

Storing and processing long memory reference traces is costly. We have proposed SAD and OLR: two new methods

for drastically reducing traces to alleviate both storage and processing requirements. These reduction methods

are designed to eliminate information about references to the most recently used pages. Both allow for the exact

simulation of LRU memories of a minimum size chosen explicitly by the user. SAD also allows for the exact simulation

of OPT memories.

SAD and OLR are invaluable for realistic virtual memory studies. Most studied virtual memory policies are

39

either variants or approximations of LRU. Traces reduced with SAD or OLR provide for accurate simulations with

LRU variants (for memories larger than a user-de�ned threshold). Additionally, we have shown that our reduced

traces introduce very little error into the two most commonly used LRU approximations, clock and segq.

Furthermore, there is no single trace format appropriate for all kinds of simulations. SAD and OLR can both be

modi�ed with minimal e�ort to handle di�erent kinds of annotations, maintain timing information, and even reduce

traces on a fundamentally di�erent scale than LRU distance. This
exibility simpli�es the problem of storing and

processing traces for specialized simulations.

We have implemented SAD and OLR, and have made them freely available on our web site at [Kap]. These

utilities have been useful to us in our studies, and we invite others to take this portable C++ code and use it in

theirs. Both reduction tools can be used o�ine with existing traces, or online as traces are gathered.

References

[AH90] A. Agarwal and M. Hu�man. Blocking: Exploiting spatial locality for trace compaction. In Proceedings,

ACM SIGMETRICS, pages 48{57, 1990.

[Bab81] Ozalp Babaoglu. EÆcient generation of memory reference strings based on the LRU stack model of

program behaviour. In Proceedings, PERFORMANCE '81, pages 373{383, 1981.

[Bel66] L. A. Belady. A study of replacement algorithms for virtual storage. IBM Systems Journal, pages

5:78{101, 1966.

[BF83] Ozalp Babaoglu and Domenico Ferrari. Two-level replacement decisions in paging stores. IEEE Trans-

actions on Computers, C-32(12):1151{1159, December 1983.

[CLR89] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. McGraw

Hill and The MIT Press, 1989.

[CR70] E. G. Co�man and B. Randell. Performance predictions for extended paged memories. Acta Informatica,

1:1{13, 1970.

[Den76] Peter J. Denning. The working set model for program behavior. Communications of the ACM, 19(5):285{

294, 1976.

[Dou93] Fred Douglis. The compression cache: Using on-line compression to extend physical memory. In Proceed-

ings of 1993 Winter USENIX Conference, pages 519{529, San Diego, California, January 1993.

40

[FLW78] E. B. Fernandez, T. Lang, and C. Wood. E�ect of replacement algorithms on a paged bu�er database

system. IBM Systems Journal, 22(2):185{196, 1978.

[GC97] Gideon Glass and Pei Cao. Adaptive page replacement based on memory reference behavior. In SIG-

METRICS The 1997 ACM SIGMETRICS International Conference on Measurement and Modeling of

Computer Systems, volume 25, pages 115{126. ACM Press, June 1997.

[JH94] E. E. Johnson and J. Ha. Pdats: Lossless address trace compression for reducing �le size and access time.

In Proceedings, IEEE International Conference on Computers and Communications, pages 213{219, 1994.

[Kap] Scott F. Kaplan. WWW trace reduction web-page.

<http://www.cs.amherst.edu/~sfkaplan/research/trace-reduction>.

[Kap99] Scott F. Kaplan. Compressed Caching and Modern Virtual Memory Simulation. PhD thesis, Department

of Computer Sciences, University of Texas at Austin, August 1999.

[KSW99] Scott F. Kaplan, Yannis Smaragdakis, and Paul R. Wilson. Trace reduction for virtual memory simula-

tions. In 1999 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer

Systems [SIG99], pages 47{58.

[LCB+98] D. C. Lee, P. J. Crowley, J. L. Baer, T. E. Anderson, and B. N. Bershad. Execution characteristics of

desktop applications on windows NT. In 25th Annual International Symposium on Computer Architecture.

IEEE Computer Society Press, 1998.

[MGST70] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for storage hierarchies.

IBM Systems Journal, 9:78{117, 1970.

[PF76] B. G. Prieve and R. S. Fabry. VMIN { an optimal variable space page-replacement algorithm. Commu-

nications of the ACM, 19(5):295{297, May 1976.

[Pha95] Vidyadhar Phalke. Modeling and Managing Program References in a Memory Hierarchy. PhD thesis,

Rutgers University, 1995.

[Puz85] Thomas R. Puzak. Analysis of Cache Replacement Algorithms. PhD thesis, University of Massachussetts,

Dept. of Electrical and Computer Engineering, February 1985.

[RD90] J. Robertson and M. Devarakonda. Data cache management using frequency-based replacement. In

SIGMETRICS, 1990.

41

[Sam89] A. Dain Samples. Mache: No-loss trace compaction. In ACM SIGMETRICS, pages 89{97, May 1989.

[SIG99] The 1999 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer

Systems. ACM Press, June 1999.

[SKW99] Yannis Smaragdakis, Scott F. Kaplan, and Paul R. Wilson. EELRU: Simple and eÆcient adaptive page

replacement. In 1999 ACM SIGMETRICS International Conference on Measurement and Modeling of

Computer Systems [SIG99], pages 122{133.

[Sma98] Yannis Smaragdakis. Optimal trace reduction for LRU-based simulations. Technical Report 98-25, The

University of Texas at Austin, 1998.

[Smi77] Alan J. Smith. Two methods for the eÆcient analysis of address trace data. IEEE Transactions on

Software Engineering, SE-3(1), January 1977.

[TL81] R. Turner and H. Levy. Segmented �fo page replacement. In SIGMETRICS The 1981 ACM SIGMET-

RICS International Conference on Measurement and Modeling of Computer Systems. ACM Press, 1981.

[UM97] Richard A. Uhlig and Trevor N. Mudge. Trace-driven memory simulation: A survey. Computing Surveys,

29(2):128{170, 1997.

[Wil91] Paul R. Wilson. Operating system support for small objects. In International Workshop on Object

Orientation in Operating Systems, pages 80{86, Palo Alto, California, October 1991. IEEE Press.

[WKS99] Paul R. Wilson, Scott F. Kaplan, and Yannis Smaragdakis. The case for compressed caching in virtual

memory systems. In Proceedings of The 1999 USENIX Annual Technical Conference, pages 101{116,

Monterey, California, June 1999. USENIX Association.

42

