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The complexity of software has driven both researchers and practitioners toward
design methodologies that decompose problems into intellectually manageable
pieces and that assemble partial products into complete software artifacts. Modu-
larity in design, however, rarely translates into modularity at the implementation
level. Hence, an important problem is to provide implementation (i.e., program-
ming language) support for expressing modular designs concisely.

This dissertation shows that software can be conveniently modularized
using large-scale object-oriented software components. Such large-scale compo-
nents encapsulate multiple classes but can themselves be viewed as classes, as they
support the object-oriented mechanisms of encapsulation and inheritance. This
conceptual approach has several concrete applications. First, existing language
mechanisms, like a pattern of inheritance, class nesting, and parameterization, can

be used to simulate large-scale components catlegh layers Mixin layers are



ideal for implementing certain forms of object-oriented designs and result in sim-
pler and more concise implementations than those possible with previous method-
ologies. Second, we propose new language constructs to provide better support for
component-based programming. These constructs express components cleanly
(i.e., without unwanted interactions with other language mechanisms) and address

the issue of component type-checking.
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Chapter 1

Introduction

1.1 Overview and Contribution

Large software artifacts are arguably among the most complex products of human
intellect. The complexity of software has driven both researchers and practitioners
toward design methodologies that decompose problems into intellectually manage-
able pieces and that assemble partial products into complete software artifacts. The
principle of separating logically distinct (and largely independent) facets of an
application is behind many good software design practices. A key objective in
designing reusable software modules is to encapsulate within each module a sin-
gle, orthogonal aspect of application design. Many design methods in the object-

oriented world build on this principle of design modularity (e.g., design patterns

[GHJV94] and collaboration-based designs [R®R]). The central issue is to pro-
vide implementation (i.e., programming language) support for expressing modular
designs concisely.

This dissertation shows a way to modularize software statically (i.e., at
compile-time) using large-scale object-oriented components. Our large-scale com-
ponents encapsulate multiple classes and can therefore be viewed as being analo-
gous to conventionahodules such as those found in languages like Ada [ISO95]

and ML [MTH90]. At the same time, however, these modules can be viewed as



classes, as they support the object-oriented mechanisms of encapsulation and
inheritance. Additionally, our components offer a great degree of flexibility
because they are generic with respect to the components from which they inherit.
This conceptual approach has several concrete applications. Existing language
mechanisms, like class nesting, can be used to simulate large-scale components,
resulting in more concise implementations than were possible with previous meth-
odologies. Additionally, we propose new language constructs to provide better
support (for instance, typing) for component-based programming.

More specifically, the main contributions of this dissertation are as follows:

* We introduce a better way of implementing object-orientetlaboration-
based(or role-based designs. Such designs decompose an object-oriented
application into a set of classes and a set of collaborations. Each application
class encapsulates sevenalkes where each role embodies a separate aspect
of the class’s behavior. Aollaborationis a cooperating suite of roles. Previ-
ous methods for implementing collaboration-based designs inelppkca-
tion frameworkgJF88] and the technique of VanHilst and Notkin [VN96a-c,
Van97]. Our approach involves large-scale components caligth layers
We show that mixin layers preserve the advantages of the VanHilst and Not-
kin implementation method over application frameworks (i.e., maintain
design structure, facilitate reuse, and avoid unnecessary dynamic binding).
At the same time, mixin layers correct the scalability problems of the Van-
Hilst and Notkin technique yielding simpler code and shorter compositions.
As a further practical validation, we used mixin layers as the primary imple-
mentation technique in a medium-size project (the JTS tool suite for imple-
menting domain-specific languages). Our experience shows that the

mechanism is versatile and can handle components of substantial size.



It is worth noting that, although mixin layers have a strictly defined form,
they can be expressed using a variety of programming language constructs.
These include C++ parameterized nested classes, CLOS mixins and reflec-
tion, and Java nested mixins (Java mixins have been proposed as an exten-
sion to the language—e.g., in [AFM97, FKF98]).

» We show that two significant software construction methodologies, the Gen-
Voca model and object-oriented collaboration-based designs, are closely

related. In particular, the GenVoca model has been used to design and

develop software for a variety of domains (e.g., [Bat88, EB& OP92,
CS93]. In the past, its principles have not been expressed in object-oriented
terms. This work shows how GenVoca components can be implemented as
mixin layers. Additionally, we discuss how some common GenVoca con-
cepts and mechanisms (for instance, GenVfeeémsand the validation of a
composition of components) can be integrated in the mixin layers frame-
work.

* We address the problem of providing type-system support for large-scale
components. We show that a type system needs to support two new proper-
ties (termeddeep subtypingand deep interface conformanceén order to
express constraints for mixin layer parameters. These ideas have also led to
other interesting applications in type systems. Wadler, Odersky and this
author [WOS98] have used deep subtyping to demonstrate that parametric
types can elegantly emulatetual types(a well-known typing mechanism in
the object-oriented world, introduced by the Beta programming language).
The emulation employs multiple-class components that are essentially a sim-
pler version of mixin layers.

The intellectual challenge in our work was to identify the principles, con-

cepts, and, eventually, constructs that will allow developing orthogonal aspects of a



software application in isolation and later composing them consistently. The con-

structs presented in this dissertation rise to the challenge. They represent a clear
advancement over previous techniques and succeed in expressing independent
application aspects as separate components by employing a scalable approach

based firmly on object-oriented principles and techniques.

1.2 Outline

Subsequent chapters explore the problem of modularizing software, explain our
proposed solution, and contrast it to other work in the research literature.

In Chapter 2 we describe the collaboration-based design methodology and
discuss how such designs can be best implemented. We use an example domain
consisting of a few graph algorithms, all based on depth-first traversals of an undi-
rected graph. Ideally, each of the algorithms, as well as the underlying model (i.e.,
undirected graph) and traversal strategy (depth-first), should be expressible as indi-
vidual components that would yield the complete application once composed. The
C++ technique proposed by VanHilst and Notkin [VN96a-c] attempts to do exactly
that but suffers from high complexity of parameterizations. We introduce an alter-
native in the form of mixin layers. Mixin layers are large-scale components that
can be used to directly implement collaboration-based designs. Mixin layers
improve upon the VanHilst and Notkin technique by offering more concise and
scalable implementations.

In Chapter 3 we discuss several issues related to the correctness of a com-
position of components. First we show how we can use propositional properties
that are propagated in a mixin layer composition using inheritance. This solution is
straightforward but not entirely satisfactory as it cannot produce informative error

messages due to lack of language support. Then we explore the possibility of add-



ing type-system support for mixin layers. We discuss what the type of a layer is
and propose an extension to the Java language that supports types for classes con-
taining nested classes. Finally, we explore another interesting type system issue.
Using a fixpoint construction (similar to a common technique used to express for-
mal object-oriented semantics), we can propagate type information from a mixin
layer to the layer above it in a composition (its superclass from an inheritance
standpoint). Using this technique in conjunction with nested classes of a form sim-
ilar to mixin layers, we show how parametric types can emulate virtual types—a
well-known object-oriented type mechanism.

Chapter 4 demonstrates the scalability of the mixin layers approach. We
implemented mixin layers as an extension to the Java language and used them as
the main implementation technique in constructing JTS: a set of pre-compiler/
compiler tools for adding syntax extensions to programming languages. As a
result, the structure of the system is very simple and a large number of feature
combinations can be implemented as different compositions of large layers.

In Chapter 5 we position our approach relative to other research work. We
discuss the GenVoca model of software construction, which forms a general soft-
ware engineering framework that encompasses our research. Additionally, we dis-
cuss realizations of components in a dynamic setting (i.e., components that can be
put together at application run-time). Finally, we describe other research work in
the area of automated software construction and software modularization. The dis-
cussion is mostly from a programming language standpoint but we also offer
insights into related software engineering applications.

In Chapter 6 we review the central results of our work, summarize the pri-

mary contributions of our research, and discuss a few areas of future research.



Chapter 2

Collaboration-Based Designs and Mixins

A relatively recent development in the software arena is the advarmigjext-ori-
ented (OO)design and implementation techniques. A large variety of program-
ming languages, design methodologies, and programming tools are based on
object-oriented principles. The goals of object-orientation are remarkably similar
to the goals of this dissertation. In particular, object technologies attempt to orga-
nize software in a way that makes it easier to understand, reuse, and evolve. Modu-
larity is addressed by splitting a program into encapsulated entities (objects or
classes), which can be reused in complex configurations. Unfortunately, objects
(i.e., collections of data and operations on those data) are rarely ideal for playing
the role of modules. The reason is that objects are not self-sufficient but often have
complex interactions with other objects. Thus, a unit of modularity (i.e., a program
piece that can be defined in isolation) is not a single object but a collection of inter-
related objects. Standard object-oriented language mechanisms, like inheritance
and polymorphism, are not sufficient to express such modules in a flexible way.
Nevertheless, object-orientation forms a natural starting point for our
research, given the similarities with its philosophy and the engineering maturity of
OO programming methods (e.g., programming languages like C++, Java, Small-

talk, and CLOS). Additionally, object-orientekksigntechniques (e.g., design pat-

terns [GHJV94], and collaboration-based designs [R®H) can be used to
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express modular large-scale components. Such design components contain multi-
ple objects and capture their interactions. The challenge is to translate object-ori-
ented designs (i.e., artifacts that exist usually only on paper) into implemented
programghat preserve the elegant structure of the desigms chapter shows how

it can be done using novel combinations of mechanisms that can already be found
in object-oriented programming languages. The greatest value of expressing com-
ponents in this manner is that they become smoothly integrated both at the lan-
guage level and at the conceptual level, with the fundamental mechanism of
inheritance playing the main role.

The chapter is organized as follows: Section 2.1 offers a short introduction
to object-orientation and defines some basic terms. Section 2.2 discusses object-
oriented collaboration-based designs. Collaboration-based designs are modular
decompositions of an application. Mapping them into an implementation that pre-
serves the structure of the design is sufficient for obtaining the kind of modularity
we seek. To do so, we need to introduce some object-oriented constructs, called
mixin classesandmixin layers These are discussed in detail in Section 2.3. Mixin
layers are one of the main contributions of this dissertation, and we claim that they
are ideal for implementing collaboration-based designs. We show how this imple-
mentation can be effected and how mixin layers compare to other techniques in
Section 2.4.

2.1 Brief Introduction to Object-Orientation

This dissertation assumes that the reader is familiar with object-oriented principles
and constructs. Hence, the purpose of this section is not to provide a comprehen-

sive introduction to object-oriented programming, but to briefly lay out some fun-



damental concepts and terms. For a more thorough treatment of object-orientation,
the reader should consult the references given throughout this chapter.

Even though no exact definition of object-orientation exists, the main idea
can easily be described in informal terms. If all programming is viewed as the def-
inition of operations on data, traditional programming languages (e.g., Pascal, C,
Lisp, etc.) promote dunctional program organization: operations (also called
functions or procedure} are the central entities and have clearly defined bounds
(input parameters and return values). If an operation applies to more than one kind
of data, the functionality for all cases is collected under a single heading—the
specification of the operation. In contrast, object-oriented programming concen-
trates on collections of data that can be considered as representing a single entity.
Such collections are calleabjectsand form the fundamental building blocks of
object-oriented programs. In object-oriented programming, the functionality of a
single operation is distributed in the objects to which the operation is applicable.
(The distributed elements of an operation pertaining to a single object are called
the object'smethodg In this way, an object is an isolated entity with a clear inter-
face to the outside world. The fundamental goallafa hidingis achieved by mak-
ing the object’s implementation invisible and having other parts of the program
rely only on the object’s interface. This ability to hide the internals of an object is
commonly known by the namancapsulation

With objects playing the central role in object-oriented design and imple-
mentation, several high-level relationships on objects can be defined. The most
important ones, which are often considered essential elements of object-oriented
languages, areénheritance and polymorphism Inheritance provides a way of
obtaining new objects by incrementally refining existing ones. Polymorphism, on
the other hand, is the mechanism used to select the appropriate operation for an

object in the presence of inheritance-induced refinements. Another important con-



cept in object-oriented programming is that o€lass Most widely used object-
oriented programming languages (e.g., Java [GJS96], C++ [Str97], CLOS
[KRB91]) are class-based That is, new objects are created by instantiating
classes—patterns that describe the object’s data and operations. Thus, in class-
based object systems, methods are associated with classes and not with objects
directly. Consequently, all objects belonging in the same class support an identical
set of methods. Since classes are the only way to create new objects, inheritance is

only applicable to classes and not objects in class-based languages.

2.2 Collaboration-Based Desigris

Collaboration-basear role-baseddesigns are the topic of several pieces of work
in the object-oriented research community [BC89, HHG90, Hol92, RIeB

VN96a]. These concepts probably originated with Reenskaug, et al. [BZBut

have been used in various forms, often without being named and documented. We
will not offer an extensive introduction to object-oriented design techniques, as our
work examines software development from a programming languages standpoint.

A good introduction to collaboration-based design can be found in the presentation

of the OORAM approach [RAB2]. A detailed treatment of collaboration-based
designs, together with a discussion of how to derive them from use-case scenarios
[Rum94] can be found in VanHilst's Ph.D. dissertation [Van97].

2.2.1 Collaborations and Roles

In an object-oriented design, objects are encapsulated entities but are rarely self-

sufficient. Although an object is fully responsible for maintaining the data it encap-

1. Parts of this section and Section 2.4.3 are taken from reference [SB98a] (© 1998 IEEE).



sulates, it needs to cooperate with other objects to complete a task. An interesting
way to encode object interdependencies is through collaboratiocallaforation

is a set of objects and a protocol (i.e., a set of allowed behaviors) that determines
how these objects interact. The part of an object enforcing the protocol that a col-
laboration prescribes is called the object$ in the collaboration. Objects of an
application generally participate in multiple collaborations simultaneously and,
thus, may encode several distinct roles. Each collaboration, in turn, is a collection
of roles, and represents relationships across the corresponding objects. Essentially,
a role isolates the part of an object that is relevant to a collaboration from the rest
of the object. Different objects can participate in a collaboration, as long as they
support the required roles.

In collaboration-based design, we try to express an application as a compo-
sition of largely independently-definable collaboratiovigwed in terms of design
modularity, collaboration-based design acknowledges that a unit of functionality
(module) is neither a whole object nor a part of it, but can cross-cut several differ-
ent objectsIf a collaboration is reasonably independent of other collaborations
(i.e., a good approximation of an ideal module) the benefits are great. First, the col-
laboration can be reused in a variety of circumstances where the same functionality
is needed, by just mapping its roles to the right objects. Second, any changes in the
encapsulated functionality will only affect the collaboration and will not propagate
throughout the whole application.

In abstract terms, a collaboration is a view of an object-oriented design
from the perspective of a single concern. For instance, a collaboration can be used
to express a producer-consumer relationship between two communicating objects.
Clearly, this collaboration prescribes roles for (at least) two objects and there is a
well-defined “protocol” for their interactions. Interestingly enough, the same col-

laboration could be instantiated more than once in a single object-oriented design,
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Figure 2.1: Example collaboration decomposition. Ovals represent
collaborations, rectangles represent objects, their intersections represent roles.

with the same objects playing different roles in every instantiation. In the example
of the producer-consumer collaboration, a single object could be both a producer
(from the perspective of one collaboration) and a consumer (from the perspective
of another).

Figure 2.1 depicts the overlay of objects and collaborations in an (abstract)
example design. The figure contains three different objeafs OB, OC), each
supporting multiple roles. Obje@B, for example, encapsulates four distinct roles:
B1, B2, B3, andB4. Four different collaborationscq, c2, ¢3, c4) capture distinct
aspects of the application’s functionality. To do this, collaborations have to pre-
scribe certain roles for objects. For example, collaborat®oontains two distinct
roles,A2 andB2, which are assumed by distinct objects (nan@fyandOB). An
object does not need to play a role in every collaboration—for instar&dopes
not affect objecOC.

It should be noted that the designs we will examine stedic. the roles

played by an object are uniquely determined by its class. For instance, in Figure

11



2.1, all three objects must belong in different classes (since they all support differ-
ent sets of roles). In essence, we use the design as a guide to the implementation of
an application—not to describe different phases in its dynamic behavior. We will

discuss dynamic layered designs in more detail in Chapter 5.

2.2.2 An Example Collaboration-Based Design

As a running example that will help us illustrate important points of our discus-
sion, we will consider the graph traversal application that was examined initially
by Holland [Hol92] and subsequently by VanHilst and Notkin [VN96a]. Doing so
affords not only a historical perspective on the development of role-based designs,
but also a perspective on the contribution of this work. The application defines
three different operations (algorithms) on an undirected graph, all based on depth-
first traversal:Vertex Numberinghumbers all nodes in the graph in depth-first
order, Cycle Checkingexamines whether the graph is cyclic, a@dnnected
Regionglassifies graph nodes into connected graph regions. The application itself
has three distinct classesraph Vertex and Workspace The Graph class
describes a container of nodes with the usual graph properties. Each node is an
instance of thé/ertexclass. Finally, thaVorkspaceclass includes the application
part that is specific to each graph operation. For\egex Numberingperation,

for instance, aNVorkspaceobject holds the value of the last number assigned to a
vertex as well as the methods to update this number.

Recall that in decomposing an application into collaborations, we need to
capture distinct aspects as separate collaborations. A decomposition of this kind is
relatively straightforward and results in five distinct collaborations.

One collaboration Yndirected Graph above) expresses properties of an
undirected graph. This is clearly an independent aspect of the application—the

problem could very well be defined for directed graphs, for trees, etc.
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Figure 2.2: Collaboration decomposition of the example application domain: A
depth-first traversal of an undirected graph is specialized to yield three different
graph operations. Ovals represent collaborations, rectangles represent classes.

Another collaboration@epth First Traversalabove) encodes the specifics
of depth-first traversals and provides a clean interface for extending traversals.
That is, at appropriate moments during a traversal (the first time a node is visited,
when an edge is followed, and when a subtree rooted at a node is completely pro-
cessed) control is transferred to specialization methods that can obtain information
from the traversal collaboration and supply information to it. For instance, con-
sider theVertex Numberingperation as a simple refinement of a depth-first tra-
versal. This can be effected by specializing the action performed the first time a
node is visited during the traversal. The action will assign a number to the node
and increase the count of visited nodes.

Using this approach, each of the three graph operations can be seen as a
refinement of a depth-first traversal and each can be expressed by a single collabo-

ration. Figure 2.2 is reproduced from [VN96a] and presents the collaborations and
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classes of our example application. The intersection of a class and a collaboration
in Figure 2.2 represents the role prescribed for that class by the collaboration. A
role encodes the part of an object that is specific to a collaboration. For instance,
the role of aGraphobject in the Undirected Graph collaboration supports stor-

ing and retrieving a set of vertices. The role of the same object inDlepth First
Traversal collaboration implements a part of the actual depth-first traversal algo-
rithm. (In particular, it contains a method that initially marks all vertices of a graph
not-visitedand then calls the method for depth-first traversal on each graph vertex
object).

Note that the design of Figure 2.2 dasst define any particular composi-
tion of collaborations in an application. It is really just a decomposition of a
restricted software domain into its fundamental collaborations. Actual applications
may not need all three graph operations. Additionally, a single application may
need more than one operation applied to the same graph. The latter is accom-
plished by having multiple copies of th®gpth First Traversal collaboration in
the same design (each traversal will require its own private variables and traversal
methods). We will later see examples where composing instances of the collabora-
tions of Figure 2.2 will yield an actual application design.

The goal of a collaboration-based design is to encapsulate within a collabo-
ration all dependencies between classes. In this way, collaborations themselves
have no outside dependencies and can be reused in a variety of circumstances. The
“Undirected Graph collaboration, for instance, encodes all the properties of an
undirected graph (pertaining to tii&aph andVertexclasses, as well as the inter-
actions between objects of the two). Thus, it can be reused in any application that
deals with undirected graphs. Ideally, we should also be able to easily replace one

collaboration with another that exports the same interface. For instance, it would

14



be straightforward to replace th&tdirected Graph collaboration with one rep-
resenting a directed graph.

Of course, simple interface conformance will not guarantee composition
correctness—the application writer must ensure that the algorithms used (for
example, the depth-first traversal) are still applicable after the change. The algo-
rithms presented by Holland [Hol92] for this example are, in fact, general enough
to be applicable to a directed graph. If, however, a more efficient, specialized-for-
undirected-graphs algorithm was used (as is, for instance, possible fQythe
Checkingoperation) the change would yield incorrect results. Chapter 3 discusses

in detail the issue of ensuring that components are actually interchangeable.

2.3 Mixin Classes and Mixin Layers

To implement collaboration-based designs directly we build on an existing object-
oriented construct called mixin. Mixins are similar to classes but with some
added flexibility, as described in the following sections. Unfortunately, mixins
alone are not sufficient to express large-scale components—they suffer from only
being able to describe a single class at a time and not a collection of cooperating
classes. To address this, we introduagin-layers a scaled-up form of mixins that

can contain multiple smaller mixins.

2.3.1 Introduction to Mixins

The termmixin class(or just “mixin”) has been overloaded to mean several spe-
cific programming techniques and a general mechanism that they all approximate.
Mixins were originally explored in the context of the Lisp language with object-
systems like Flavors [Mo086] and CLOS [KRB91]. In that context, mixins are

classes that allow their superclass to be determinetinegrization of multiple

15



inheritance. In C++, the term has been used to describe classes in a particular (mul-
tiple) inheritance arrangement: as superclasses of a single class that themselves
have a commonirtual base clasgsee [Str97], p.402). Both of these mechanisms

are approximations of a general concept described by Bracha and Cook [BC90],
and here we will use “mixin” in this general sense.

The main idea implemented by mixins is quite simple: in object-oriented
languages, a superclass can be defined without specifying its subclasses. This
property is not, however, symmetric: when a subclass is defined, it must have a
specific superclass. Mixins (also commonly knowrabstract subclass¢8C90])
represent a mechanism for specifying classes that will eventually inherit from a
superclass. This superclass, however, is not specified at the site of the mixin’s defi-
nition. Thus a single mixin can be instantiated with different superclasses yielding
widely varying classes. This property of mixins makes them appropriate for defin-
ing uniform incremental extensions for a multitude of classes. When the mixin is
instantiated with one of these classes as a superclass, it produces a class incre-
mented with the additional behavior.

Mixins can be easily implemented using parameterized inheritance. In this
case, a mixin is a parameterized class with the parameter becoming its superclass.

Using C++ syntax we can write a mixin as:

template <class Super> class Mixin : public Super {
... [* mixin body */
3
Mixins are flexible and can be applied in many circumstances without
modification. To give an example, consider a mixin implementipgration count-
ing for a graph. Operation counting means keeping track of how many nodes and

edges have been visited during the execution of a graph algorithm. (This simple
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example is one of the non-algorithmic refinements to algorithm functionality dis-

cussed in [WeiWeb]). The mixin could have the fdrm:

template <class Graph> class Counting : public Graph {
int nodes_visited, edges_visited,;
public:
Counting() : Graph() {
nodes_visited = edges_visited = 0; }

node succ_node (node v) {
nodes_visited++;
return Graph::succ_node(v);

}

edge succ_edge (edge e) {
edges_visited++;
return Graph::succ_edge(e);

}

/I example method that displays the cost of an algorithm in
// terms of nodes visited and edges traversed
void report_cost () {
cout << “The algorithm visited " << nodes_visited <<
“nodes and traversed " << edges_visited <<
“edges” << endl;

}

... Il other methods using this information may exist
b

By expressing operation counting as a mixin we ensure that it is applicable
to many classes that have the same interface (i.e., many different kinds of graphs).
(Clearly, the implicit assumption is that classes, lixgraph andUgraph , have

been designed so that they export similar interfaces. By standardizing certain

2. We use C++ syntax for most of the examples of this chapter, in the belief that concrete syntax
will clarify, rather than obscure, our ideas. To facilitate readers with limited C++ expertise, we
avoid several cryptic idioms or shorthands (for instance, constructor initializer lists are replaced
by assignments, we do not use swict keyword to declare classes, etc.). A convention fol-
lowed in our code fragments is that class declarations and their syntactic delimiters are high-
lighted. This will enhance readability in later sections, where classes can be nested.
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aspects of the design, like the method interfaces for different kinds of graphs, we
gain the ability to create mixin classes that can be reused in different occasions.)
We can have, for instance, two different compositions:

Counting < Ugraph > counted_ugraph;
and

Counting < Dgraph > counted_dgraph;
for undirected and directed graphs. (We omit parameters to the graph classes for
simplicity.) Classes produced by the two above compositions have the extra capa-
bilities provided by theCounting mixin. Note that the behavior of the composi-
tion is exactly what one would expect: any methods not affecting the counting
process are exported (inherited from the graph classes). The methods that do need

to increase the counts are “wrapped” in the mixin.

2.3.2 Mixin Layers

To implement entire collaborations as implementation components we need to use
mixins that encapsulate other mixins. We call the encapsulated mixin ciasses
mixins and the mixin that encapsulates them dliger mixin Inner mixins can be
inherited, just like any member variables or methods of a class. An outer mixin is

called amixin layerwhenthe parameter (superclass) of the outer mixin encapsu-

lates all parameters (superclasses) of inner mixifEhis is illustrated in Figure

2.3. ThisMixinLayer is a mixin that refines (through inheritanc&)perMix-

inLayer . SuperMixinLayer  encapsulates three class€&#stClass , Sec-
ondClass , andThirdClass . ThisMixinLayer also encapsulates three inner
classes that are themselves mixins. Two of them refine the corresponding classes

of SuperMixinLayer , while the third is an entirely new class.

3. Inner mixins can actually themselves be mixin layers.
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Legend SuperMixinLayer

.outer - inner .
'\classes,,' classes . FirstClass SecondClass Thlrd%l SS :

. i . o ThisMixinLayer

inheritance mherlta_nce ‘. _FirstClass SecondClass ThirdClass  FourthClass _ -'
among outer among innef IR -7

classes classes

Figure 2.3: Mixin layers schematically.

Note that inheritance works at two different levels in a mixin layer. First,
the layer can inherit inner mixins from the layer above it (for instartdérd-
Class in Figure 2.3). Second, the inner mixins inherit member variables, meth-

ods, or other classes from their superclass.

2.3.3 Mixin Layers in Various OO Languages

The mixin layer concept is quite general and is not tied to any particular language
idiom. Many flavors of the concept, however, can be expressed via specific pro-
gramming language idioms: as stand-alone language constructs, as a combination
of C++ nested classes and parameterized inheritance, as a combination of CLOS
class-metaobjects and mixins, etc. We study these different realizations next. The
introduction of technical detail is necessary at this point as it will help us demon-
strate concretely, in Section 2.4, the advantages of mixin layers for implementing

collaboration-based designs.

C++. We would like to support mixin layers in C++ using the same language
mechanisms as those used for mixin classes. To do this, we can standardize the

names used for inner classes implementations (make them the same for all layers).
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This yields an elegant form of mixin layers that can be expressed using common
C++ features. For instance, using C++ parameterized inheritance and nested

classes, we can express a mixin layer (see again Figure 2.3) as:

template <class LayerSuper>

class LayerThis : public LayerSuper {

public:
class Firstinner : public LayerSuper::Firstinner {.. };
class Secondlnner : public LayerSuper::Secondinner {.. };
class Thirdlnner . public LayerSuper::ThirdInner {.. 1

b (2.1)

The code fragment (2.1) represents the form of mixin layers that we will use
in the examples of this chaptétote that specifying a parameter for the outermost
mixin automatically determines the parameters of all inner mixins. Composing
mixin layers to form concrete classes is how as simple as composing mixin classes.
If we have four mixin layerslayerl , Layer2 , Layer3 , Layer4 ), we can com-
pose them as:

Layerd < Layer3 < Layer2 < Layer 1>>>
where <...> " is the C++ operator for template instantiation. The above compo-
sition creates two different class hierarchies: one for the layers themselves and one
for the inner classes. Note thizdyerl has to be a concrete class (i.e., not a mixin
class). Alternatively we can have a class with empty inner classes that will be used
as the root of all compositions. (A third alternative is to usixpointconstruction
and instantiate the topmost layer with the result of the entire composition! This
pattern has several desirable properties but to avoid complicating our discussion,
we discuss it separately in Chapter 3.)

In code fragment (2.1) we mapped the main elements of the mixin layer
definition to specific implementation techniques. We used nested classes to imple-

ment class encapsulation. We also used parameterized inheritance to implement
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mixins. The mixin layer definition is completely independent of these implementa-
tion choices There are very different ways of encoding the same design in other

languages.

CLOS (and other reflective languages).The Common Lisp Object System
(CLOS) [KRB91] is a high-level object-oriented language with very powerful
reflective capabilities, through the well-known CLO$eta-object protocol
Reflective mechanisms allow programs to modify fundamental aspects of the sys-
tem under which they are operating. Here we are interested in the case of object-
oriented programming languages and reflection provided by meta-object protocols.
Meta-object protocols allow the policies of an object system to be changed, affect-
ing what happens when an object is created, when methods are dispatched, when a
class inherits from other classes, etc. A common capability in OO reflective sys-
tems is that of handling classesfast-classentities (i.e., classes can be assigned

to variables and checked for identity). Even the most fundamental forms of reflec-
tion, like simpleintrospectionprotocols (for instance, Java Reflection [Jav97a)),
allow manipulating classes as first-class entities.

We can encode mixin layers in CLOS (and many other reflective systems)
by simulating their main elements using reflection (classes as first-class entities).
The main elements of mixin layers are class encapsulation (classes containing
other classes) and mixins. Since CLOS has native mixin support, we only need to
implement class encapsulation by defining a class with member methods that
return CLOS class-metaobjects (in essence, other classes). Unlike our C++ exam-
ple, no lexical nesting of any kind is necessary. This combines nicely with the
method-based character of CLOS mixins and the reflective capabilities of the lan-
guage. The reader should keep in mind, however, that the semantics of every incar-

nation of mixin layers depends on the semantics of the host language. Thus, CLOS
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mixin layers are not semantically equivalent to C++ mixin layers (for instance,
there is no default class data hiding: class members are by default accessible from
other code in CLOS). Nevertheless, the two versions of mixin layers are just differ-
ent flavors of the same idea.

The main mixin layer template, analogous to code fragment (2.1), is writ-
ten in CLOS as:

(defclass first-dummy() (...))

: Definition of 1st inner mixin
(defclass second-dummy () (...))

: Definition of 2nd inner mixin
(defclass third-dummy () (...))

; Definition of 3rd inner mixin

.(ldefclass layer-this () ()

; Encapsulate classes as methods. Each method returns a
; linked list of class-metaobjects (one per inner mixin)
(defmethod first-inner ((self layer-this))

(cons (find-class ‘first-dummy) (call-next-method)))

(defmethod second-inner ((self layer-this))
(cons (find-class ‘second-dummy) (call-next-method)))

(defmethod third-inner ((self layer-this))
(cons (find-class ‘third-dummy) (call-next-method)))
(2.2)

Note that, just like in the C++ example, the root of the outer inheritance
hierarchy must be concrete (i.e., not parameterized). In the above, this means that
its methods defining inner classes should notasdlenext-method . Composi-
tion of mixin layers is a simple matter of using CLOS multiple inheritance (same
as with regular mixins). For instance, if we have mixin layérst-layer ,

second-layer , third-layer , their composition is defined as:
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(defclass composition
(first-layer second-layer third-layer) (...))

(setq composite-obj (make-instance ‘composition))

In (2.2), methods defining inner classes (liftest-inner , second-
inner , etc.) return a list of all inner mixins. Constructing the inner classes is then
a simple matter of creating classes programmatically using this list. This is a stan-
dard CLOS technique (e.g., see functidind-programmatic-class in
[KRB91], p.68). For instance, creating the first of the inner classes could be

expressed as:

(setq first-inner-class (find-programmatic-class
(first-inner composite-obj)))

The above idiom should be taken as a proof-of-concept, rather than an opti-
mal implementation of mixin layers in CLOS. The powerful syntactic extension
(macros) capabilities of Common Lisp can be used to add syntactic sugar to the
mechanism.

The ideas used to express mixin layers in CLOS are also applicable to other
reflective languages. For instance, although we have not experimented with the
Smalltalk language, we expect that mixin layers are expressible in Smalltalk.

Smalltalk has been a traditional test bed for mixins, both for researchers (e.g.,

[BG96, Mez97, SCD93]) and for practitioners [Mon96]. Like CLOS, the lan-
guage has powerful reflective capabilities. These can be used to emulate encapsu-
lated classes by methods that return classes. We believe that this technique can be
used in conjunction with existing mixin mechanisms to implement mixin layers. It
should be noted that a straightforward (but awkward) way to implement mixins in
Smalltalk is asclass-functorsthat is, mixins can be functions that take a super-

class as a parameter and return a new subclass.
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Java. The Java language is an obvious next candidate for mixin layers. Java has
no support for mixins and it is unlikely that the core language will include mixins
in the near future. As will be described in Chapter 4, we have implemented our
own language extensions to Java that capture mixins and mixin layers explicitly. In
this effort we used our JTS set of tools [BLS98] for creating pre-compilers for

domain-specific languages. The system supports mixins and mixin layers through

parameterized inheritance and class nesting, in much the same way as th C++.
Additionally, the fundamental building blocks of the JTS system itself were
expressed as mixin layers, resulting in an elegant bootstrapped implementation.

Adding mixins to Java is also the topic of other active research [AFM97,
FKF98]. The work of [FKF98] presented a semantics for mixins in Java. This is
particularly interesting from a theoretical standpoint as it addresses issues of mixin
integration in a type-safe framework. As we saw, mixins can be expressed in C++
using parameterized inheritance. There have been several recent proposals for add-
ing parameterization/genericity to Java [AFM97, OW97, BOSW98, MBL97,
Tho97], but only the first [AFM97] supports parameterized inheritance and, hence,
can express mixin layers.

It is interesting to examine the technical issues involved in supporting mix-
ins in Java genericity mechanisms. Three of these mechanisms [OW97, BOSW98,
Tho97] are based on lmomogeneoumodel of transformation: the same code is
used for different instantiations of generics. This is not applicable in the case of
parameterized inheritance—different instantiations of mixins are not subclasses of
the same class (see [AFM97] for more details). Additionally, there may be concep-

tual difficulties in adding parameterized inheritance capabilities: The genericity

4. The Java 1.1 additions to the language [Jav97b] support nested classes and interfaces (actually
both “nested” classes as in C++ amémberclasses—where nesting has access control implica-
tions). Nested classes can be inherited just like any other members of a class.

24



approach of [Tho97] is based on virtual types. Parameterized inheritance can be
approximated with virtual types by employingrtual superclassefMM89], but
this is not part of the design of [Tho97].

The approaches of Myers et al. [MBL97] and Agesen et al. [AFM97] are
conceptually similar from a language design standpoint. Even though parameter-
ized implementations do not directly correspond to types in the language (in the
terminology of [CW85] they correspond tiype operators parameters can be
explicitly constrained. This approach, combined withheterogeneousmodel of
transformation (i.e., one where different instantiations of generics yield separate
entities) is easily amenable to adding parameterized inheritance capabilities, as

was demonstrated in [AFM97].

2.4 Implementing Collaboration-Based Designs

Armed with our knowledge of powerful object-oriented programming language
constructs we can now attempt to express collaboration-based designs directly at
the implementation level. We will show how our mixin layers technique can be
used to perform the task and examine how it compares to two previous approaches.
One is the straightforward implementation technique of application frameworks
[JF88] using just objects and inheritance. The other is the technique of VanHilst

and Notkin that employs C++ mixins to express individual roles.

2.4.1 Using Mixin Layers

Mixin layers are ideally suited for implementing collaboration-based designs. A
single mixin layer can capture an entire collaboration. The roles played by differ-
ent objects are then expressed as nested classes inside the mixin layer. The general

pattern is:
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template <class CollabSuper>

class CollabThis : public CollabSuper {

public:
class FirstRole : public CollabSuper::FirstRole { .. };
class SecondRole : public CollabSuper::SecondRole { .. };
class ThirdRole : public CollabSuper::ThirdRole { .. }s
I/l more roles

b (2.3)

Again, mixin layers are composed by instantiating a layer with another as
its parameter. This produces two classes that are linked as a parent-child pair in the
inheritance hierarchy. For four mixin layer€ollabl , Collab2 , Collab3 ,
FinalCollab  of the above form, we can define a clasthat expresses the final

product of the composition as:

typedef Collabl < Collab2 < Collab3 < FinalCollab > > > T:

or (alternatively):

class T:
public Collabl < Collab2 < Collab3 < FinalCollab > > >
{ I* empty body */ };

For now we will consider the two forms to be equivalent. Their differences
are an artifact of C++ policies and are not important for the discussion of this sec-
tion (they will be examined together with other C++ specific issues in Chapter 3).

The individual classes that the original design describes are members
(nested classes) of the above components. ThiEistRole defines the appli-
cation classirstRole , etc. Note that classes that do not participate in a certain
collaboration can be inherited from collaborations above (we will subsequently use
the term “collaboration” for the mixin layer representing a collaboration when no

confusion can result). Thus, class:FirstRole will be defined even if
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Collabl (the bottom-most mixin layer in the inheritance hierarchy) prescribes no

role for it.

Example.For a concrete example, consider the graph traversal application of Sec-
tion 2.2.2. Each collaboration will be represented using a mixin |aggtex Num-
bering for example, prescribes roles for objects of two different clasgedex

andWorkspacelts implementation has the form:

template <class NextCollab> class NUMBER public NextCollab
{
public:
class Workspace : public NextCollab::Workspace {
... Il Workspace role methods
s
class Vertex : public NextCollab::Vertex {
... Il Vertex role methods
3
H (2.4)

Note how the actual application classes are nested inside the mixin layer.
For instance, the roles for théertexand Workspaceclasses of Figure 2.1 corre-
spond toNUMBER::Vertex andNUMBER::Workspace , respectively. Since roles
are encapsulated, there is no possibility of name conflict. Moreover, we rely on the
standardization of role names. In this example the nawiekspace , Vertex ,
andGraph are used for roles in all collaborations. Note how this is used in code
fragment (2.4): Any class generated by this template defines roles that inherit from
classesWorkspace andVertex in its superclasdNgxtCollab ).

Other collaborations of our Section 2.2.2 design are similarly represented
as mixin layers. Thus, we havel¥T and aUGRAPHomponent that capture the
Depth-First Traversaland Undirected Graphcollaborations respectively. For

instance, methods in theertex class of theDFT mixin layer includevisit-
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DepthFirst ~ and isVisited (with implementations as suggested by their
names). Similarly, methods in theertex class ofUGRAPHNclude addNeigh-
bor , firstNeighbor , andnextNeighbor , essentially implementing a graph as
an adjacency list.

To implement default work methods for the depth-first traversal, we intro-
duced an extra mixin layer, call@EFAULTWIhe DEFAULTWhiXin layer provides
the methods for th&raph and Vertex classes that can be overridden by any

graph algorithm (e.gVertex Numberingused in a composition.

template <class NextCollab> class DEFAULTW public
NextCollab
{
public:
class Vertex : public NextCollab::Vertex {
protected:
bool worklsDone( NextCollab::Workspace* ) {return 0;}
void preWork( NextCollab::Workspace* ) {}
void postWork( NextCollab::Workspace* ) {3
void edgeWork( Vertex*, NextCollab::Workspace*) {}

s

class Graph : public NextCollab::Graph {
protected:
void regionWork( Vertex*, NextCollab::Workspace* ) {}
void initWork( NextCollab::Workspace* ) {}
bool finishWork( NextCollab::Workspace* ) {return 0;}

b

The introduction oDEFAULTWas a component separate fr@fT) is an
implementation detail, borrowed from the VanHilst and Notkin implementation of
this example [VN96a]. Its purpose is to avoid dynamic binding and enable multi-
ple algorithms to be composed as separate refinements of more thBRrDoem-
ponent. (In Chapter 3 we will discuss how more powerful parameterization

mechanisms than C++ templates can eliminate the need for components like
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typedef DFT < NUMBER < DEFAULTW < UGRAPH > > > NumberC;
Figure 2.4(a) : A composition implementing the vertex numbering operation

Classes of participating objects

Graph Vertex Workspace
( UGRAPH | | | D
(DEFAULTW | | | D
( NUMBER | | | D

! ! !
(DFT | | | D

Figure 2.4(b) : Mixin-layers (ovals) and role-members (rectangles inside ovals) in
the composition. Every component inherits from the one above it. Shaded role-
members are those contained in the collaboration, unshaded are inherited. Arrows
show inheritance relationships drawn from subclass to superclass.

DEFAULTWYy allowing fixpoint constructs to propagate more complete type infor-
mation upwards in the inheritance hierarchy.)

Consider now a simple collection of collaborations—for instance, one
describing the vertex numbering graph operation. The resulting application is
obtained from the composition of Figure 2.4(a). We will soon explain what this
composition means but first let us see how the different classes are related. The
final implementation classes are members of the product of the composition,
berC (e.g.,NumberC::Graph is the concrete graph class). Figure 2.4 shows the
mixin layers and their member classes, which represent roles, as they are actually
composed. Each component inherits from the one above it. ThaFiinherits
role-members froftNUMBERwhich inherits fromDEFAULTWwhich inherits from
UGRAPHALt the same timeDFT::Graph inherits methods and variables from
NUMBER::Graph, which inherits fromDEFAULTW::Graph, which inherits from
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UGRAPH::Graph . This double level of inheritance is what makes the mixin-layer
approach so powerful. Note, for instance, that, even thotgMBERIoes not spec-

ify a Graph member, it inherits one frooDEFAULTWThe simplicity that this
design affords will be made apparent in the following sections, when we compare
it with alternatives.

The interpretation of the composition in Figure 2.4 is straightforward:
Every component is implemented in terms of the ones above it. For instance, the
DFT component is implemented in terms of methods suppliedNYMBER
DEFAULTWandUGRAPHAN actual code fragment from thésitDepthFirst

method implementation iDFT::Vertex is the following:

for (v = (Vertex*)firstNeighbor();
v = NULL;
v = (Vertex*)nextNeighbor() )
{ edgeWork(v, workspace);
v->visitDepthFirst(workspace); } (2.5)

The firstNeighbor , nextNeighbor , andedgeWork methods are not
implemented by th®FT component. Instead they are inherited from components
above it in the compositiorfirstNeighbor and nextNeighbor  are imple-
mented in theUGRAPHomponent (as they encode the iteration over nodes of a
graph).edgeWork is a traversal refinement and (in this case) is implemented by
theNUMBEROmMponent.

We can now more easily see how mixin layers are in fact both reusable and
interchangeable. ThHeFT component of Figure 2.4 is oblivious to thmplementa-
tionsof methods in components above it. Inste@ET only knows thanterfaceof
the methods it expects from its parent. Thus, the code of (2.5) represents a skeleton
expressed in terms of abstract operatitirssNeighbor , nextNeighbor , and

edgeWork . Changing the implementation of these operations merely requires the
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swapping of mixin layers. For instance, we can create an applicadpeieC )

that checks for cycles in a graph by replacing kéMBERomponent wittCYCLE

typedef DFT < CYCLE < DEFAULTW < UGRAPH > > > CycleC;

The results of composition€ycleC above andNumberC in Figure 2.4(a))
can be used by a client program as follows: First, an instance of the r&stgid
class NumberC::Graph or CycleC::Graph ) needs to be created. Thever-
tex objects are added and connected in the graphGthgh role in mixin-layer
UGRAPHIefines methodaddVertex andaddEdge for this purpose). After the
creation of the graph is complete, calling methiteghthFirst ~ on it will execute
the appropriate graph algorithm.

Note that no direct editing of the component is necessary and multiple cop-
ies of the same component can co-exist in the same composition. For instance, we
could combine two graph algorithms by using two instances ob#emixin layer
(in the same inheritance hierarchy), refined to perform a different operation each
time:
class NumberC:

public DFT < NUMBER < DEFAULTW <UGRAPH>>> {} ;

class CycleC :
public DFT < CYCLE < NumberC > > {4 (2.6)

As another example, the design may change to accommodate a different
underlying model. For instance, operations could now be performed on directed
graphs. The corresponding updaD&sRAPHeplacedUGRAPMHto the composition
is straightforward (assuming that the algorithms are still valid for directed graphs

as is the case with Holland’s original implementation of this example [Hol92]):

typedef DFT < NUMBER < DEFAULTW < DGRAPH > > > NumberC;
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Again, note that the interchangeability property is a result of the indepen-
dence of collaborations. A singléGRAPHollaboration completely incorporates
all parts of an application that relate to maintaining an undirected graph (although
these parts span several different classes). The collaboration communicates with
the rest of the application through a well-defined and usually narrow interface.

For this and other similar examples, the reusability and interchangeability
of mixin layers helps solve the classidabrary scalability problem[BSST93,
Big94]: there aren features and often more thash valid combinations (because
composition order matters and feature replication is possible [BO92]). Hard-cod-
ing all different combinations leads to library implementations that do not scale:
the addition of a single feature doubles the size of the library. Instead, we would
like to have a collection of building blocks and compose them appropriately to
derive the desired combination. In this way, the size of the library grows linearly in
the number of features it can express (instead of exponentially, or super-exponen-

tially).

Multiple Collaborations in a Single DesignAn interesting question is whether
mixin layers can be used to express collaboration-based designs where a single
collaboration is instantiated more than once with the same class playing different
roles in each instantiation. The answer is positive, and the desired result can be
effected usingadaptor mixin layers. Adaptor layers add no implementation but
adapt a class so that it can play a pre-defined role. That is, adaptor layers contain
classes with empty bodies that are used to “redirect” the inheritance chain so that
predefined classes can play the required roles.

Consider the case of a producer-consumer collaboration, which was briefly
discussed in Section 2.2.1. Our example is from the domain of compilers. A parser

in a compiler can be viewed as a consumer of tokens produced by a lexical ana-
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lyzer. At the same time, however, a parser is a producer of abstract syntax trees
(consumed, for instance, by an optimizer). We can reuse the same producer-con-
sumer collaboration to express both of these relationships. The reason for wanting
to provide a reusable implementation of the producer-consumer functionality is
that this functionality could be quite complex. For instance, the buffer for pro-
duced-consumed items may be guarded by a semaphore, multiple consumers could
exist, etc. The mixin layer implementing this collaboration takes as a param-

eter, describing the type of elements produced or consumed:

template <class NextCollab, class Item>
class PRODCONS public NextCollab

{
public:
class Producer : public NextCollab::Producer {
void produce(ltem item) { ... }
I/l The functionality of producing Items is defined here
... Il other Producer role methods
b
class Consumer : public NextCollab::Consumer {
Item consume() { ... }
/I The functionality of consuming Items is defined here
... Il other Consumer role methods
b
3

Now we can use two simple adaptors to make a single cRasdr ) be
both a producer and a consumer (in two different collaborations). The first adaptor
(PRODADAPTexpresses the facts that a producer is also going to be a consumer
(the actual consumer functionality is to be added later) and thaDtienizer

class inherits the existing consumer functionality. This adaptor is shown below:

template <class NextCollab> class PRODADAPT
public NextCollab

{
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public:

class Consumer : public NextCollab::Producer {} ;
class Optimizer : public NextCollab::Consumer {};
class Producer { } ;

s

The second adapto€ONSADAP)Tis similar:

template <class NextCollab> class CONSADAPT
public NextCollab

{

public:
class Parser : public NextCollab::Consumer {} ;
class Lexer : public NextCollab::Producer {} ;

3

Now a single composition can contain two copies of BRODCONBIXIn

layer, appropriately adapted. For instance:

typedef COMPILER < CONSADAPT < PRODCONS <
PRODADAPT < PRODCONS < ..., Tree> >, Token > > >
CompilerApp ; 2.7)

In the above, th&€OMPILERmIxin layer is assumed to contain the func-
tionality of a compiler that defines three classesxer , Parser , and Opti-
mizer . These classes use the functionality supplied by the producer-consumer
mixin layer. For instance, there may b@arse method INCOMPILER::Parser
that repeatedly calls theonsume andproduce methods. To better illustrate the
role of adaptors, we present in Figure 2.5 the desired inheritance hierarchy for this
example, as well as the way that adaptors are used to enable emulating this hierar-
chy using only predefined mixin layers. Note that each of the layers participating

in composition (2.7), above, appears as a rectangle in Figure 2.5(b).
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Tree Produceifree Consumer

Token Token
Consumer Producer
Parser Optimizer Lexer

Figure 2.5@a) : The desired inheritance hierarchy has a Parser inheriting
functionality both from a consumer class (a Parser is a consumer of tokens) and a
producer class (a Parser is a producer of trees).

Tree Produceifree Consumer

PRODCONS

PRODADAP

PRODCONS

CONSADAP
Lexer Parser Optimizer

COMPILER

Figure 2.5b) : By using adaptor layers (dotted rectangles), one can emulate the

inheritance hierarchy of Figure 2.5(a), using only pre-defined mixin layers (solid

rectangles). Since a single mixin lay®RODCONSs instantiated twice, adaptors
help determine which class will play which role every time.

2.4.2 Comparison to Application Frameworks

In object-oriented programming, abstractclass is one that cannot be instanti-

ated (i.e., cannot be used to create objects) but is only used to capture the common-
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alities of other classes. These classes inherit the common interface and
functionality of the abstract class. Awbject-oriented application framewoi(or
justframeworl consists of a suite of interrelated abstract classes that embodies an
abstract design for software in a family of related systems [JF88]. Each major
component of the system is represented by an abstract class. These classes contain
dynamically bound methodsiftual  in C++), so that the framework user can
add functionality by creating subclasses and supplying definitions for the appropri-
ate methods. Thus, frameworks have the advantage of allowing reuse at a granular-
ity larger than a single abstract class. But frameworks have the disadvantage that
users may have to manually specify system-specific functionality.

In a white-box frameworkusers specify system-specific functionality by
addingmethoddo the framework’s classes. Each method must adhere totire
nal conventions of the classes. Thus, using white-box frameworks is difficult,
because it requires knowledge of their implementation details. biaek-box
framework the system-specific functionality is provided by a set of classes. These
classes need adhere only to the progeernalinterface. Thus, using black-box
frameworks is easier, because it does not require knowledge of their implementa-
tion details. Using black-box frameworks is further simplified when they include a
library of pre-written functionality that can be used as-is with the framework.

Frameworks can be used to implement collaboration-based designs, but the
amount of flexibility and modularity they can afford is far from optimal. The rea-
son is that frameworks allow the reuse of abstract classes but have no way of spec-
ifying collections of concrete classes that can be used at will (i.e., either included
or not and in any order) to build an application. Intuitively, frameworks allow reus-
ing the skeleton of an implementation but not the individual pieces that are built on
top of the skeleton. This can be seen through a simple combinatorics argument.

Consider a set of four feature&, B, C, andD that can be combined arbitrarily to
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yield complete applications. For simplicity, assume that featuvell always be

first, and that no feature repetition is allowed. Then a framework may encode fea-
ture combinatiomB, thus allowing the user to program combinatigxBCD and
ABDC. Nevertheless, these combinations will have to be coded separately (i.e.,
they cannot use any common code other than their common pAd)x,The rea-

son is that each instantiation of the framework creates a separate inheritance hier-
archy and reusing a combination is possible only if one can inherit from one of its
(intermediate or final) classes. That is, only common prefixes are reusable. In our
four-feature example, combinations that have no common prefix with the frame-
work (for instance ACD) simply cannot take advantage of it and have to be coded
separately. This amounts to exponential redundancy for complex domains.

In the general case, assume a simple cost model that assigns one cost unit
to each re-implementation of a feature. If feature order matters but no repetitions
are possible, the cost of implementing all possible combinations using frameworks
is equal to the number of combinations (each combination of lekgliffers by

one feature from its prefix of lengtk-1). Thus, forn features, the total cost for

n
implementing all combinations using frameworksE ﬁ . (This number is
k=0 '

derived by considering the sum of the feature combinations of ldgdtr eachk
from O ton.) In contrast, the cost of using mixin layers for the same implementa-
tion is equal ta—each component is implemented once and can be combined in
arbitrarily many ways. With mixin layers, even compositions with no common pre-
fixes share component implementations.

Even though our combinatorics argument represents an extreme case, it is
reflective of the inflexibility of frameworks. Optional features are quite common in

practice and frameworks cannot accommodate them, unless all combinations are
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explicitly coded by the user. This is true even for domains where feature composi-
tion order does not matter or features have a specific order in which they must be
used.

Another disadvantage of using frameworks to implement collaboration-
based designs comes from the use of dynamically bound methods in frameworks.
Even though the dynamic dispatch cost is sometimes negligible or can be opti-
mized away, often it can impose a run-time overhead, especially for fine-grained
classes and methods. With mixin layers, this overhead is avoided, as there is little
need for dynamic dispatch. The reason is that mixin layers can be ordered in a
composition so that most of the method calls are to their parent layers.

This reveals a general and important difference between mixin-based pro-
gramming and standard object-oriented programmMhen a code fragment in a
conventional OO class needs to be generic, it is implemented in terms of dynami-
cally bound methods. These methods are later (re-)defined in a subclass of the
original class, thus refining it for specific purposes. With mixin classes, the situa-
tion is different. A method in a mixin class can define generic functionality by call-
ing methods in the class’s (yet undefine)perclass That is, generic calls for
mixins can be both up-calls and down-calls in the inheritance hierarchy. Generic
up-calls are specialized statically, when the mixin class’s superclass is set. Generic
down-calls provide the standard OO run-time binding capabilities. In this way,
mixin classes can be used with greater freedom regarding their position in an
inheritance hierarchy. Refinement of existing functionality is not just a top-down
process but involves composing mixins arbitrarily, often with many different

orders being meaningful.

Example. We can illustrate the above points with our usual graph algorithm exam-

ple of Section 2.2.2. The original implementation of this application [Hol92] used
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a black-box application framework on which the three graph algorithms were
implemented. The framework consists of the implementations abthgh , Ver-

tex , andWorkspace classes for thé&ndirected GraphandDepth First Traversal
collaborations. The classes implementing the depth-first traversal have methods
like preWork , postWork , edgeWork , etc.,which are declared to be dynamically
bound(virtual  in C++). In this way, any classes inheriting from the framework
classes can refine the traversal functionality by redefining the operation to be per-
formed the first time a node is visited, when an edge is traversed, etc.

VanHilst and Notkin discussed the framework implementation of this
example in detail [VN96a]. Our presentation here merely adapts their observations
to our above discussion of using frameworks to implement collaboration-based
designs. A first observation is that, in the framework implementation, the base
classes are fixed and changing them requires hand-editing (usually copying and
editing, which results in redundant code). For instance, consider applying the same
algorithms to a directed, as opposed to an undirected graph. If both combinations
need to be used in the same application, code replication is necessary. The reason
is that the classes implementing the graph algorithms (¥egtex Numbering
must have a fixed superclass. Hence, two different sets of classes must be intro-
duced, both implementing the same graph algorithm functionality but having dif-
ferent superclasses.

A second important observation pertains to our earlier discussion of
optional features in an application. In particular, a framework implementation does
not allow more than one refinement to co-exist in the same inheritance hierarchy.
Thus, unlike the mixin layer version of code fragment (2.6) in Section 2.4.1, we
cannot have a single graph that implements both\Misex Numberingand the
Cycle Checkingperations. The reason is that the dynamic binding of methods in

the classes implementing the depth-first traversal causes the most refined version
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of a method to be executed on every invocation. Thus, multiple refinements cannot
co-exist in the same inheritance hierarchy since the bottom-most one in the inherit-
ance chain always supersedes any others. In contrast, the flexibility of mixin layers
allows us to break the depth-first traversal interface in two EBEAULTVANd the

DFT component, discussed earlier) so t#T calls the refined methods its
superclasgi.e., without needing dynamic binding). In this way, multiple copies of
the DFT component can co-exist and be refined separately. At the same time, obvi-
ating dynamic binding results into a more efficient implementation—dynamic dis-
patch incurs higher overhead than calling methods of known classes (although

sometimes it can be optimized by an aggressive compiler).

2.4.3 Comparison to the VanHilst and Notkin Method

The VanHilst and Notkin approach [VN96a-c, Van97] is another technique that can
be used to map collaboration-based designs into programs. The method employs
C++ mixin classes, which offer the same flexibility advantages over a framework
implementation as the mixin layers approach. Nevertheless, the components repre-
sented by VanHilst and Notkin are small-scale, resulting in complicated specifica-
tions of their interdependencies.

VanHilst and Notkin use mixin classes in C++ to represent roles. More spe-
cifically, each individual role is mapped to a different mixin and is also parameter-
ized by any other classes that interact with the given role in its collaboration. For
an example, consider rok4 in Figure 2.6 (which replicates Figure 2.1 for easy
reference). This role participates in a collaboration together with two other roles,
A4 andC4. Hence, it needs to be aware of the classes playing the two roles (so that,

for instance, it can call appropriate methods). With the VanHilst and Notkin tech-
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Figure 2.6: Example collaboration decomposition. Ovals represent
collaborations, rectangles represent objects, their intersections represent roles.

nique, the role implementation would be a mixin, also parameterized by the two

extra classes:

template <class RoleSuper, class OA, class OC>
class B4 : public RoleSuper {
... I* role implementation, using OA, OC */

i (2.8)

Consider that the actual values for parame@4sOCwould themselves be
the result of template instantiations, and their parameters also, and so on (up to a
depth equal to the number of collaborations). This makes the VanHilst and Notkin
method complicated even for relatively small examples. In the case of a composi-
tion of n collaborations, each witm roles, the VanHilst and Notkin method can
yield a parameterization expression of length . Additionally, the programmer
has to explicitly keep track of the mapping between roles and classes, as well as
the collaborations in which a class participates. For instance, the mixin foA4ole
in Figure 2.1 has to be parameterized with the mixin for A#te—the programmer

cannot ignore the fact that collaboratioB does not specify a role for objeCA.
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From a software evolution standpoint, local design changes cannot easily be iso-
lated, since collaborations are not explicitly represented as components. These
limitations make the approaalmscalable various metrics of programmer effort
(e.g., length of composition expressions, parameter bindings that need to be main-
tained, etc.) grow exponentially in the number of features supported. (This is the
same notion of scalability as in our earlier discussion of the library scalability
problem.)

Conceptually, the scalability problems of the VanHilst and Notkin
approach are due to the small granularity of the entities they represent. In their
methodology, each mixin class represents a role. Roles, however, have many exter-
nal dependencies (for instance, they often depend on many other roles in the same
collaboration). To avoid hard-coding such dependencies, we have to express them
as extra parameters to the mixin class, as in code fragment (2.8). Actual reusable
components need to have few external dependencies, as made possible by using

mixin layers to model collaborations.

Example. Our above discussion can be best illustrated with a simple example from
our graph algorithms application of Section 2.2.2. Consider a composition imple-
menting both th&€ycle Checkingnd theVertex Numberingperation on the same
graph. We select which of the two is to be performed on a certain graph object by
gualifying method names directly, e.@;>NumberC::Graph::Traverse()

(An alternative would be to cast an object pointer to the appropriate type and use it
to call the depth-first traversal method.) Recall that the ability to compose more
than one refinement (or multiple copies of the same refinement) is an advantage of
the mixin-based approach (both ours and the VanHilst and Notkin method) over

frameworks implementations.
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class  NumberC: public DFT <NUMBER <DEFAULTW <UGRAPH>>> {} ;
class CycleC : public DFT < CYCLE < NumberC > > 4

Figure 2.7@) : Our mixin layer implementation of a multiple-collaboration
composition. The individual classes are membefsuaiberC, CycleC (e.g.,
NumberC::Vertex , CycleC::Graph , etc.).

class Empty {} ;

class WS . public WorkspaceNumber {4
class WS2 : public WorkspaceCycle {4
class VGraph : public VertexAdj<Empty> {4
class VWork : public VertexDefaultWork<WS,VGraph> {4
class VNumber : public VertexNumber<wWs,VWork> {1
class V : public VertexDFT<WS,VNumber> {3
class VWork2 : public VertexDefaultWork<WS2,v> {3
class VCycle :public VertexCycle<WS2,VWork2> 4
class V2 : public VertexDFT<WS2,VCycle> {4
class GGraph : public GraphUndirected<V2> {4
class GWork : public GraphDefaultWork<V,WS,GGraph> {1
class Graph : public GraphDFT<V,WS,GWork> {4
class GWork2 : public GraphDefaultWork<V2,WS2,Graph> {4
class GCycle : public GraphCycle<WS2,GWork2> 4
class Graph2 : public GraphDFT<V2,WS2,GCycle> {4

Figure 2.7(b) : Same implementation using the VanHilst/Notkin approgch.
corresponds to olumberC::Vertex , Graph toNumberC::Graph , WSto
NumberC::Workspace , etc.

The components (mixins) used by VanHilst and Notkin for this example
are similar to the inner classes in our mixin layers, with extra parameters needed to
express their dependencies to other roles in the same collaboration. This compli-
cates the source code needed to compose components, making the VanHilst and

Notkin composition code much longer than the corresponding mixin layers source

code® Our specification is shown in Figure 2.7(a) (reproducing code fragment

(2.6)). A compact representation of a VanHilst and Notkin specification is shown

5. The object code is, as expected, of almost identical size.
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in Figure 2.7(b). (A more readable version of the same code included in [VN96a]
is even lengthier).

Figure 2.7(b) makes apparent the complications of the VanHilst/Notkin
approach. Each mixin representing a role can have an arbitrary number of parame-
ters and can instantiate a parameter of other mixins. In this way, parameterization
expressions of exponential (to the number of collaborations) length can result. To
alleviate this problem, the programmer has to introduce explicitly intermediate
types that encode common sub-expressions. For instdmean intermediate type
in Figure 2.7(b). Its only purpose is to avoid introducing the sub-expres&on
texDFT<WS,VNumber> three different times (wherever is used). Of course,

VNumber itself is also just a shorthand fefertexNumber<WS,VWork> . VWork,

in turn, stands fovertexDefaultWork<WS,VGraph> , and so or® Additional
complications arise when specifying a composition: users must know the number
and position of each parameter of a role-component. Both of the above require-
ments significantly complicate the implementation and make it error-prone.

Using mixin layers, the exponential blowup of parameterization expres-
sions is avoided. Every mixin layer only has a single parameter (the layer above it).
By parameterizing a mixin layek by B, A becomes implicitly parameterized by
all the roles ofB. Furthermore, ifB does not contain a role for an object that
expects, it will inherit one from above it. This is the benefit of expressing the col-
laborations themselves as classes: they can extend their interface using inheritance.

Another practical advantage of the mixin layer approach is that it encour-

ages consistent naming for roles. No name conflicts are possible among different

6. Some compilers (e.g., MS VC++, g++) internally expand template expressions, even though the
user has explicitly introduced intermediate types. This caused page-long error messages for
incorrect compositions when we experimented with the VanHilst and Notkin method, rendering
debugging impossible.
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mixin layers, since role representations are encapsulated in the outer class. Hence,
instead of explicitly giving unique names to role-members, we have standard
names and only distinguish instances by their enclosing mixin layer. In this way,
VertexDFT , GraphDFT, and VertexNumber become DFT:Vertex ,
DFT::Graph andNUMBER::Vertex , respectively.

In [VN96a], VanHilst and Notkin questioned the scalability of their
method. One of their concerns was that the composition of large numbers of roles
“can be confusing even in small examples...” The observations above (length of
parameterization expressions, number of components, consistent naming) show

that the mixin layer approach addresses this problem and does scale gracefully.
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Chapter 3

Programming Language Issues

As we showed in the previous chapter, mixin layers are capable of expressing ele-
gant, modularized software components. These components exist at the language
level and their composition is performed statically, i.e., at language translation
(compilation) time. Several programming language issues arise in connection with
mixin layers and their compositions. Most of these issues pertain to the interac-
tions of mixin layers with type systems. Type information can be used to detect
errors in a composition of mixin layers. At the same time, layers are defined in iso-
lation and the problem of propagating type information between layers is espe-
cially interesting.

This chapter is an amalgam of several such topics related to mixin layers.
Section 3.1 examines the general problem of verifying the correctness of a layer
composition. We present an approach based on propositional properties that are
propagated using inheritance and can be checked by other layers. Propositional
properties can be disguised as classes so that standard language mechanisms (like
class inheritance and access control) can be used to validate the properties.

Section 3.2 discusses type system support for mixin layers. We propose an
extension to a type mechanism based on explicit types (Java interfaces) so that

constraints on mixin layers can be expressed.

46



Section 3.3 examines the problem of propagating type information across
mixin layers. The proposed solution is similar to the one offered by Wadler, Oder-
sky, and this author [WOS98] in a different context. We discuss how this solution
applies to unconstrained parameterization mechanisms (e.g, C++) as well as con-
strained parameterization mechanisms (e.g., the Java generics proposal of
[AFMIT7]).

Finally, Section 3.4 describes the interaction of C++ mixins with various
idiosyncrasies of the language. This information is important from a practical
standpoint and offers the opportunity to discuss some C++-specific issues pertain-

ing to parameterization and inheritance.

3.1 Verifying Composition Correctness

Given a set of mixin layers, not all compositions of layers in the set may be mean-
ingful. Often layers need to be used in a specific order, or cannot be used more than
once. Other times a layer expects some core functionality from the layers above it,
thus requiring that at least a layer with the desired functionality be present. This is
true of the layers we encountered in the previous chapter. For instance, in our
example graph applicatioDFT always has to preced2EFAULTWh the composi-

tion read from left to right (i.e.PEFAULTWhas to occur higher thaDFT in the
inheritance hierarchy). In case this constraint is not satisfied, a compile-time error
will occur (or worse, under C++ the error may occur in some contexts but not oth-
ers, as we explain in Section 3.4). The reason ishiFatattempts to call methods
that only theDEFAULTWayer defines. In other words, the compiler can tell that the
composition is invalid because of an interface mismatch: the interface exported by

the superclass of theFT layer does not support some expected methods.
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The issue of explicitly specifying the expected interface of a layer parame-
ter is an important one, both for verifying a compaosition, and for enabling separate
compilation of layers. Interfaces for mixin layers are independently interesting and
will be discussed separately in Section 3.2. In general, however, compositions may
fail for reasons other than interface mismatch. In this section we will address the
general problem of detecting when component compositions are invalid. Often lay-
ers are perfectly compatible from an interface standpoint (i.e., they contain the
expected methods and variables) but their composition does not produce correct
results. Incorrect compositions will either fail with a run-time error or not perform
as expected. The designer of mixin layers is probably aware of which composi-
tions are actually meaningful and which are not. We would like to develop tech-
niques for enabling the expression of this information so that compilers can
validate compositions automatically. This is the purpose of the method discussed
in Section 3.1.2, but first we will introduce a set of example layers from the

domain of data structures to help illustrate the problem.

3.1.1 An Example Application

Our example data structure design was used in both the P2 lightweight DBMS
generator [BT97, Tho98], and in the DiSTiL generator for data structures [SB97].
In this example we add functionality to a data structure by assigning more roles to
the classes that participate in the design. There are two such classekedass,

of which all data nodes are instances, amdatainerclass, which has one instance

per data structure. A third class for data structure cursors (iterators) is generally
needed but to keep the example simple we will equate cursors with pointers to
node objects. This model for data structure construction is, in fact, quite general.
Composite data structures, run-time bound checks, garbage collection, a lock and

transaction manager, etc., can all be specified as new roles for the node and con-
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tainer classes (see [BT97]). This can be achieved using mixin layers, as we will
show with extensions to a binary tree data structure.

Our target data structure consists of four different collaboratibimdreg
alloc, timestamp and sizeof Bintree captures the functionality of a binary tree.
Alloc captures the functionality of memory allocatichimestamps responsible
for maintaining timestamps for data structure and element updaitesofsimply
keeps track of the data structure size. The design is simple and we will not concern
ourselves with its schematic representation (in the form of Figure 2.1) or the way
we obtained it. We remind the reader that a good reference on how to obtain col-
laboration-based designs from use-case scenarios [Rum94] is VanHilst’s Ph.D. dis-

sertation [Van97].

A mixin layer implementing a binary tree collaboration has the form:

template <class Super> class BINTREE : public Super {
public:
class Node : public Super::Node {

Node* parent_link,
left_link, right_link ; /l Node data members

public:
/I Node interface
H
class Container : public Super::Container {
Node* header; /I Container data members
public:

void insert (EleType el ){ ... }

// Definition of EleType inherited
void erase (Node*node ){...}
bool find (EleType*el){...}

1. We will present simplified code fragments, ignoring implementation details that are not directly
relevant to our discussion. We will highlight class definitions for readability and use ellipses
(... ) for omitted code.
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/I Other methods

Note that theContainer class is aware of thHode class (e.g., it declares
a member variable of typgode* ). The two classes must be designed together and,
hence, it makes sense to encapsulate both in a single unit.

Now consider the implementation of thienestampcollaboration: the data
structure maintains the time of its last update, as well as the creation and update
time of each node. The set of exported operations on the data structure can be
enriched (e.g., by defining an operation that returns the data structure update time,
as well as a variant dind : find_newer ). This enrichment can be viewed as a
collaboration prescribing roles for both tinomde and theContainer  class. Its

implementation using mixin layers has the form:

template <class Super> class TIMESTAMP : public Super {
public:
class Node : public Super::Node {
time_t creation_time, update_time; // Node data members
public:
bool more_recent (time_tt){ ... }
// Other time-related methods

};...

class Container : public Super::Container {
time_t update_time; /I Container data members
public:
bool find_newer ( EleType* el, time_tt) {... }
void insert ( EleType el ){ ...}

b

/I Other time-related methods

Recall that not all collaborations need to specify roles for all classes in a
design. Thesizeofcollaboration, for instance, only needs to maintain a counter of

elements associated with a container and only prescribes a role f0otlegner
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class. It can be implemented as a mixin layer that is a trivial wrapper around a

mixin class:
template <class Super> class SIZEOF : public Super {
public:
class Container : public Super::Container {
int count; /I Container data members
public:
Container() : Super::Container() {
count=0;} /I Constructor

void insert ( EleType el ) {
Super::Container::insert(el); count++; }
void erase ( Node* node ) {
Super::Container::erase(el); count--; }
int size () { return count; }

Again, classes generated by instantiating3l#EOF mixin layer do have a
Node nested class—this class is inherited from mixin layers al®Z&OF in the
inheritance chain.

To put everything together we need a concrete (i.e., non-mixin) class to be
the root of our inheritance hierarchy. This could be a “dummy” class, containing
only empty roles. In most applications, however, it is easy to identify a collabora-
tion, which has to be the basis upon all other functionality is built. In this particular
example, thealloc collaboration serves this purpos@loc is responsible for the
actual memory allocation for the data structure. Note that the implementation of
this collaboration (as well as any of the other mixin layers) can have parameters
other than the one we used to designate the superclass. These extra parameters can
be used to specify polymorphic behavior. In our example, it makes sense to param-
eterize the layer representimjoc by the type of the elements stored in the data

structure. Then we have:
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template <class Element> class ALLOC {
public:
class Node {
Element element; // The actual stored data
public:
/I Any methods pertaining to stored data

};...

class Container {
protected:
typedef Element EleType;
/[ The actual type of stored data
void* node_alloc();
/I Other allocation methods
b
3
With our layers defined, we form data structures by composing layers. A
binary tree storing integers and maintaining time information and size is defined

as:

typedef SIZEOF < TIMESTAMP < BINTREE < ALLOC<int>>> >
Treel,; (3.2)

The Node and Container ~ classes are accessibles Treel::Node and
Treel::Container . An outline of the composition of (3.1) is shown in Figure
3.1. We have annotated the design with some of the inherited member variables
and methods. Note how both tB&EOF and theTIMESTAMPmixin layers depend
on layers above them to insert and erase elements from the data structure. We will

return to this later.

2. There is no reason why tidode class should be user accessible. What really needs to be user
accessible is an iterator class, which for this example is the same as a poineddmbject.
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Figure 3.1 A composite data structure. The intersections of rectangles and ovals
represent the roles played by each class in each collaboration.

3.1.2 Verifying Consistency with Propositional Properties

The most important issue arising in mixin layer composition is ensuring composi-
tion correctness. Some mixin layers depend on the existence or the right ordering
of others. Many problems can be detected immediately. As shown in Figure 3.1,
the BINTREE layer calls the allocator directly for every element insertion (i.e., it
does not propagate thesert anderase operations). Omitting th8INTREE

layer in (3.1) should cause a compilation error: operationsitikert  that are

propagated bgIZEOF andTIMESTAMPwill be undefined?

3. In fact, such mistakes may not actually cause a compilation error, even for statically typed lan-
guages. In C++, for instance,iifsert  is never called in user code, no error will be signalled
even thouglsIZEOF::Container  has an explicit call to the insert method of its superclass and
no such method is defined. This has to do with the treatment of methods in parameterized
classes as function templates, as we will discuss in Section 3.4. In esserigsethe method
for SIZEOF::Container is never compiled since it is not needed, thus the error is never dis-
covered.
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Other problems, however, are more subtle. Consider reorderingiie

TREEandSIZEOF layers in a composition:

typedef BINTREE < SIZEOF < ALLOC <int>>> Tree3;

This will cause thansert anderase methods ofSIZEOF to be shad-
owed (overridden) by those 8INTREE. Hence, the implementation is wrong: the
count of elements in the data structure will never be updated (since this is only
done in theinsert anderase methods ofSIZEOF and these methods are not
called byBINTREE). Thesize operation will be visible, however, and will always
return O, although the data structure may not be empty.

In general, mixin layers may have subtle semantic dependencies that are
not reflected in their interfaces. In large libraries there may be a variety of layers
supporting identical interfaces but implementing different semantics. Many combi-
nations of layers could be illegal but there may not be a way to detect this from the
interfaces alone.

This problem has been studied before in the context of layered systems.
Thedesign rule checkingpproach of [BG97] offers a solution using propositional

properties and requirements that are propagated both up and down a layer hierar-

chy. Thenested mixin-methodsf [SCD"93] resulted in a powerful constraint sys-

tem. Nesting of mixins was used as a way to restrict their scope. A mixin class of

[SCD"93] can define other mixins that can be composed with it, inherit some mix-
ins when composed, and cancel inherited mixins. Taure-orientedprogram-
ming approach of [Pre97] uses thesumes keyword to express the property that
the correctness of one feature (layered component) assumes the existence of
another.

Interestingly enough there is a simple way to express basic dependencies

within the mixin layers framework. Every mixin layer can export propositional
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properties describing its behavior (essentially encoding semantic knowledge in its
interface). Recall that when mixin layers are composed, they are linked in an inher-
itance chain. Properties are propagated in the same direction as inherited methods
and variables: from superclasses to subclasses. Layers can explicitly make inher-
ited properties unavailable to their subclasses. Finally, a layer can check (require)
whether it has inherited a property or not. A composition is correct if none of these
requirements fail. This technique is similar to thesumes functionality of
[Pre97] and the design rule checking of [BG97]. Consider the example of Section
3.1.1. There are four requirements that we need to express:

* A BINTREE mixin layer cannot have 8IZEOF layer as an ancestor in its
inheritance chain (because otherwiseitisert method ofSIZEOF will be
shadowed).

* A BINTREE mixin layer cannot have aIMESTAMPIlayer as an ancestor
(same reason as above).

* A SIZEOF mixin layer needs to ensure that some sort of a data structure is
present in the composition. In our example the only data structure is a binary
tree but we can easily imagine the same mixin layer being composed, for
instance, with a doubly linked list layer.

* A TIMESTAMPmixin layer also needs to ensure that a data structure is
present.

These can be specified as requirements on the existence of three properties
(inherited from ancestors in the inheritance chain):

* No SIZEOF layer is present (call this propeRyNoSizeof ).

* No TIMESTAMPlayer is present (call this propeRy NoTimestamp ).

» A data structure layer is present (call this propBrtpataStructure ).

An approximate implementation of this scheme is straightforward. All

properties can be expressed as empty classes encapsulated in a mixin layer. Proper-
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ties are inherited but can be negated by using access control (that is, “hiding” of
class members—e.g., by making them “private” members in C++). If the class rep-
resenting the property is made visible to subclasses (either by declaration or by
inheritance without “hiding”), then the property is asserted. Otherwise the property
is negated. The requirement that a certain property be satisfied is then enforced by
declaring an instance of this class. (This technique is really an approximation of
the desired functionality: We “hijack” the nested class mechanism and use it to
express propositional properties. As we will see, this method has some limita-
tions.)
In our example,BINTREE exports propertyP_DataStructure and

requires propertieB_NoSizeof andP_NoTimestamp .

template <class Super> class BINTREE : public Super {
protected:
class P_DataStructure { } ;
/I Assert this property for subclasses
private:
P_NoSizeof dummy1;
P_NoTimestamp dummy?2;
/Il Require P_NoSizeof and P_NoTimestamp from ancestors

public:

/I nested mixins (same as before)
b

The other three mixin layers are modified accordingly:

template <class Super> class SIZEOF : public Super {
private:

class P_NoSizeof {} ; / Negate property for subclasses

P_DataStructure dummyl; // Require P_DataStructure
public:

Il nested mixins (same as before)
b
template <class Super> class TIMESTAMP: public Super {
private:
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class P_NoTimestamp {} ; // Negate property for subclasses
P_DataStructure dummyl; // Require P_DataStructure

public:
/l nested mixins (same as before)
3
template <class EleType> class ALLOC {
protected:
class P_NoSizeof {} ; Il Assert property for subclasses
class P_NoTimestamp {} ;// Assert property for subclasses
public:
Il nested classes (same as before)
3

Note how the constraint is enforced: tReLOCmixin layer asserts proper-
ties P_NoSizeof andP_NoTimestamp . The BINTREE layer requires that they
not be negated by some layer betweddNTREE and ALLOC in the inheritance
hierarchy.SIZEOF and TIMESTAMPnegateP_NoSizeof andP_NoTimestamp ,
respectively. Also they require that they have some ancestor asserting property
P_Datastructure . This accurately describes the constraints we want to impose
on the compositions of these four mixin layer8IATREE has to be present and if
aTIMESTAMPor SIZEOF are present they must be descendan®BNTREE in the
inheritance chain.

The method described above only makes use of access control (such as
commonly found in C++ or Java and easily emulated in CLOS) and the same gen-
eral language mechanisms used for mixin layers. The method’s clarity could be
improved using some form of syntactic sugar. In the absence of static typing (e.qg.,
if we were to implement this technique in CLOS) the checking would have to be
performed at run-time by calling an appropriate method. We have developed other
constraint techniques for C++ but they are language-specific (or even compiler-
specific as is the case with many compile-time techniques that rely on constant-

folding).
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There are more important restrictions of the technique we presented, how-
ever. First, even though it is easy to have a layer express requirements for other
layersaboveit in the inheritance hierarchy, it is quite hard to do the same for layers
belowit. Such requirements can only be expressed by having a “catch-all” layer at
the bottom of all compositions, to check for unsatisfied requirements. A second
problem of the above technique is that even when an erroneous composition is
detected, the error message may be far from informative. In essence, we express
relatively deep errors (e.g., semantic incompatibilities among large scale compo-
nents) through the absence of an inherited class. The compiler will still complain
about an undefined type, but the cause of the error (not to mention a possible fix) is
not immediately apparent. The problem is intensified in the case of mixin layers
developed and used independently by different programmers. A casual user will
expect much more expressive error reporting from a black-box component than
our technique can offer. Reference [BG97] presents a general technique for auto-

matically detecting (and suggesting repairs to) errors in layered implementations.

3.2 Interfaces for Mixin Layers

The parameterization examples that we have considered this far are all in the C++
language. C++ templates are an example ofuanonstrainedparameterization
mechanism. That is, templates offer no way to constrain the possible values that a

template parameter may assume. For instance, consider a simple mixin:

template <class Super> class Mixinl : public Super {
void foo() { Super::bar(); }
... [* other methods, vars */

3
Super is a parameter to the template and some restrictions on its structure

are apparent from the code. For examgleper has to export a methdshr in its
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interface (“public” or “protected” in C++). Furthermor&uper::bar  should

have no arguments. Nevertheless, these restrictions are never made explicit by the
programmer and the compiler has no knowledge of them. This approach has two
main disadvantages:

» The compiler cannot easily verify that all restrictions are satisfied. Errors are
discovered belatedly, hindering accurate error reporting. For instance, if the
programmer parameteriz®xinl with a class defining nbar method, the
resulting parameterization error will only be detected as a call to an unde-
fined method. In C++, in particular, the error will only be discovered when
(and if) methodfoo is actually used (this is discussed in detail in Section
3.4).

* The modularity of templatized code is not preserved. Ideally we would like
the compiler to process each parameterized unit of code independently. This
way parameterized modules (like mixin layers) will only need to be linked
together at composition time. With unconstrained parameterization this is not
possible. Type-checking (e.g., checking for undefined methods as in the
above example) has to occur after the composition is specified. The same is
true for code generation, meaning that a piece of parameterized code has to
be processed once for each composition it participates in. Thus, the lack of
modularity of templatized code means that such code offers few opportuni-
ties for separate, incremental compilation. Furthermore, having incomplete
type information at compile-time does not allow certain combinations of
parameterized components (like a useful fixpoint construction that we dis-
cuss in Section 3.3).

To avoid the problems of unconstrained parameterization, ncamy
strainedparameterization mechanisms have been proposed (e.g., [AFM97, OW97,

BOSW98, MBL97]). In this section we examine constrained parameterization
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from the standpoint of mixin layers. The ideas presented here are general, but, for
illustration purposes, we will focus on the Java language, and, in particular, on the
constrained parameterization mechanism for Java proposed by Agesen et al.
[AFM97]. We describe this mechanism in Section 3.2.1. In Section 3.2.2 we argue
that, with regards to mixin layers, even though the principles upon which the
mechanism is based are correct, it fails in practice. This failure is due to the way
nested classes and interfaces are handled in Java. By demonstrating the problem,
we essentially identify the properties of an object-oriented type system, powerful
enough to support constraints for mixin layers. We propose extensions to the Java
language to correct the problem without affecting existing Java programs. Finally,

we discuss some closely related work in Section 3.2.3.

3.2.1 Constrained Parameterization

Before we introduce the parameterization mechanism of Agesen et al. [AFM97]

we discuss briefly the Java “interface” mechanism.

Background: Java Interfaces.Interfaces in Java are used to specify explicit type
signatures for classe€onsider the following example of a Jaweerface  dec-

laration:

interface Fool {
Fool methl ();
boolean meth2 (Fool foo);

Any (concrete) Java class that conforms to this interface has to define two
methodsmethl andmeth2 with the exact type signatures (return types and argu-
ment types) specified in the interface. Conformance is declared usinglee

ments keyword. For instance:
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class Baz implements Fool {
public Fool methl() {return new Baz();}
public boolean meth2(Fool foo) { return true; }

}

The definition ofBaz is legal because it supports both methods prescribed

by the interface (i.e., it defines both methods witentical signatures to the inter-

face prototypes}.It should be clear from this example that interface specifications
are simply constraints on class definitions.

It is worth noting that the Java type system (of which interfaces are a part)
forms an incomplete constraint language. Even though some properties are easy to
express (for instance, “clagsshould support a methddo that takes no argument
and returns an object of claB¥) others are not expressible (for instance, “class
should support a method namfeg ”). That is, interfaces only support complete
type signatures for methods. This is only one of the restrictions of the mechanism.
Such restrictions are usually imposed because of technical limitations (e.g., simpli-

fied parsing) and lack of significant need in everyday programming.

A Constrained Parameterization MechanismThe parameterization mechanism
of Agesen et al. [AFM97] is superficially similar to C++ class templates but allows
parameterizations to be constrained using interface specifications or subtype rela-

tions. That is, parameterized classes have the general form:

class SomeClass < parameters> { ... }

where parameters is a list of type variables (representing classes, interfaces, or

primitive Java types) which may be constrained in either of two forms:

4. Java imon-variantwith respect to method signatures in superclasses and interfaces (i.e., method
signatures have to be identical). The languageoivariantwith respect to arrays: an array of
subclass instances can be used in place of an array of superclass instances [Tho97].
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* P implements | : ParameteP has to be either a class which implements
interfacel or an interface which hasas a super-interface.
* Pextends B : ParameteP has to be a subclassif
(Interestingly andB, above, can be expressions containing the parameter

P, thus allowing for powerful fixpoint constructions, likeP“ implements
Countable<P> . This is useful because concrete interfaces are not sufficient for
describing generic behavior. Thus, interface templates are needed and these can be
specialized with actual types. For a good example of this usage, see [AFM97].)
Mixins with constrained arguments can easily be specified using this mechanism.

As an example, consider the following interface and mixin definitions:

interface Foo2 {
Foo2 methl ();

}

class Mix <Super implements Foo2> extends Super {
Foo2 get foo() { return super.methl(); }

The implements  clause in the mixin definition specifies that the mixin
parameter (i.e., the superclass of the produced class) should conform to interface

Foo2. The need for conformance is evident in the body of metietdfoo : the

code calls a methadethl in the mixin's superclass.

5. In this case, the dependency could be inferred from the code. That is, by analogy to many other
forms of polymorphism in programming languages, the mixin could be considered a polymor-
phic entity that can be parameterized by any class specifying a meidgtad with a compatible
type signature. We will discuss polymorphism and type inference in more detail in Section 3.2.3.
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3.2.2 Interfaces for Nested Classes

Nested classes are a powerful mechanism for integrating some of the benefits of
block-structured programming in object-oriented programming languages. Nested
classes in Java [Jav97b] behave in many respects like other class members (meth-
ods and member variables): they are inherited by subclasses, they have the same
access control specifiers (e.gublic , private ), and the outer class acts as a
namespace for scoping purposes.

Using a nesting pattern, similar to that of C++ mixin layers, combined with
the parameterization mechanism of Section 3.2.1, we can express the general form

of mixin layers as:

class LayerThis <LayerSuper> extends LayerSuper {
public class Firstinner extends LayerSuper.Firstinner
{ .. 1}
public class Secondinner  extends LayerSuper.Secondinner
{ ..
public class ThirdInner extends LayerSuper.ThirdInner
{.. 1}

}

Ideally, we should be able to constrain the parameterization so that the superclass
(LayerSuper ) always contain three nested clasbestinner , Secondinner
andThirdinner . Unfortunately this constraint (as well as many others that have
to do with class nesting) is not expressible using Java interfaces, as we discuss

below.

Problems with Interfaces and Nested Classe¥/e mentioned previously that the
Java type system has some restrictions with respect to the properties expressible in
it. One of the restrictions has to do with expressing properties for nested classes.

More specifically, there is no way to constrain a class with respect to the nested
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classes that it must contain. One may think that nesting interfaces will achieve the

desired result. For instance, consider the interface declaration:

interface Threelnners {

interface Firstinner { }
interface Secondlnner { }
interface Thirdlinner  { }
}
It may seem that a class that implements interfaloeelnners  has to
contain nested classes implementifigreelnners.Firstinner , Threeln-
ners.Secondlnner , and Threelnners.ThirdInner 5 This is not, however,

the case in Java. Interface nesting only has namespace significance and does not
imply any constraints for the class implementing the outer interface! We will first
define precisely the general form of constraints that the type system needs to be
able to express to support nested classes. Then we will present an extension to Java
that supports these constraints without changing the semantics of existing pro-

grams.

General Form of Constraints for Nested Classe§Ve are trying to ensure that

the extends andimplements clauses have straightforward extensions for the
case of nested classes. This would be valuable, for instance, in type-checking
mixin layers compositions (but also in other occasions as we will see in Section
3.2.3). There are two general forms of constraints that we would like to be able to

express:

6. For instance, Bruce, Odersky, and Wadler [BOW98] presented an example with nested inter-
faces which required functionality similar to what we suggest. They write: “The intention is that
any implementation of the ‘outer’ interface [...] must provide implementations of the ‘inner’
interfaces.” They did not, however, recognize that this intention is not supported by Java.
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» (deep subclassindhe constrained classis adeep subclassf another class
B. That is,Cis a subclass d8 and for every publicly accessible nested class
B.N, there is a publicly accessible cl&ss! that is a deep subclassBN.

» (deep interface conformanceéhe constrained clasS conforms deeplyo
interfacel . That is,C conforms tol and for each publicly accessible nested
interfacel.N , there is a publicly accessible cla8N that conforms deeply
tol.N .

Note that both definitions are recursive and can be applied to class nesting
of arbitrary depth. (For instance, we could specify the property “chasbould
contain nested clagswhich contains nested classesindD conforming to inter-

facesl andJ, respectively”.)

Expressing Constraints.Obviously, a programming language can use deep sub-
classing and deep interface conformance as the only kinds of subclassing and
interface conformance. That is, a language may enforce that every subclass is a
deep subclass, and every class conforming to an interface conforms deeply to it.
Although this is a reasonable design choice, in the case of Java it necessitates
changing the meaning of existing programs.

A second alternative is to maintain both regular subclassing and deep sub-
classing (and similarly for interface conformance). In Java, this could be supported
by adding new syntax to the language so that the two cases are differentiated (i.e.,
it becomes clear which of the nested classes or interfaces are intended for use
under deep subtyping or deep interface conformance). Next, we will describe
informally a small set of changes to the Java syntax (as well as the corresponding
extensions to the semantics) to support deep interface conformance without chang-
ing the semantics of programs that use standard Java interface conformance. The

same ideas apply to integrating deep subtyping in Java.
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Backwards-Compatible Deep Interface Conformance for Javalhe con-
straints that we are interested in expressing could be addressed by altdassg

prototypesto be nested inside interfaces. By “class prototype” we mean a class

declaration with no class bo&yThis is analogous to the current Java syntax for
function prototypes in interfaces. The semantics for this extension is straightfor-
ward: we specify thaa publicly accessible class prototype nested inside an inter-
face declaration means that classes conforming to the interface should have a
publicly available nested class conforming to the prototy@ensider the follow-

ing example:

interface DS {

interface IfElement {
void set (IfElement element);
IfElement get ();
}
interface IfContainer {
void insert(IfElement element);
boolean  find(IfElement element);
}
class Element implements IfElement; // Syntax extension
class Container implements IfContainer;// Syntax extension

This example describes a simplified (partial) interface for a component
encapsulating classes that provide basic data structure functionality. For a class to
implement thebSinterface (under our extension) it has to contain two publicly vis-

ible nested classes call&kment , andContainer with each of them conform-

7. The current syntax for class declarationsisssDeclaration: ClassModifiers(opt)

class Identifier Super(opt) Interfaces(opt) ClassBody . Our proposed syntax
for class prototypes iBrototypeDeclaration: ClassModifiers(opt) class Iden-
tifier Interfaces(opt) with the restriction that prototypes can only appear nested inside

an interface.
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ing to the above interfacesflement , IfContainer ). For instance, consider a

classBinaryTree that implements this interface:

class BinaryTree implements DS {
public class Element implements DS.IfElement {
public void set (DS.IfElement element)
{...} Il implementations omitted
public DS.IfElement get ()

{..}
}
public class Container implements DS.IfContainer {
public void insert(DS.IfElement element)
{...}
public boolean find(DS.IfElement element)
{..}
}

The “implements DS ” clause in the class declaration makes the class
conform to theDSinterface. This entails the presence of two nested classes imple-
menting the corresponding interfaces. It is worth noting that a class prototype may
be declared to implement more than one interface but there is no notion of inherit-
ance among prototypes (i.e., a prototype declaration hagemas clause).

Note that the proposed scheme does not change the meaning of existing
interface nesting (thus, no existing Java programs are affected by the changes).

Also, no new keywords are required in the language.

Applications of Deep Interface ConformanceJava classes are second-class
entities: they cannot be assigned to variables or passed as arguments to functions
but there are language mechanisms that manipulate classes (most notably, inherit-
ance). Type systems exhibit their benefits mainly in the presence of variability (for
instance, arguments of functions are unknown but have a specific type). Hence,

one would expect that a more powerful type system (i.e., one supporting deep
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interface conformance) will be useful in the caselafss functorsfunctions with

class arguments and/or producing new classes. Indeed deep interface conformance
is invaluable in the case of mixin layers—mixins are the most common kind of
class functors in object-oriented languages.

For a demonstration, we will re-use our example of Section 3.1, expressed
in Java. In this example, four data structure layers are defined, containing refine-
ments for theContainer andElement classes. We would like to define general-
ized interfaces for allocators and data structures (e.g., binary trees, hash tables,
lists). Interface conformance will serve as a static check of the interchangeability
of the corresponding mixin layers. This could be effected with the following inter-

face declarations (note that the first is reproduced from our previous example):

interface DS {

interface IfElement {
void set (IfElement element);
IfElement get ();
}
interface IfContainer {
void insert(IfElement element);
boolean find(IfElement element);
}
class Element implements IfElement;
class Container implements [fContainer;
}
interface ALLOC {
interface IfElement { }
interface IfContainer {
IfElement alloc_node();
}
class Element implements IfElement;

class Container implements IfContainer;
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Consider now an example mixin layer defining a binary tree. We would like
to constrain the mixin parameter so that its valid values are classes supporting the
ALLOCinterface.

class BinaryTree <Alloc implements ALLOC>
implements DS extends Alloc

{
class Element implements DS.IfElement extends
Alloc.Element {
public void set (DS.IfElement element)
{...} /I Implementation omitted
public DS.IfElement get () {...}

}

class Container implements DS.IfContainer
extends Alloc.IfContainer

{

public void insert(DS.IfElement element)

public boolean find(DS.IfElement element)

{..}
} (3.2)
The constraint on the mixin parameteAlfoc implements ALLOC ")

prevents theBinaryTree layer from being instantiated with classes that will

result in invalid compositions.

3.2.3 Discussion/Related Work

The work presented in this section has a few direct connections to other work that
are worth mentioning:

Deep subtyping was introduced by Wadler, Odersky, and this author
[WOS98] in a slightly different context (that of the GJ language). The mechanism

is of general utility in Java, however, and complements the proposal of deep inter-
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face conformance to form a type system that fully supports constraints for nested
classes.

A class containing nested classes can be considered a large scale compo-
nent. Extending the interface functionality to include such classes is a significant
step in increasing the granularity of reusable software entities. Type signatures for
multiple-class components have been studied before. The GenVoca model of soft-
ware construction (see Chapter 5) defines the idea of a compomeala A
realm identifies the set of all components that are interchangeable in a parameter-
ization, exactly like our extended interfaces. In fact, the concept of a realm is rei-
fied as a programming language construct in the P++ language [Sin96].

As we mentioned before, interfaces can be viewed as explicit types for
classes. From a programming language standpoint it makes sense to ask whether
the type of a class can be inferred from its definition. This is (to an extent) true in
all the examples we discussed. Consider, for instance, the code fragment (3.2) pre-
sented previously. Both requirements on the mixin parameter can be inferred from
the mixin layer definition:

* TheElement nested class has a superclass callisghent , nested inside
the mixin paramete®(loc.Element )

* The Container nested class has a superclass calledtainer , nested
inside the mixin parameterAoc.Container ). The additional require-
ment that this superclass provide a metlatidc_node is expected to be
deducible from the definition of thesert method (omitted in (3.2)).

In other words, instead of using explicit constraints on classes, we could
consider them polymorphic: they assume the most general type permitted by their
definitions. Nested classes are no different from other members of the class when it

comes to type inference. Even though we have not explored the possibilities, this
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approach could result in a type inference technique that can handle the typing

requirements of nested classes and mixins.

3.3 Communicating Static Information in a
Composition

Mixin layers are source code components that are defined in isolation but used in
conjunction with one another. Often a mixin layer needs to acquire static informa-
tion (e.g., types) about other layers or the entire composition it participates in. This
may be hard when the information needs to move upwards in the inheritance hier-
archy (i.e., from a more refined to a more general class). This section presents
techniques for propagating such information and discusses some language/type

system issues that arise.

3.3.1 Introduction: Virtual Types

An interesting issue arises in various layered implementations that use inheritance
together with static typing. This is essentially a symmetric problem to the one that
originally motivated mixins. Recall that mixins were introduced to remove the
restriction that the definition of a subclass in an inheritance relation needs to refer-
ence its superclass. This restriction, however, means that superclasses are generally
known when a subclass is defined (and references to them may exist in subclass
code) while the converse is not true. This is not a problem when a superclass only
needs to transfer control to a subclass (i.e., when a superclass needs to call a sub-
class method). The usual dynamic bindingl&ie binding of methods—the hall-

mark of object-oriented programming—deals with exactly this. When, however,

superclass code depends on type information that is specific to the current sub-
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class, the problem is harder—type sub-languages usually do not have late binding
capabilities.

Recall theALLOClayer from our data structure example (in C+A)LOCis
the root of the inheritance hierarchy for all compositions of mixin layers in Section

3.1.1. One of the compositions we examined is replicated here:

typedef SIZEOF < TIMESTAMP < BINTREE < ALLOC <int>>> >
Treel ; (3.3)

The node_alloc  method in theContainer nested class oALLOC is
responsible for allocating storage for a data structure element. One would think

that the implementation of this method would be as simple as:

{ return new Node; }

Unfortunately, this is not true. The actual allocated object should not be of
type Node, as defined in thaLLOClayer (that isALLOC<int>::Node in (3.3)).
Instead it should be of clas®de as defined in thenost refinedayer (i.e., the final
subclass in the hierarchyFeel::Node in (3.3)). In this way, the allocated node
will have enough room for the stored data as well as fields added by every one of
the mixin layers of compositiomreel (e.g., theparent link , left_link , and
right_link pointers added b®BINTREE). We can circumvent this problem by
weakening our type constraints and obtaining the necessary information at run-
time through dynamic binding. In this particular example we need to set the return
value of thenode_alloc  method to a universal pointer typeo(d* ) and get the
size of the allocated node through a Cdirtual  call (not shown). This solution
is general but inconvenient, error-prone (type information is lost), and possibly
inefficient (depending on the overhead of dynamic binding).

A complete and elegant solution to the problem is offeredibyal types

language mechanisms. Virtual types can be refined by subclasses in an inheritance
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chain and the most refined version is the one used by superclass code. In our data
structure example, by declarirfdpde as a virtual type we express precisely our
intention. Any references teode (for instance, in hew Node”) are taken relative
to the most refined class in the inheritance chiige::Node in (3.3)).

Virtual types first appeared asrtual class patternsn the Beta program-
ming language (see [MMN93], ch.9). Recently they have been employed in a vari-
ety of programming language mechanisms implementing parameterization and
layered frameworks similar to mixin layers. The work of [Tho97], proposes an
approach for genericity in Java using virtual types. We recognize absufnes
inner " primitive of feature-oriented programming [Pre97] as a virtual type decla-
ration specifier. Theforward construct in the P++ language [Sin96] serves
exactly the same purpose, declaring that a certain type will be refined by subse-
guent layers in a composition. Our language extensions to Java that add support for

mixin layers [BLS98] include virtual types.

3.3.2 Emulating Virtual Types through Parameterization

Virtual typing is often viewed as an alternative to explicit parameterization of
generic code templates. Thus, virtual types have often been compared to explicit
parameterization mechanisms in terms of expressibility. Bruce, Odersky, and
Wadler [BOW98] offered a discussion of the relative advantages of the two
approaches. Later, Wadler, Odersky, and this author [WOS98] gave a more elegant
method for emulating virtual types through explicit parametric types. That solution
was presented in the context of Generic Java (GJ [BOSW98]), an extension of Java
with parametric polymorphism, based on a homogeneous model of transformation
(and, thus, not supporting mixins). Here we will discuss the same idea from the

perspective of mixins. This technique is far from specific to mixins, however (e.g.,
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it has been used by Czarnecki and Eisenecker [CE99a-b] in their C++ meta-
programming methodology).

Initially we present a way to propagate type information through parame-
terization in C++. The main idea enabling the propagation of type information
from subclasses to superclasses is to parameterize the superclass with the entire
class hierarchy. For instance, consider a composition of three mMir®,1 to
Mixin3 . If Mixin1 expects a type parameter describing the entire composition,

then the composition could be expressed as:

class Total : public Mixin3 < Mixin2 < Mixinl < Total > > >
{ I* empty body */ }i (3.4)

Note how the result of the compositiomatal ) is used as the parameter
for the inner-most mixin layer. This recursive declaration of claswl corre-
sponds to a fixpoint construction and allows the superclass to obtain static knowl-

edge of the type of the subclass. For instakideénl could have the form:

template < class Param > class Mixinl {
public:
Param *allocate() { return new Param; }

};...

This way the right kind of object gets allocated, and all three mixins may
have contributed data members to this object.

The same technique can be used to statically dispatch to methods defined in
subclasses. Note that this dsfferent from dynamic binding: even though the
method invoked is defined in a subclass, the method is uniquely determined at
compile-time. For example, consider the composition of code fragment (3.4),

above, withMixinl containing code that invokes a method defined in one of its
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subclasses (i.e., the method will be part eitheMofin2 or Mixin3 ). This could

be effected by definingixinl through an idiom like:

template < class Param > class Mixinl {

public:
void invoke_below() { ((Param *)this)->Param::method(); }
Il *"method” is defined in Mixin2 or Mixin3

3.3.3 Limitations and the Value of Constraints

The fixpoint technique presented above offers an interesting way to pass type
information from a subclass to a superclass. Even though the same idea works in
multiple environments (e.g., in C++ as well as GJ) it has a few limitations, espe-
cially in the context of unconstrained parameterization. These limitations become
apparent when we try to apply this idea to C++ mixin layers.

Consider again the binary tree data structure defined in Section 3.1.1
through the composition of th®lZEOF, TIMESTAMP BINTREE, andALLOC lay-
ers. As we pointed out in Section 3.3.1, tAeLOC layer needs to have static
knowledge of the type of node that is to be allocated. One might think that it is suf-
ficient to parameteriz&LLOCby the result of the entire composition, just like in

our previous examples with simple mixins:

class Tree :
public SIZEOF <TIMESTAMP <BINTREE <ALLOC <int, Tree>>> >
{ I* empty body */ }; (3.5)

Nevertheless, this composition is not valid in C++ (in contrast to the sim-
pler compositions presented in Section 3.3.2, which are perfectly valid). To see the

problem, consider how the_LOClayer might be defined:
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template < class Element, class Param > class ALLOC {
public:

class Container {

protected:
Param::Node *allocate() { return new Param::Node; }
Il error! “Param::Node” is not a legal type

b
3
The reason for the problem is that the type paranmedesm represents an

incomplete type and its member types (eRaram::Node ) cannot be accesséd.
The problem occurs when the compiler attempts to instantiatalth@Ctemplate
with a recursive reference to the entire composition, as in code fragment (3.5).
Fully supporting the above idiom is much easier if a constrained parameter-
ization mechanism (e.g., see Section 3.2.1) is adopted. In the previous example, if
the type signature of the expected type paranfedeam was known, the technique
would work correctly, sincéaram would be guaranteed to have a member class
calledNode. This is another instance of the separate compilation capabilities for
parameterized code afforded by constrained parameterization. With a constrained
parameterization mechanism, knowledge regarding type parameters becomes
explicit and the compiler can handle advanced uses of type parameters indepen-

dently of their values (i.e., regardless of the actual parameter instantiations).

3.4 Mixins and C++ Idiosyncrasies

Up to this point, most of our mixin layers examples have been in C++. This is

hardly surprising since C++ is the most widespread object-oriented language and

8. It may be possible to inform the compiler that the menHzam::Node is a type, by using the
typename keyword (e.g., see the example in [CE99b], p.27). Nevertheless, few C++ compilers
support this idiom for nested classes and it is not clear if it is required by the C++ standard.

76



mixin layers can be expressed directly in it. This section discusses some pragmatic
issues pertaining to the use of mixins (mixin classes and mixin layers alike) in
C++. Most of the points raised below concern fine interactions between the mixin
approach and C++ idiosyncrasies. Others are implementation suggestions. They
are all useful knowledge before one embarks on a development effort using C++
mixins. Additionally, our observations could serve to guide design choices for

future parameterization mechanisms in programming languages.

Lack of template type-checking.Templates do not correspond to types in the
C++ language. Thus, they are not type-checked until instantiation time (that is,
composition time for mixins). Furthermore, methods of templatized classes are
themselves considered function templates (see [Str97], p.330). Function templates
in C++ are instantiated automatically and only when needed. Thus, even after mix-
ins are composed, not all their methods will be type-checked (code will only be
produced for methods actually referenced in the object code). This means that cer-
tain errors (including type mismatches and references to undeclared methods) can
only be detected with the right template instantiations and method calls. Consider

the following example:

template <class Super> class ErrorMixin  : public Super {
public:

void sort(FOO foo) {
Super::srot(foo); I/l misspelled
}

3
If client code never calls methaart , the compiler willnotcatch the mis-
spelled identifier above. This is true even if tBeorMixin  template is used to

create classes, and methods other tham are invoked on objects of those

classes. It is, therefore, a good idea to develop a library with mixin components
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simultaneously with a large set of regression tests that will exercise most of the
library functionality. This is anyway a good engineering practice for detecting run-

time errors.

When “subtype of” does not mean “substitutable for”. There are two instances
where inheritance may not behave the way one would expect in C++. First, con-
structor methods are not inherited. Ellis and Stroustrup ([ES90], p.264) present
valid reasons for this design choice: the constructor of a superclass does not suffice
for initializing data members added by a subclass. Often, however, a mixin class
may be used only to enrich or adapt the method interface of its superclaisises
out adding data members (e.g., consider our adaptor layers in Section 2.4.1). In
this case it would be quite reasonable to inherit a constructor, which, unfortunately,
is not possible. The practical consequence of this policy is that the only construc-
tors that are visible in the result of a mixin composition are the ones present in the
outer-most mixin (bottom-most class in the resulting inheritance hierarchy). To
make matters worse, constructor initialization lists (e.g.,
constr() : init1(1,2), init2(3) {} )

can only be used to initialize direct parent classes. In other words, all classes need
to know the interface for the constructor of their direct superclass (if they are to use
constructor initialization lists). This is a problem with mixins since a single mixin
class can be used with several distinct superclasses. In this case, one can use a stan-
dardized construction interface. A way to do this is by creating a construction class
encoding the union of all possible arguments to constructors in a hierarchy.
Destructors for base classes, on the other hand, are called automatically so they
should not be replicated.

The second instance where subtypes are not substitutable in C++ occurs

with top-level function templates. Assume a function template of the form:
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template <class Next> void weird_function ( Mixin<Next> arg)

{..}

This function template will be instantiated correctly when called with an
argument of typeMixin<Base> , but not when called with an argument of type
NewMixin<Mixin<Base> > . Even though the latter type is a subtype of the
former, subtyping is not involved in the function template instantiation policy of
C++. The problem is solved only by ensuring that the template gets instantiated
with an argument of typeMixin<Base> (e.g., there is an explicit call to
weird_function with an argument of this type). Once this is done, the function
generated by the template can be invoked with actual arguments that are subtypes

of the corresponding formal argument types.

Synonyms for compositionsin the past sections we have used two different idi-
oms to introduce synonyms for complicated mixin compositions. The first was
based onypedef declarations—e.g.,

typedef A <B < C > > Synonym;
The second idiom introduces an empty subclass:

class Synonym : public A<B<C>> {}

The first form has the advantage of preserving constructors of companent
in the synonym. The second idiom is cleanly integrated into the language (e.g., it
can be templatized, compilers create short link names for the synonym, it can sup-

port the fixpoint construction of Section 3.3.2, etc.).

Designating virtual methods.Sometimes C++ policies have pleasant side-effects
when used in conjunction with mixins. An interesting case is that of a mixin used
to create classes where a certain method can be virtual (i.e., dynamically bound) or

not, depending on the concrete class used to instantiate the mixin. This is due to
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the C++ policy of letting a superclass declare whether a method is virtual, while
the subclass does not need to specify this explicitly. Consider a regular mixin and

two concrete classes instantiating it:

template <class Super> class MixinA : public Super {
public:

void virtual_or_not(FOO foo) { ... }
i

class Basel {

public:
virtual void virtual_or_not(FOO foo) {...}
... Il methods using “virtual_or_not”

b
class Base2 {
public:
void virtual_or_not(FOO foo) {...}
3
The compositiorMixinA<Basel> designates a class in which the method
virtual_or_not is virtual. Conversely, the same method is not virtual in the
compositionMixinA<Base2> . Hence, calls tairtual_or_not in Basel will

call the method supplied by the mixin in the former case but not in the latter.
In the general case, this phenomenon allows for interesting mixin configu-
rations. Classes at an intermediate layer may specify methods and let the inner-

most layer decide whether they are virtual or not.

Single mixin for multiple uses.The lack of template type-checking in C++ can
actually be beneficial in some cases. Consider two cla&sssl andBase2 with

very similar interfaces (except for a few methods):

class Basel {
public:
void regular() {...}
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H
class Base2{
public:
void weird() {...}
... I/ otherwise same interface as Basel

Because of the similarities betwedasel andBase2, it makes sense to
use a single mixin to adapt both. Such a mixin may need to have methods calling
either of the methods specific to one of the two base classes. This is perfectly feasi-

ble. A mixin can be specified so that it calls eitfegular  or weird :

template <class Super> class Mixin : public Super {

pullall.ic:
void meth1() { Super::regular(); }
void meth2() { Super::weird(); }
b

This is a correct definition and it will do the right thing for both composi-
tion Mixin<Basel> and Mixin<Base2> ! What is remarkable is that part of
Mixin seems invalid (calls an undefined method), no matter which composition
we decide to perform. But, since methods of class templates are treated as function
templates, no error will be signalled unless the program actually uses the wrong
method (which may benethl or meth2 depending on the composition). That is,
an error will be signalled only if the program is indeed wrong. We have used this
technique to provide uniform extensions to data structures supporting slightly dif-
ferent interfaces (in particular, the red-black tree and hash table of the SGI imple-
mentation of the Standard Template Library [SGIWeDb]).

Hygienic templates in the C++ standardThe (newly adopted) C++ standard

imposes several rules for name resolution of identifiers that occur inside templates.
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Even though we are not aware of any compiler that implements these rules, it is
useful to have them in mind for future compatibility reasons. Realistically, we do
not expect that the template name resolution strategy described in the language
standard will be commonplace in actual compilers for a few years. (Changes to the
entire model of handling templates seem to be required.)

According to the C++ standard, templates havgygieniccharacter: they
cannot contain code that refers to “nonlocal” variables or methods. Intuitively,
“nonlocal” denotes variables or methods that do not depend on a template parame-
ter and are not in scope at the global point closest to the template definition (the
actual rules are quite complicated—e.g., see [Str97], C.13.8). This rule prevents

template instantiations from capturing arbitrary names from their instantiation

context, which could lead to behavior not predicted by the template duthor.
To see how such rules impact mixin-based programming, consider the
example of a mixin, calling a method defined in its parameter (i.e., the superclass

of the class it will create when instantiated):

class Base{
public:

void meth1() {...}
b

template <class Super> class Mixin : public Super {
public:

void wrong()  { methl1(); }

void correct() { Super::methl1(); }

b

void client() {
Mixin < Base > test;

9. This is a well-known problem in programming language research, first identified by work in
hygienic macros [KFFD86].
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test.wrong(); // currently works but shouldn’t, according to the C++ standard
test.correct();

}

Note what is happening in this example: clagixin<Base> inherits
methodmethl from its superclasBase. When templatéixin is compiled, the
declaration of methodhethl is nonlocal, hence it cannot be accessed from code in
the template body. None of the several compilers we tried was able to detect this
error. Nevertheless, qualifying names explicitly (as shown in metbadct ) is
a good practice for future compatibility. Note that the naming resolution rules for
templates found in the C++ standard have implications on the way template-based
programs should be developed. In particular, changimgreect class definition
into a class template definition (by turning one of the types used into a template
parameter) isiot guaranteed to work any more. As can be seen from the previous
example, errors may be quite insidious in the case of mixins: there is no way to
quickly tell that an unqualified method name depends on a template parameter and,
thus, should be qualified when a regular class is turned into a class template.

As a side observation extending beyond C++, note how this problem does
not occur in the case of constrained parameterization (i.e., a language mechanism
like that described in Section 3.2). The interface of the superclass is then statically
known and the hygienic approach is enforced by default. In this case, turning a cor-
rect concrete class into a correct parameterized class is guaranteed to work with no

changes to the code for its methods.

Compiler support. Not all compilers have good support for parameterized inher-
itance (the technigue we used for mixins) and nested classes. Although many com-
pilers were virtually trouble-free in our experiments, we have encountered others

that will either not accept these language constructs or will require re-coding to get
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around some of their peculiarities. Because of the transient nature of this informa-
tion, we do not include it here, but the interested reader can find it in [SB98c].

There are several important compiler dependencies that are not particular
to mixin-based programming but concern all template-based C++ programs. These
include limitations on the debugging support, error checking, etc. We will not dis-
cuss such issues as they have been presented before (e.g., [CE99a]). Note, how-
ever, that mixin-based programming is not more complex than regular template
instantiation. The compiler support issues involved in mixin-based programming
are about the same as those arising in implementing the C++ Standard Template
Library (STL) [SL95].
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Chapter 4

An Application: the Jakarta Tool Suite

In the previous chapters, we proposed mixin layers as a modularization technique
for object-oriented programs, showed the advantages of mixin layers for imple-
menting collaboration-based designs, and discussed pragmatic issues related to
language support for mixin layers. In this chapter, we discuss an application of
mixin layers to an actual medium-size software project. The project idakarta

Tool Suite (JTS)BLS98]—a set of language extensibility tools, aimed mainly at

the Java language. We use mixin layers as the building blocks that form different
versions of thelaktool of JTS. Jak is the actual modular compiler in JTS. Differ-

ent versions of Jak can be created using different combinations of layers. Layers
may be responsible for type-checking, compiling, and/or creating code for a differ-
ent set of language constructs. Additionally, layers may be used to add new func-
tionality across a large group of existing classes. In this way, the user can design a
language by putting together conceptual language “modules” (i.e., consistent sets
of language constructs) and implement a compiler for this language as a version of
Jak composed of the mixin layers corresponding to each language module. Cur-
rently available layers support the base Java language, meta-programming exten-
sions, general purpose extensions (e.g., syntax macros for Java), a domain-specific

language for data structure programming (P3), etc.
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The choice of the compiler domain as a large-scale test case for mixin lay-
ers is not arbitrary. Compilers are well-understood, with modern compiler con-
struction benefitting from years of formal development and stylized design
patterns. The domain of compilers has been used several times in the past in order
to demonstrate modularization mechanisms. Selectively, we mentionigiter
design pattern [GHJV94], which is commonly described using the example of a
compiler with a class corresponding to each syntactic type that its parser can rec-
ognize (e.g., there is a class for if-statements, a class for declarations, etc.). In this
case, the visitor pattern can be used to add new functionality to all classes, without
distributing this functionality across the classes. Our application of mixin layers to
the compilers domain has very much the same modularization flavor. We use mixin
layers to isolate aspects of the compiler implementation, which can be added and
removed at will. Compared to the visitor pattern, mixin layers offer greater capa-
bilities—for instance, allowing the addition of state (i.e., member variables) to
existing classes.

Overall, the outcome of applying mixin layers to JTS was very successful.
The flexibility afforded by the layered design is essential in forming compilers for
different languages. Additionally, mixin layers helped with the internal organiza-
tion of the code, so that changes were easily localized. Additions that could be
conceptually grouped together (like those reflecting the language changes from
Java 1.0 to Java 1.1) were introduced as new mixin layers, without disrupting the
existing design. Due to mixin layers, JTS was easier to implement and has become
easier to maintain.

This chapter discusses JTS and the use of mixin layers in its implementa-
tion. Section 4.1 offers some essential background in JTS by describing the way
parsers are generated and initial class hierarchies are established based on lan-

guage syntax. Section 4.2 discusses the actual application of mixin layers in JTS.
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4.1 JTS Background: Bali as a Parser Generatdr

Bali is the JTS tool responsible for putting together compilers. Although Bali is a
component-based tool, in this section we will limit our attention to the more con-
ventional grammar-specification aspects of Bali.

With respect to grammar specifications, Bali looks similar to other tools:
the syntax of a language is specified using an annotated BNF grammar, extended
with regular-expression repetitions. Bali transforms a Bali grammar into a lexical
analyzer and parser. For example, two Bali productions are shown below: one
definesStatementList as a sequence of one or ma®eatements , and the
other defineg\rgumentList as a sequence of one or m@nguments separated

by commas.

StatementList : ( Statement )+ ;
ArgumentList : Argument (‘,” Argument )*;

Repetitions have been used before in the literature [Wil93, Rea90]. They simplify
grammar specifications and allow an efficient internal representation as a list of
trees.

Bali productions are annotated by the class of objects that is to be instanti-
ated when the production is recognized. For example, consider the Bali specifica-

tion of the JakSelectStmt  rule:

SelectStmt
. IF ‘(" Expression ‘)’ Statement =IfStm
| SWITCH ‘(" Expression ‘)’ Block :SwStm

1. Parts of this section and Section 4.2 are taken from reference [BLS98] (© 1998 IEEE).
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/I Lexeme definitions

"print"  PRINT
e PLUS
'v' MINUS
(" LPAREN
"y RPAREN

"[0-9]*" INTEGER

%% Il production definitions
/Il start rule is Action

Action : PRINT Expr .. Print
Expr : Expr PLUS Expr :: Plus
| Expr MINUS Expr :: Minus
| MINUS Expr . UnaryMinus
| LPAREN Expr RPAREN :: Paren
| INTEGER .. Integer

Figure 4.1 A Bali Grammar for an Integer Calculator

When a parser recognizes an “if” statement (i.e.|Rntoken, followed by ( ,
Expression , ‘)’, and Statement ), an object of clas§Stm is created. Simi-
larly, when the pattern defining a “switch” statemens{&ITCHtoken followed by
‘(*, Expression ,‘)’, andBlock ) is recognized, an object of claSs/Stmis cre-
ated. As a program is parsed, the parser instantiates the classes that annotate pro-
ductions, and links these objects together to produce the syntax tree of that
program.

A Bali grammar specification is a streamlined document. It is a list of the
lexical patterns that define the tokens of the grammar followed by a list of anno-
tated productions that define the grammar itself. A Bali grammar for an elementary

integer calculator is shown in Figure 4.1. From the grammar specification, Bali
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(a) Rulel: patternl = Cl1 (b)
| Rule2

Rule2 : pattern2 1 C2
| pattern3 = C3

Figure 4.2 Inferring inheritance hierarchies from grammar rules

will generate a lexical analyzer and a parser (we usddhaCC lexer/parser gen-
erator as a backend).

Associating grammar rules with classes allows Bali to do more than gener-
ate a parser. In particular, Bali can deduce an inheritance hierarchy of classes rep-
resenting different pieces of syntax. Consider Figure 4.2(a), which shows rules
Rulel andRule2 . When an instance &ulel is parsed, it may be an instance of
patternl  (an object of clas<1), or an instance oRule2 (an object of class
Rule2 ). Similarly, an instance oRule2 is either an instance gfattern2  (an
object ofC2) or an instance gfattern3  (an object ofC3). From this information,
the inheritance hierarchy of Figure 4.2(b) is constructed: clasasndRule2 are
subclasses dtulel , andC2 andC3 are subclasses Bile2 .

Additionally, for each production Bali infers the constructors for syntax

tree node classes. Each parameter of a constructor corresponds to a token or non-

terminal of a patterﬁ.For example, the constructor of tH8tm class has the fol-

lowing signature:

2. The tokens need not be saved. However, Bali-produced precompilers presently save all white
space—including comments—with tokens. In this way, JTS-produced tools that transform
domain-specific programs will retain embedded comments. This is useful when debugging pro-
grams that have a mixture of generated and hand-written code, and is a necessary feature if
transformed programs will subsequently be maintained by hand [TB95].
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IfStm( Token iftok, Token Ip, Expression exp, Token rp,
Statement stm )

Methods for editing and unparsing nodes are additionally generated.

Although Bali automatically generates an inheritance hierarchy and some
methods for the produced Jak compiler, there are obviously many methods that
cannot be generated automatically. These including type checking, reduction, and
optimization methods. Such methods are syntax-type-specific; we hand-code these
methods and encapsulate them as subclasses of Bali-generated classes.

In essence, Bali takes the grammar specification and uses it to produce a
skeleton for the compiler of the language. The skeleton has the form of a set of
classes organized in an inheritance hierarchy, together with the methods that can
be automatically produced (that is, constructors, editing, and unparsing methods).
In other words, Bali produces application frameworfJF88] for a compiler. As
we explain in the next section, the framework itself has the form of a component
that occupies the root of a mixin layer composition—i.e., a class with many nested
classes that will be subsequently refined. The refinements determine the semantics

of each syntax type and are expressed as mixin layers.

4.2 Bali Components and Mixin Layers in JTS

Apart from its parser generator aspect, Bali is also a tool that synthesizes language
implementations from components. Bali can create compilers for a family of lan-
guages, depending on the selection of components used as its input. We use the
nameJak for any Bali-generated compiler. Currently available Bali components
support the base Java language, meta-programming extensions (e.g., code template
operators), general purpose extensions (e.g., syntax macros for Java), a domain-
specific language for data structure programming (P3 [BCRW98]), and more.

Compositions of these components define different variants of Jak: with/without
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meta-programming constructs, with/without extensions for data structure program-
ming, with/without CORBA IDL extensions, and so on. This a classical example

of thelibrary scalability problem[BSST93, Big94]: there are features and often

an exponential number of valid combinations (because most components are
optional). It is not possible or practical to build all combinations by hand. Instead,
the specific instances that are needed can be composed from components encapsu-
lating orthogonal units of functionality.

A Bali componenhas two parts: The first is a Bali grammar file (which
contains the lexical tokens and grammar rules that define the syntax of the host
language or language extension). The second is a mixin layer encapsulating a col-
lection of multiple hand-coded classes that contain the reduction, type-checking,
etc. methods for each syntax type defined in that grammar file.

To illustrate how classes are defined and refined in Bali, consider four con-
crete Bali componentslava is a component implementing the base Java lan-

guage SSTimplements code template operators like tree constructors and explicit

escape% GScope supplies scoping support for program generation, R ohple-
ments a language for data structures. The Jak language and compiler can be
defined by a composition of these components. We uskg.thieoperator to desig-
nate component composition—for instaneg[GScope[SST[Java]]]

The syntax of a composed language is defined by taking the union of the
sets of production rules in each Bali component grammar. The semantics of a com-
position is defined by composing the corresponding mixin layers. Figure 4.3

depicts the class hierarchy of the Jak compietNode belongs to the JTS ker-

3. Our code template operators are analogous to the backquote/unquote pair of Lisp operators.
Unlike Lisp, however, multiple operators exist in JTS—one for each syntactic type (e.g., decla-
ration, expression, etc.). Multiple constructors in syntactically rich languages are common (e.qg.,
[WC93], [Chi96]). The main reason has to do with the ease of parsing code fragments.
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Bali component stack  Inheritance hierarchy after mixin layers composition

AstNode
P3 o E?i ________________________________

Bali-generated
GScope classes
SST

Subclasses added
Java by mixin layers

Figure 4.3 The Jak Inheritance Hierarchy

nel, and is the root of all inheritance hierarchies that Bali generates. Using the
composition grammar file (the union of the grammar files for daea, SST,
GScope, andP3 components), Bali generates a hierarchy of classes that contain
tree node constructors, unparsing, and editing methods. Each mixin layer then
grafts onto this hierarchy its hand-coded classes. These define the reduction, opti-
mization, and type-checking methods of tree nodes by refining existing classes.
The terminal classes of this hierarchy are those that are instantiated by the gener-
ated compiler.

It is worth noting that Figure 4.3 is not drawn to scale. Jak consists of over
500 classes. The number of classes that a mixin layer adds to an existing hierarchy
ranges from 5 to 40. Nevertheless, the simplicity and economy of specifying Jak
using component compositions is enormous: to build the Jak compiler, all that
users have to provide to Bali is the equatitak = P3[GScope[SST[Java]]] ,
and Bali does the rest. To compose all these classes by hand (as would be required
by Java) would be very slow, extremely tedious, and error prone. Additionally, the
scalability advantages of mixin layers can easily be obtained: when new extension
mechanisms or new base languages are specified as components, a subset of them
can be selected and Bali will automatically compose a compiler for the desired lan-

guage variant.
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4.3 Java Mixin Layers for JTS

In Chapter 2, we discussed the applicability of mixin layers in various program-
ming languages. There we explained that Java already supports nested classes but
the language currently specifies no parameterization mechanism. Furthermore,
some of the proposed parameterization mechanisms for Java (e.g., Pizza [OW97]
or Thorup’s virtual types [Tho97]) do not support parameterized inheritance. In
order to support mixin layers for Bali components in JTS, we implemented our
own Java language extensions for parameterization. This section gives a brief over-
view of the main language constructs.

Our parameterization extensions to Java are geared towards mixin layer
development (as opposed to general-purpose genericity). Our approach in design-
ing and implementing these language constructs was motivated by pragmatic and
not conceptual considerations: We needed a layer mechanism to facilitate our own
development efforts—not to supply the best-designed and robust parameterization
mechanism for Java. Therefore, our implementation was straightforward, adopting
a heterogeneous model of transformation: for each instantiation of a mixin layer, a
new Java class is created at the source code level. Thus, our approach resembles
C++ template instantiation and does not take advantage of the facilities for load-
time class adaptation offered by the Java Virtual Machine (see, e.g., the approach
of Agesen et al. [AFM97] and the work on binary component adaptation [KH98]).
Nevertheless, in our context our approach is not necessarily at a disadvantage.
Mixin layers in Bali component compositions are never reused in the same appli-
cation (i.e., a single Jak compiler can use at most one instance of a mixin layer).
Therefore, code bloat (redundancy in generated classes) is not a problem. At the
same time, our straightforward approach made for an easier implementation which

contributed to the quicker development of JTS.
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The implementation of our Java extensions for mixin layer support
occurred concurrently with the development of JTS. In fact, an early version of
JTS was used to implement the first version of our Java mixin layers. The Java
mixin layers were, in turn, used to evolve and further develop JTS, resulting in a
bootstrapped implementation. (Actually, this is not the only reason why JTS is
based on a bootstrapped implementation. Another reason is that the meta-program-
ming capabilities added to Java have been used in the code that implements JTS
itself. The entire JTS system is compiled using a basic version of the Jak compiler,
composed of only a few layers that specify the basic Java language, code template
operators, syntax macros, etc.)

The syntax of our Java mixin layers is straightforward and resembles their
C++ counterparts. Two new keywords are introdudeger andrealm . The
layer keyword is analogous tolass but defines a mixin layer (i.e., an outer
class that may be parameterized with respect to its superclassjedihe key-
word is used to specify interface conformance for mixin layers (see Section 3.2), in
analogy to the Javenplements keyword. (The reader may recall from Section
3.2 that “realm” is another name used in the literature for interfaces of multi-class
components.) Finally, thg..] operator is used to specify layer composition.
The (slightly simplified) general form of a layer definition is shown below, with

the terminal symbols appearing in bold for clarity:

layer_definition :
layer layer name  (param_list ) realm realm_name [super]

{

declaration_list

}

The syntax for non-terminals in the above definition is straightforward.
param_list  is a list of type parameters for the mixin layer. If the parameter list

contains layers, the parameterization can be constrained by specifying the
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expected realm of these layers. The optiosaper construct designates an
extends clause (in much the same way as for regular Java classes). The contents
of a mixin layer can only be Java type declarations.

The actual details of our mixin layers implementation in Java are not
important, however. We consider of much greater importance the general approach
that this implementation represents. What we did in JTS is a prime representative
of adomain-specific languagepproach to software construction. In the course of
creating our medium-size software project (JTS is implemented in about 30K lines
of code), we recognized that mixin layers would facilitate our task significantly.
That is, we saw an opportunity for improving our implementation through extra
language support. It then proved cost-effective to add the extra linguistic constructs
that were needed (i.e., mixin layers), in the course of implementing the original
project (i.e., JTS). Our language support for mixin layers is not perfect, but it ful-
fills its task of facilitating the implementation of JTS.

It is our belief that the domain-specific language approach to software con-
struction is a promising way to building better software. The designer of a software
application can (and should) be thinking about language constructs that can have a
significant impact in the application’s efficiency, maintainability, or reusability.
Often such constructs can be readily identified, but they are not available in the
implementation language of choice. With the advent of language extensibility
tools, as well as extensible/reflective programming languages, supplying special-
purpose (odomain-specificlanguage support may be the right approach in fight-
ing software complexity. JTS itself is a tool aiming at facilitating the implementa-
tion of domain-specific languages and language extensions. The use of mixin
layers in the implementation of JTS is a vivid demonstration of the same paradigm

that JTS promotes.
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Chapter 5

Related Work

The focus of this dissertation is on the implementation of large-scale object-ori-
ented components. Such components give rise to a layered model of software con-
struction: components form building blocks and entire software applications are
built through component composition. Thus, our ideas are similar to many other
research efforts on modular software implementations. In the previous chapters we
concentrated on the concrete elements of our approach and demonstrated their
novelty In this chapter we concentrate on tt@nceptual similaritie®f our ideas
to work in the literature. Hence, the discussion in this chapter is at a more abstract
level than that of previous chapters and the emphasis is on positioning our work in
the greater software systems literature.

There are two main axes around which this chapter’s discussion revolves.
First, our ideas are an outgrowth of a large body of work orGbeaVocamodel of
software design and implementation. Mixin layers were originally inspired by
GenVoca and are now an essential part of the GenVoca arsenal of implementation
techniques. Second, modular software construction has been studied extensively
(often under many different names) and there are clear connections between such
work and ours. Section 5.1 discusses the GenVoca model and mixin layers within

it. This provides a “local perspective” of mixin layers and the closely related ideas
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that led to their development. Section 5.2 positions our work in the overall spec-

trum of modular software implementation.

5.1 The GenVoca Model

GenVocas a design and implementation model for defining families of hierarchi-

cal systems as compositions of reusable components. GenVoca has been employed
in the implementation of severalpplication generatorqthat is, compilers for
domain-specific programming languages). Indeed, the name GenVoca is derived

from the first two GenVoca generators that were recognized as such: Genesis

[Bat88, BBG 88] and Avoca [OP92]. Many other independently-designed genera-
tors in different domains exhibit the characteristics captured by GenVoca: Rosetta
in data manipulation languages [Vil94, Vil97], Ficus in distributed file systems
[HP94], Brale in host-at-sea buoy systems [Wei90], and ADAGE in real-time avi-
onics software [CS93, BCGH95]. Thus, GenVoca is based on factoring out the
common, domain-independent principles that underlie many different generators.
These principles give rise to design techniques as well as implementation guide-
lines for the construction of GenVoca-based software. Mixin layers form a con-
crete implementation technique that follows the GenVoca implementation
guidelines and is applicable to a wide subset of GenVoca designs.

The following subsections describe GenVoca in detail before discussing the

connections between GenVoca and various elements of the mixin layers approach.

5.1.1 Elements of GenVoca

GenVoca is a methodology—not a programming language or a tool. Thus, it is best

expressed as a collection of ideas that aim at influencing software designers and
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implementors. The same ideas have formed the general themes in previous chap-
ters of this dissertation. We summarize them briefly below:

» Subsystems are the building blocks of generated systeifestive software
synthesis requires that systems be constructed from combinatiosisbef
systemga.k.a.,componentr layerg consisting of suites of interrelated
functions and/or classes. It is too unwieldy to construct large software by
selecting and assembling hundreds or thousands of functions and classes
from a reuse library. Thus, larger units of software encapsulation are needed.

* GenVoca is both a design and an implementation methodo®@gg of the
characterizing features of GenVoca is that designs are straightforwardly
mapped into implementations. That is, the modularity of GenVoca compo-
nents should be preserved at the implementation level, with each design
component being represented by a distinct implementation entity.

» Components import and export standardized interfadég key to software
synthesis is composition. Composition is much easier when component
interfaces correspond to fundamental abstractions of the target domain and
these interfaces have been standardized. Standardization encourages func-
tionally similar components to be plug-compatible and interchangeable.

» Component interfaces are explicitly expressible at the implementation level
In a GenVoca implementation, interfaces are explicit actual implementation
entities. A GenVocaealmis a set of components that implement a compati-
ble interface in different ways. That is, all the components in a realm share
what is, to a first approximation, the same interface, but have different imple-
mentations. Because their interfaces are compatible, all the members of a
realm are plug-compatible and interchangeable. Realms play the role of type
signatures in GenVoca implementations and conformance of a component to

a realm is declared explicitly.
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* Relationships between components can be complicated but effort should be
made to keep them simpkeven though GenVoca components can be param-
eterized in arbitrary ways, ideally components should have very little knowl-
edge of other components’ characteristics. In many cases component
interdependencies collapse into a simylkual machinemodel. This means
that one component is expressed in terms of the operations supplied by

another, without knowing how this functionality is implemented.

5.1.2 The GenVoca Notation

To better express component compositions, GenVoca offers a simple notation for
representing components, realms, and systems. If a component imports another
component’s interface, it is designated as a parameter. Thus, in the GenVoca nota-
tion, a component is denoted by its name, followed by a bracketed list of the names
of the realms it imports, followed by a colon and the name of the realm it exports.
For example, a component that imports realm interfac€ and exports realm
interfaceR is expressed a$S] : R

A realm is denoted as a set of elements, where each element represents a
component belonging to the realm. For example, Figure 5.1 shows three realms:

S, andT.
R={a, b[R], c[S]}

S={d[T], e, f[S, T] }
T={g}

Figure 5.1 Example of three realms expressed in the GenVoca notation

RealmR has three components; b, andc; realmS also has thredd, e,
andf ; and realnilr has oneg. Componenb imports realm interfac® and compo-

nentc imports realmS. Because it has two parameters, compotiemmports the
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two realm interfaceS andT. In essence, this notation treats a realm as if it were a
type. A component from a realm is simply a function of some type, and a compo-
nent that imports an interface has a parameter of some type. iS@n object of
typeS, whered has a parameter of type

A type expressiofa.k.a.,equatior) is a named composition of components
that form a composite system. For example, a type expression that specifies how
components, d, andg are combined to form a composite system is:

A = c[d[g]]

Note that the components’ syntactic compatibility is easily checked by ver-
ifying that each parameter’s imported interface matches the corresponding compo-
nent’s exported interface. Thus,is syntactically valid, becausss imported and
d’s exported interface are both reanandd’s imported andy’s exported inter-
face are both realm

Component semantic compatibility is a more complicated issue. Note that
some combinations of components may be syntactically but not semantically cor-
rect. That is, each pair of components in the system imports and exports compati-
ble interfaces, but the resulting algorithms may be invalid for some reason. To
verify the semantic correctness of a system, each component must supply domain-
specific information that describes the assumptions and restrictions on the use of
the component (see [BG97] for details).

Consider the meaning of type expressignabove. GenVoca components
are relatively sophisticated, which makesrefinementmodel appropriate for
understanding component combinations. That is, when two components are inter-
connected, they exchange function, data type, and customization information with
one another. In GenVoca, the refinementgatart at the top componeat which
provides data type information to componeintd, in turn, provides its own data

types tog; which then supplies implemented data types and functions bagk to
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and so on. Note that the refinements start at the top component, work their way
down to the bottom component, and then back up to the top component. In this
way, the presence of one component can alter the behavior of any other—regard-
less of whether they are “above” it or “below” it in a layer hierarchy.

In addition to imported and exported realm parameters, components often
take additional imported parameters called annotatidnsotations(a.k.a.,non-
realm parametersr configuration parametejsre instantiated by key field names,

predicates, timestamp field names, file names, and other constants.

5.1.3 Variations in the GenVoca Design Space

As discussed in Section 5.1.1, GenVoca components map to separate entities at the
implementation level. Nevertheless, the model does not specify a particular form
for these entities. Thus, GenVoca components could correspond to language mod-
ules, classes, binary objects (e.g., COM or CORBA components), etc.

Generally, the spectrum of GenVoca implementations varies along two
axes [Bat97]: components may be eitli@mpositionalor transformational and
eitherdynamicor static Compositional components define the source code that an
application will execute; transformational components define code that, when exe-
cuted, will generate the source code that an application will execute. The dynamic/
static attribute refers to the time of component composition. When components are
composed at application run-time, they are dynamic. When composed at compile-
time, they are static.

The choice of how components should be implemented and when they
should be combined reflects a trade-off between factors like optimization potential,
implementation effort, and binary compatibility. In particular, transformational
components offer more opportunities for optimization but are harder to implement

than compositional components. At the same time, composing components stati-
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cally eliminates the dynamic overhead of operation dispatch across components
(which could be significant for fine-grained components), but dynamic composi-

tion allows reusing binary components without modification.

5.1.4 GenVoca, Mixin Layers, and Collaborations

At this point, our description of GenVoca is complete and we can see the corre-
spondence between mixin layers, collaboration-based design, and GenVoca.

The main concepts of GenVoca design and collaboration-based design are
identical. The central idea in both cases is that of a component that interrelates
many object classes. Classes themselves become of secondary importance. A sin-
gle class, however, has functionality that results from the combination of several
components. The terminology is slightly different (for instance, GenVagars
correspond to collaborations; GenVoca has no name for roles).

Under this light, mixin layers are a way to offer programming language
support for implementing GenVoca designs. Since layer composition occurs at
application compilation time, and layers specify executable code, mixin layers are
ideally suited for implementingtatic compositional GenVoca desigrsd! of the
elements of GenVoca are immediately identifiable in mixin layers:

* Mixin layers correspond to GenVoca components and form the building
blocks of entire software applications (as discussed in Chapter 2). Mixin lay-
ers are larger units of encapsulation than single classes or functions, exactly
as GenVoca prescribes.

* Mixin layers map design components (collaborations) into implementation
entities. In this way, the GenVoca property that the design modularity be pre-
served in the implementation is guaranteed.

* Mixin layers can import and export standardized interfaces. As discussed in

Section 3.2, language support for layer interfaces can be provided (e.g., as an
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extension to the Java interface mechanism). Such explicit interfaces repre-
sent types for mixin layers and correspond directly to the GenVoca concept
of a “realm”.
Mixin layers provide a simple model of component interaction. Each compo-
nent can receive type information from other components and rely on the
functionality other components provide. The propagation of types and opera-
tions in both directions (up and down) in a GenVoca composition is effected
through dynamic binding (for operations) and virtual types (for type infor-
mation, as discussed in Section 3.3).
The GenVoca notation for type equations is remarkably similar to the nota-
tion used for mixin layer instantiation. For instance, a mixin layer composi-
tion of the form

typedef Collabl <Collab2 <Collab3 <FinalCollab> > > T ;
is directly analogous to a GenVoca type equation

T = Collabl [ Collab2 [ Collab3 [ FinalCollab ] 1]
except for minor syntactic variationd.(] " replaces £..> 7, etc.).
Non-realm parameters (GenVoca annotations) are directly expressible in the
mixin layers framework as layer parameters that are not themselves layers.
Thus, an arbitrary type could be passed as a parameter to a layer—see, for

instance, thelement parameter of thaLLOCIayer in Section 3.1.1.

5.1.5 Mixin Layers and Dynamic GenVoca Designs

Mixin layers are a straightforward implementation technique for static composi-

tional GenVoca designs. An interesting question, however, is whether similar ideas

can be applied to transformational and/or dynamic GenVoca designs.

To answer the first part of the question, the classification of GenVoca

designs into transformational and compositional is rather arbitrary and orthogonal
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to the actual implementation of these designs. A transformational GenVoca design
for an application entails a compositional GenVoca design for the progearar-

ating the application. In other words, transformational GenVoca components can
be viewed as compositional components for a GenVoca generator. The compo-
nents contain code that executedduring the generator runtime, btransforms

(or just generates) the code of the final application. Regarding mixin layers, the
above observation means that their compositional character does not prevent mixin
layers from being employed in a transformational setting. Mixin layers can be
building blocks for generators, just as well as for target applications.

Therefore, the interesting question is whether mixin layer principles can be
applied todynamicGenVoca designs, where components are composed during
application run-time, when objects only exist in binary form. Clearly, in a dynamic
setting there can be no language support for layer specification and composition
(e.g., no type checking or scoping). Nevertheless, there may be benefits from orga-
nizing dynamic components in a GenVoca-like fashion. First, many related objects
can be grouped together and used as a unit. Second, GenVoca components are very
flexible as they can be parameterized by other components to form several differ-
ent combinations.

Indeed, some of the ideas behind mixin layers can be applied in a dynamic
context. In this case, the counterpart of mixin layersdgsign patterrior organiz-
ing objects into large scale, composable components. Recall our discussion in Sec-
tion 2.3, where we identified encapsulation and mixin-based inheritance as the two
essential elements of mixin layers. Although data hiding cannot be achieved in a
dynamic setting, encapsulation without data hiding is possible through the use of
factory methods. That is, a factory object (the dynamic counterpart of a mixin
layer) may be used to group together many other kinds of objects by defining

methods to create objects of these kinds. In this way, each factory method can be
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viewed as representing the class of the objects it creates. The factory object itself
groups together these “classes”.

Mixin-based inheritance can also be approximated among binary objects.
Instead of inheriting members and methods from a superclass, however, a dynamic
object (called the “outer” object) can only reuse the operations (methods) of
another object (called the “inner” object), exporting them as its own without rede-
fining each operation individually. This dynamic counterpart of inheritance is com-
monly calledaggregationand is, for instance, supported by the COM object model
for binary components [Bro95b]. In fact, because of the dynamic character of such
objects, aggregation is analogous to mixin-based inheritance (i.e., the “super-
object” is not statically specified at object definition time).

Putting together the above two mechanisms, we can obtain a dynamic
counterpart of mixin layers—let us call dynamic layersA dynamic layer is a
factory object (i.e., an instance of a concrete factory class [GHJV94]) that creates
objects which can be aggregated. Dynamic layers themselves can be written so that
one layer cardelegatets factory methods to the layer following it in a composi-
tion. (The difference between delegation and aggregation is that in delegation the
“inner” object’s methods are not automatically exported as methods of the “outer”
object.) Figure 5.2 shows such a composition of dynamic layers. Note how each
factory method calls the corresponding method of the next layer, while the object
created by the outermost layer is passed as a parameter to each factory method.
(We use the names , Bi for the objects created by laye) The reason is that the
generated objects will be aggregated and the inner object of the aggregation needs

to know what the outermost object is, so that it can dispatch methods appropriately
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(that is, the aggregated object needs to know which object it is a part of, so that it

can direct self-methods accordingly).

Layerl Layer2

Layer3

CreateA CreateA CreateA
(A1) (A1)
(B1) (B1)
>0 >0
CreateB CreateB CreateB

Figure 5.2 Example of a dynamic layer composition

Based on the above scheme for dynamic layers, the corresponding gener-
ated objects become simply a collection of aggregated objects, as shown in Figure
5.3. ObjectA1, A2, andA3 are in a one-to-one correspondence, and s@are2,
andB3 (but we may have created arbitrarily many such object triples by repeatedly
invoking theCreateA andCreateB methods in the dynamic layers). Note that,

for instance, objeckl aggregates objeé2, which in turn aggregates objex3.

Al Bl

Figure 5.3 Example of the objects created by dynamic layers. Outer objects
aggregate inner objects—this is analogous to inheritance in a dynamic setting

This design was actually employed in the DiSTiL generator for data struc-
ture programming [SB97]. DiSTiL is implemented as a language extension for the
Intentional Programming system of Microsoft Research [Sim95] and follows the
GenVoca paradigm. The components in DISTIL are transformational with respect
to the actual application using the DiSTiL data structure code. That is, components

collaborate to produce and transform code. From the perspective of the DiSTiL
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generator, however, the components are compositional and are put together
dynamically (the exact composition of components is determined at generator run-
time). Following the pattern shown in Figure 5.2 and Figure 5.3, DiSTiL compo-
nents are factory objects and create other objects which are aggregated using a

simple binary object system.

5.2 Other Related Work

The difficulty of constructing software has been acknowledged early on in the
development of Computer Science. In the often-referenced 1968 Software Engi-
neering report of the NATO Science Committee [NR68], the teoftware crisis

was used to describe the problems of software development. Given the longevity of
the problem, it is not surprising that a wealth of work has been performed in the
general area of software construction. Here we selectively discuss some
approaches that are closely related to our work but have not been described in

detail in the previous chapters.

5.2.1 Modules in High-Level Languages

High-level languages often provideodules(a.k.a.packagesor namespacgsas
fundamental abstractions. Modules can usually encapsulate static entities, like
functions and types. Unlike classes, however, there is usually no notion of separate
dynamic instances of a module, each with its own state. Since there is a very large
number of languages supporting modules, we selectively discuss a few representa-
tive approaches. The Adaackagemechanism (e.g., [Bar89)) is the prototypical
modularization scheme for block structured languages. ML [MTH90] provides a
very powerful module system, based on polymorphic types. The C++ equivalent of

a module is mamespacgStro7].
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Mixin layers are probably directly expressible in the latest incarnations of
Ada (Ada95 [ISO95]). Standard ML still lacks support for extensible records (i.e.,

a counterpart of inheritance). Nevertheless, there is nothing fundamental that pre-
vents integrating mixin layers in the language. Recent research has brought some
of the mixin layers ideas in a modular language framework. Findler and Flatt's
work [FF98] introduces constructs remarkably similar to mixin layers, in an exper-
imental, module-based object system.

The most interesting lesson, however, from comparing mixin layers to tra-
ditional modules is simple: classes are a very powerful modularization mechanism.
Class nesting allows outer classes to play the role of modules. Using classes as
modules offers distinct advantages. First, the mechanism of inheritance can be
used to inherit static members (e.g., types) from another class. Second, standard
access control (e.g., using thevate  keyword in C++ or Java) can be used for
access protection of nested classes. Third, classes are usually better integrated in
programming languages than modules (e.g., a C++ namespace cannot be parame-
terized, while a class can). Having a uniform treatment of classes and modules
simplifies a language and results in a more appealing design. Consequently, we
believe that the introduction of namespaces in the C++ language should have been
avoided, and better support for class nesting should have been provided in the lan-

guage (enabling classes to fully replace namespaces in all their current functions).

5.2.2 Meta-Object Protocols

Meta-Object Protocolge.g., [FDM94, KRB91]) are reflective facilities for modi-
fying the behavior of an object system, while the system is being used. Potential
modifications include executing arbitrary code around method invocations
(methodwrapping, changing the semantics of inheritance, etc. We will not offer a

comprehensive introduction to meta-object protocols here—the interested reader
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may consult reference [KRB91] outlining the design and implementation of the
CLOS meta-object protocol (the most flexible and powerful representative of
meta-object protocols).

Meta-object protocols can be used in several different ways. Method wrap-
pers have been employed to give an object-oriented interface to non-object-ori-
ented legacy systems [JGJ97]. Other applications of wrappers include function
tracing, invariant checking, and object locking [FDM94]. Nevertheless, meta-
object protocols solve a different problem than mixin layers. Mixin layers intend to
address the issue of grouping classes together so they can be treated as a unit and
distinguished from other classes or class groups. In contrast, meta-object protocols
operate on single classes. Under meta-object protocols, each class has an associ-
atedclass meta-objed@an instance of aneta-clasy which determines the seman-
tics of object system operations on the class. The only grouping that occurs in
meta-object protocols is that of methods under a single class: a meta-class can
define functionality that affects all methods of a class together (e.g., a single wrap-

per is applied to all of them).

5.2.3 Aspect-Oriented Programming

A methodology that has gained significant popularity lately is thadspfect-ori-

ented programming (AOPKLM *97]. Aspect-oriented programming advocates
decomposing application domains into orthogoaspects Aspects are distinct
implementation entities and encapsulate code that would otherwise be intertwined
throughout an application. In this respect, aspect-oriented programming seems
strikingly similar to the GenVoca model. Just like GenVoca, AOP is a design and
implementationrmethodology-that is, a set of guidelines and not a set of tools.
Hence, it is best described in prose, as a collection of ideas that aim at influencing

software designers and implementors.
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In this abstract sense, mixin layers qualify as an aspect-oriented implemen-
tation mechanism. Nevertheless, the parameterization ability of mixin layers (i.e.,
the ability to instantiate a layer in multiple inheritance hierarchies, or multiple
times in the same inheritance hierarchy) does not seem to be part of standard
aspect-orientation.

It should be noted that the foremost application of AOP to date is the
AspectJ tool [LK98]: atransformationalmeta-object protocol for Java. Its trans-
formational character means that AspectJ detects actions of the Java object system
in the program texte.g., method invocation sites). Then arbitrary code can be exe-
cuted to modify the program text according to the prescriptions of different

aspects.

5.2.4 Adaptive OO Components

Another well-known approach to modular OO software development is Lieber-
herr's Demetemrmethod and adaptive components [Lie96, LP97, ML98]. Adaptive
components specify functionality additions based on an abstract pattern of partici-
pating classes. The pattern can later be applied to actual classes of an application,
so that their functionality is enhanced. This technique is analogous to identifying
collaborations in an object-oriented design, only now collaborations are imple-
mentation-level entities. Note that mixin layers offer the same flexibility through
the concept of adaptor layers discussed in Section 2.4.1. An important difference is
that adaptor layers are themselves mixin layers. That is, with mixin layers, both the
representation of a collaboration and the representation of a collaboration applica-
tion are the same (namely, mixin layers).

Nevertheless, the work on adaptive components has revealed an interesting
direction of research, with no counterpart in our work. Adaptive components can

be applied through atrategy A strategy is a way to specify a path through the

110



class graph(the graph induced on classes by inheritance and containment relation-
ships among them). Along each node in the strategy, extra functionality can be
added. In this way, strategies allow expressing functionality additions for many
classes that are grouped together based on their position in the class graph. For
instance, one can easily specify new methods to be added to aacldssll its
superclassesSimilarly, assume that clagshas a member variable that can hold an
instance of clas8, which, in turn, may hold an instance of clagsUsing strate-

gies, a programmer can describe the path frota C in the class graph. (Clags

does not need to be specified explicitly.) An adaptive component employing this
strategy can then define a new method to be added to all three classes. Clearly,
mixin layers do not have this ability of identifying classes positionally, but instead

rely on explicitly naming the classes that a layer refines.

5.2.5 Design Patterns for Modularization

The visitor design pattern [GHJV94] can often serve similar modularization pur-
poses to mixin layers. Visitor is a pattern allowinduactionalstyle of program-

ming in object-oriented languages: Multiple definitions of the same operation
(applicable to objects of several different classes) can all be grouped together in a
visitor class, instead of being distributed in the individual classes. Visitor is a fun-
damental modularization mechanism and has been used to implement more
sophisticated techniques (e.g., [ML98]). Nevertheless, visitors are different from
mixin layers in two main ways. First, visitors are dynamic in nature, whereas
mixin layers are static. This means, for instance, that mixin layers can be used to
add state (i.e., member variables) to the classes they define. Additionally, visitors
impose a run-time overhead, unlike mixin layers. Second, visitors are not allowed
to access the internals of the classes they are extending. In contrast, mixin layers

define subclasses of the refined classes. Hence, mixin layers are often able to
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access many more implementation details than visitors. For instance, a C++ class

may export a fairly extensive interface to its subclasses (usingritected

keyword), without making the same interface public so that its visitors can use it.
Overall, many design patterns address some of the same issues as mixin

layers. Nevertheless, a mixin layer can be viewed as an elegant way of expressing a

collaboration pattern among classes so that it is clear at the language level. Mixin

layers are expressed with the aid of the type system, rather than bypassing it, so

that more compile-time checking and optimization is possible.

5.2.6 Subjectivity and Views

Objects written for one application may not be reusable in another, because their
interfaces are different, even though both applications may deal with what is fun-
damentally the same object. The principle sufbjectivityasserts that no single

interface can adequately describe any object; objects are described by a family of

related interfaces [HO93, HOSU94, OH92, OKd%]. The appropriate interface
for an object is application-dependent $abjectivé.

Subjectivity arose from the need for simplifying programming abstrac-
tions—e.q., defining views that emphasize relevant aspects of objects and that hide
irrelevant details. Ossher and Harrison took an important step further by recogniz-
ing that application-specific views of inheritance hierarchies can be produced auto-
matically by composing “building blocks” callezktension$OH92]. An extension
encapsulates a primitive aspect or “view” of a hierarchy, whose implementation
requires a set of additions (e.g., new data and method members) to one or more
classes of the hierarchy. A customized “view” of an inheritance hierarchy could
therefore be defined by composing extensions.

Different and powerful approaches to views and software reuse have been

proposed by Goguen [Gog86] and Novak [Nov92, Nov97]. Goguen’s work mainly
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focusses on mathematical descriptions and axioms, while Novak’s work aims at
implementing real applications. The essence of both approaches is to define
generic abstract components that are automatically specialized to present a cus-
tomized concrete implementation. VAew is an isomorphism that defines a map-
ping of an object to a customized “perspective”. Interestingly, Novak’s view
clusters[Nov92, Nov93] encapsulate a suite of interrelated views and map multi-
ple data objects simultaneously. Hence, view clusters are closely related to mixin
layers, providing the same essence of grouping classes together. View clusters are

probably the first instance of a mixin layer-like pattern to appear in the literature.

5.2.7 Parameterized Programming

Parameterized programmingllows generic software to be written once, and
instantiated many times for different uses. Goguen identifies two types of parame-
terization: horizontal and vertical [Gog86Jorizontal parameterizatiors used to
factor out common design elements (e.g., constant values or data typegal
parameterizations used to layer progressively higher programming abstractions
(i.e., abstract machines) in order to progressively implement functionality.
Goguen’s library interconnection language, LIL, simultaneously provides both
horizontal and vertical parameterization. This provides a powerful model of soft-
ware, allowing maximum reuse of existing software artifacts, and greatly increas-
ing productivity. Other important parameterized programming systems include
GLISP [Nov83], LILEANNA [Tra93], PARIS [KRT87], and RESOLVE [SW94].

Our approach to implementing layered designs is not directly comparable
to a parameterized programming system. Mixin layers advocate that parameterized
modules should be able to encapsulate classes and be viewed themselves as classes

(i.e., support inheritance). Clearly, powerful parameterization mechanisms can bet-
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ter support mixin layers, but the essential idea is not specific to any parameteriza-

tion system.

5.2.8 Software Reuse

Software reusds the process of creating new systems from existntgfacts
(a.k.a.,asset} rather than building new systems from scratch [Kru92, Pri93].
Reuse has obvious and significant appeal. It is much easier to reuse existing arti-
facts than build new ones from scratch [Sel88]. The most obvious example of arti-
facts that can be reused are source code fragments. But reusable artifacts may be
drawn from the full life cycle: requirements, analysis, specifications, designs, doc-
umentation, and object code. Potentially reusable design artifacts include specifi-
cations written in a design modeling language such as the Unified Modeling
Language (UML) and design patterns [GHJV94].

The most naive approach to reuse is scavenddugle scavengingg.k.a.,
leverage cloning [GW94], copying or cut-and-pastgis an ad hoc technique by
which software engineers accumulate or locate source code of existing systems
specifically designed to be reused (calledacy systemsd they arestill in use),
find relevant fragments in these systems, and either (1) use #seimi(a.k.a.,

black-box reuseor (2) manually adapt them for use in new systems (a.Wwiaite-

box reusg! Unfortunately, finding relevant source code fragments may require
considerable searching, and modifying existing systems for reuse requires under-
standing them, which itself may require more effort than writing the code from

scratch. Thus, although credible, the benefits of scavenging are modest [BR87].

1. The termdesign scavenging sonetimes used to describe scavenging in which a large block of
source code is used, but many of the internal details are deleted, while the global template of the
design is retained [Kru92]. We avoid using this term, which we consider misleading, because the
artifact that is being scavenged is still sourode rather than design
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A more successful approach to reuse is based on librarikistaky (a.k.a.,
repositoryor knowledge bas@Nei94]) is a collection of artifacts, calledompo-
nents specifically designed to be reused. In 1968, Mcllroy [Mcl68] originally
envisioned that the components in the library would be functions (a.k.a., subrou-
tines or procedures), because functions were the only suitable language feature
available at that time. Since then, however, libraries have been so successful that
high level languages have evolved features specifically designed to support compo-
nents: modules, packages, subsystems, and classes [Kru92].

Reuse can greatly simplify software construction—it has the potential to
provide an order of magnitude increase in programmer productivity. Unfortu-
nately, it has three major disadvantages:

« Difficulty of construction It is more difficult to build an object if it is
intended to be reused than if it is not. In general, it is 2 to 3 times more diffi-
cult [Bro95a]. But the payoff of building for reuse can be substantial.

» Limited domain of applicabilityThedomainmay be the most important fac-
tor in reuse success. The domain must be narrow, well-understood, and
slowly changing. Biggerstaff estimates that these properties of the domain
account for 80% of the success of software reuse [Big92].

» The feature combinatorics problean library scalability problem This was
discussed in Section 2.4 and its essence is that there is an exponential num-
ber of component combinations, which makes implementing all combina-
tions by hand infeasible.

Mixin layers complement other approaches to reuse and provide large-scale reus-
able components. In our experience, it is indeed true that building mixin layers is
harder than building non-reusable classes. Nevertheless, the benefits of reusing

mixin layers are significant. By employing a static parameterization mechanism,
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mixin layers can express an exponential number of combinations without incurring

run-time overhead, thus effectively addressing the library scalability problem.
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Chapter 6

Conclusions

This dissertation analyzed techniques for implementing large-scale object-oriented
components. In this chapter, we review our central results and primary contribu-

tions, and discuss a few areas of future research.

6.1 Results and Contributions

Constructing software is a tedious and error-prone task. To alleviate these prob-
lems, programming language research has aimed at developing powerful modular-
ization techniques. Using such techniques, a unit of software functionality can be
expressed independently of the application in which it is used. In this way, soft-
ware entities become reusable in multiple environments without having to be re-
implemented. This dissertation concentrated on a novel kind of modularization:
large-scale object-oriented components. Such components can group together
many traditional object-oriented components (classes or binary objects). At the
same time, these components act themselves as object-oriented entities, supporting
the mechanism of (parameterized) inheritance.

As we demonstrated in previous chapters, large-scale object-oriented com-
ponents offer several advantages compared to conventional object-oriented pro-
gramming. We implemented large-scale components by using existing language
facilities and showed that they result in much simpler implementations than other
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existing techniques. We called our componemigin layers to emphasize their
connection to the commomixin concept in object-oriented languages. Unfortu-
nately, support for mixin layers is not ideal in any mainstream programming lan-
guages. We showed what is missing and how the omissions can be corrected.
Finally, we presented a language extension that adds mixin layers to Java and used
it to implement an extensible compiler for the Java language. We review the con-
crete contributions of our research in more detail below:

* In Chapter 2, we introduced mixin layers and described how they can be
implemented in multiple programming languages. We showed that mixin
layers offer a better way to implement object-orientadlaboration-based
designs than either application frameworks [JF88] or the technique of Van-
Hilst and Notkin [VN96a-c, Van97]. Mixin layers preserve the advantages of
the VanHilst and Notkin implementation method over application frame-
works (i.e., maintain design structure, facilitate reuse, and avoid unnecessary
dynamic binding). At the same time, mixin layers correct the scalability
problems of the VanHilst and Notkin technique yielding simpler code and
shorter compositions.

* In Chapter 3, we addressed several programming language issues concerning
mixin layers. We showed how type-system support for large-scale compo-
nents can be provided using two new properties (terdesp subtypingnd
deep interface conformangcen order to express constraints for mixin layer
parameters. We also showed how type propagation probhanisa] typing)
can be solved in a mixin layer framework. Other issues addressed include
checking the validity of a layer composition through programmer-supplied
propositional properties, and analyzing the interaction of mixin layers and

other language constructs in mainstream OO languages.
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* In Chapter 4 we discussed an actual application that further validates the
mixin layers approach. We used mixin layers as the primary implementation
technique in a medium-size project (the JTS tool suite for implementing
domain-specific languages). Our experience showed that mixin layers are
versatile and can handle components of substantial size. The implementation
of mixin layers used in that project was itself specified as an extension to the

Java language.

6.2 Future Research

Large-scale software components are promising for the future of software con-
struction. The area is relatively young and several interesting directions for future
research can be identified.

» \erifying composition correctnesshe methods discussed in Chapter 3 for
verifying the correctness of a composition rely on the programmer supplying
simple properties for components. Although this approach can be acceptable,
two problems arise. First, the stated properties may not exactly match the
component behavior. That is, the checking is not performed on the actual
code but on the declared properties of the code. Second, the language for
describing requirements may not be expressive enough. Both problems sug-
gest that sophisticated checking mechanisms may be desirable. Properties
could be matched to the actual component behavior more closely, perhaps by
semi-automatic techniques that will verify that components truly satisfy their
stated properties. A richer requirements language could allow the program-
mer to express declaratively the specification of a “correct” composition,
which would later need to be matched to the properties of actual component

compositions. Formal verification of computing elements is the focus of a
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large body of work in Computer Science. Some of the existing or future
results may provide the right balance of automation and expressibility for use
iIn component-based software.

» Applications and characterization of applicabilitiMixin layers could be
applied to several software domains and simplify programming by allowing
reusable components to be expressed concisely. Candidate domains include
those for which GenVoca designs have been successful in the past. Neverthe-

less, there is no clear characterization of the domains for which our approach

is suitable. The essence of software is its complexityd software elements
often exhibit many interdependencies. Mixin layers rely on isolating orthog-
onal features of a domain and expressing them independently. Often, separat-
ing different software aspects into independent components is impossible,
however. Complexity is inherent in such domains and software cannot be
decomposed into manageable units. It would be highly valuable to character-
ize common software domains with respect to their amenability to compo-
nent-based solutions.

* Binary componentsDynamic composition of binary components is a very
interesting area for future work. We discussed in Chapter 5 how some of our
ideas can be adapted to dynamic components. It remains to be shown, how-
ever, whether the expression of mixin-layer-like constructs in a dynamic set-
ting is more advantageous than other patterns of parameterizing binary
components. A compelling demonstration (e.g., of the sort presented in Sec-
tion 2.4) of the advantages of dynamic layers over other actual techniques

would be particularly useful in establishing the value of our ideas.

1. To quote Charles Simonyi, “Software is distilled complexity.”
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